基因多态性与铁代谢

合集下载

药物代谢基因多态性与药物代谢研究

药物代谢基因多态性与药物代谢研究

药物代谢基因多态性与药物代谢研究药物代谢是药物在人体内生物化学反应的过程,药物经过代谢后才能被人体利用或排泄。

药物代谢基因多态性指的是人类基因中存在一些变异可以导致药物代谢酶的活性或表达水平发生改变,从而影响药物的代谢过程。

因此,药物代谢基因多态性是影响药物个体差异的主要原因之一,也是药物研究中的热点问题之一。

药物代谢酶是药物代谢过程中起主要作用的一种酶,主要包括细胞色素P450 (CYP)酶和转移酶。

人体中的CYP酶家族以代谢的药物种类不同而分类,目前已发现的CYP家族主要包括CYP1、CYP2、CYP3、CYP4和CYP5。

转移酶主要代表为UDP-葡萄糖苷转移酶 (UGT) 和 N-乙酰转移酶 (NAT)。

药物代谢酶基因多态性主要存在于CYP酶和UGT酶。

药物代谢基因多态性的发现对临床医学产生了深远的影响。

药物代谢基因多态性可以导致同一药物在不同人群之间产生不同的药效差异,所以很多药物的使用都需要以药物代谢基因多态性为基础的个体化给药。

同样,药物代谢基因多态性也会影响各种药物的安全性和毒副作用。

药物代谢基因多态性对化疗药物的疗效也产生了重要的影响。

化疗是治疗恶性肿瘤的重要手段之一。

药物代谢基因多态性可以影响化疗药物的药效和不良反应的发生率。

例如,处理前列腺癌的药物紫杉醇 (paclitaxel) 经CYP3A5代谢以及阳痿药物西地那非 (sildenafil) 经CYP3A4代谢,这两种药物在药物代谢基因多态性存在差异的患者中会产生不同的治疗效果。

尽管药物代谢基因多态性的发现为药物研究和个体化治疗带来了新的契机,但其本身也存在一些挑战。

首先,药物代谢基因多态性的检测需要耗费时间和金钱。

其次,由于药物代谢基因多态性受到多个因素的影响,不同人群之间的药物代谢差异较大,因此药物代谢基因多态性的结果在不同种族和族群中会有所不同。

综上所述,药物代谢基因多态性是药物研究中的热点问题之一。

药物代谢基因多态性的发现对个体化治疗和药物安全性的评估产生了深远的影响。

铁对基因表达的调控

铁对基因表达的调控

铁对基因表达的调控摘要:铁作为动物生长发育及生产所需要的重要营养成分,既可作为代谢过程的底物和辅助因子,又可对许多编码基因的表达进行直接或间接的调控,本文综述了铁对基因表达的调控方式及途径,介绍铁对部分基因表达的主要影响。

关键词:铁;基因表达;调控各种营养物质作为外部因子与基因表达相互作用,它们的关系表现在两个方面:一方面养分的摄入量影响基因表达;另一方面基因表达的结果影响养分的代谢途径和代谢效率,并决定动物的营养需要量。

随着分子生物学理论和技术的快速发展,微量元素铁调控基因表达的方式、途径、机制得以不断揭示,其重要性得到了重视。

1铁的生理功能铁对动物有多种功能,主要表现在:铁是构成血红蛋白、肌红蛋白、细胞色素和多种氧化酶的重要成分,作为氧的载体,保证体组织内氧的正常输送;血红蛋白中的铁对于维持机体每个器官和每种组织的正常生理作用是不可缺少的;铁在胎盘中是以转铁蛋白的形式存在;以乳铁蛋白的形式存在于哺乳动物乳汁-胰液-泪液及白细胞胞浆;以铁蛋白和血红素形式存在于肝中;在禽卵和爬行类卵蛋白中存在的卵转铁蛋白;并且铁也是构成机体内许多代谢酶的活性成分,如:铁硫蛋白、细胞色素、细胞色素氧化酶、过氧化物酶等;铁与某些酶的活性有密切的关系,如乙酰辅酶A,琥珀酸脱氢酶,黄嘌呤氧化酶,细胞色素还原酶,是激活这些碳水化合物代谢酶的不可缺少的活化因子[1]。

在细胞生物氧化过程中发挥着重要作用。

现代研究证明:铁与能量代谢密切相关,因为三羧循环中有一半以上的酶和因子含铁或者只有铁存在时才能发挥其生化作用,完成生理功能#铁还影响动物体内的蛋白质合成和免疫机能。

缺铁或铁的利用不良,将导致氧的运输、贮存,二氧化碳的运输及氧化还原等代谢过程紊乱,影响生长发育甚至发生贫血等各种疾病。

机体若贮铁或摄铁不足,或因寄生虫感染缺铁,或红细胞分解速度大于合成速度则出现缺铁性贫血,贫血可发生于生长的任何阶段,需要人工补铁。

2铁对基因表达调控的主要机制2.1在转录水平上的调控基因表达是指动物体内的DNA转录成几股信使RNA(mRNA),再以mRNA为模板合成蛋白质的过程.基因的表达要受到转录水平,转录后、mRNA翻译、翻译后等过程的调节[2]。

免疫遗传学基因多态性与免疫反应关系研究

免疫遗传学基因多态性与免疫反应关系研究

免疫遗传学基因多态性与免疫反应关系研究免疫遗传学是对人类免疫系统基因与其表达的遗传因素进行研究的学科。

其中,基因多态性是指同一基因在不同个体中存在不同的等位基因或基因型。

这些基因多态性对于人类免疫系统的功能、免疫疾病的易感性等具有重要意义。

本文将探讨免疫遗传学基因多态性与免疫反应关系的研究。

1. 免疫遗传学基因多态性在人类免疫系统中,有许多基因存在多态性,如人类白细胞抗原(HLA)基因、细胞因子基因、T细胞受体(TCR)基因等。

这些基因的多态性对于免疫反应的效力、免疫疾病的易感性、免疫排斥反应等具有重要意义。

以HLA基因为例,HLA基因位于人类染色体的短臂上。

它在人类免疫系统中具有重要的识别作用,参与了抗原呈递和免疫应答的过程。

对于不同种类抗原的处理,不同的HLA分子有不同的作用。

因此,HLA基因的多态性对于人类免疫系统的功能具有重要影响。

在临床上,HLA基因多态性的研究已经被广泛应用于器官移植、疫苗设计等方面。

2. 免疫反应与基因多态性的关系免疫反应是生物体对于感染、致癌细胞等外界因素的应答反应。

在抗原刺激下,免疫系统中的免疫细胞会释放细胞因子、调节细胞增殖、分化等,最终形成一种综合的免疫反应。

这种免疫反应的强度、速度等有很大程度上的差异。

基因多态性是其中一种可能的原因。

例如,HLA基因的多态性对于病毒感染的易感性具有影响。

许多病毒必须依赖宿主的免疫系统来进行复制、扩散等。

而HLA分子参与了抗原的呈递过程,它的多态性会影响到病毒抗原呈递的效率。

因此,HLA基因多态性与病毒感染的易感性具有相关性。

同时,HLA基因多态性还和免疫系统的自身免疫功能密切相关,其多态性与自身免疫疾病的易感性也存在相关性。

另外,基因多态性还可以影响到免疫抗原的适应性。

在免疫应答中,免疫细胞需要对抗原进行特异性识别,并产生相应的免疫反应。

然而,在人群中,同一抗原的识别效率会有所不同。

这是因为不同人的基因多态性和其相应的抗原识别效率有关系。

人体基因组的多态性与遗传疾病

人体基因组的多态性与遗传疾病

人体基因组的多态性与遗传疾病随着科技的不断发展,人类对基因组的理解也越来越深入。

基因组多态性是指同一物种或同一种族个体基因组序列上的差异,这一差异既可以产生后代优越的生理特征,也可能造成一些遗传疾病。

本文将针对人体基因组的多态性及其与遗传疾病的关系展开讨论。

一、人类基因多态性的来源人体细胞内含有23对染色体,其中最关键的一对是性染色体,即X、Y染色体。

基因是存在于染色体上,决定人类体内的遗传特征,其中同一基因可有多个等位基因。

等位基因是指同一基因所对应的基因根据其不同的表达方式,产生的由不同的序列构成的基因。

人类基因多态性来源主要包括三个方面:自然突变、基因重组及交换。

自然突变是指在DNA复制、DNA修复或细胞分裂时突然发生的变异,产生新的等位基因。

基因重组则是指发生在有性生殖中不同亲本基因物种间突然组合的变异,产生新的基因型。

另外,基因交换与基因重组类似,通常发生在兄弟姐妹及其他亲缘关系亲属间。

二、基因多态性与遗传疾病基因多态性和遗传疾病之间存在一定的相关性。

一般来说,基因多态性对于单基因遗传病的发病率没有太大影响。

但对于一些复杂性疾病,基因多态性是决定疾病形成的重要因素之一。

1.单基因遗传病单基因遗传病大多数情况下仅因单一基因的突变所引起,主要分为显性遗传和隐性遗传两种类型。

其中以囊性纤维化为例,这种病是由某一单基因的突变质变所引起的,危害程度相对较高。

相反,血红蛋白C病的影响程度相对较轻,虽然也是遗传型隐性但发病率较低。

2.复杂遗传病复杂遗传疾病是指由多个基因突变、外部环境及其他因素共同引起的疾病,如高血压、糖尿病等。

通常,这些疾病的发病率由基因环境因素所主导,并不受单一基因的调节。

三、某些基因的多态性与疾病的联系人类基因组多态性非常复杂,现代医学已经证明很多基因与疾病之间存在着一定的联系。

在这方面进行了深入的研究,以下是几个案例:1. ACE基因多态性与高血压ACE(血管紧张素转换酶)基因多态性和高血压之间存在一定的相关性。

基因多态性与人类疾病的关系

基因多态性与人类疾病的关系

基因多态性与人类疾病的关系在人类基因组中,有些基因存在多个等位基因(allele),也就是说,同一个基因能够有不同的表现形态。

这种现象被称为基因多态性(genetic polymorphism)。

基因多态性对于人类的生命健康具有重要的影响,因为它能够决定某些人是否容易患上某些疾病,或者在患病后不同的治疗效果。

本文将从以下几个方面阐述基因多态性与人类疾病的关系。

一、基因多态性与药物代谢酶药物是治疗疾病的主要手段之一。

然而,不同的人对于同一种药物的反应可能存在差异。

这个差异部分源于基因多态性。

举个例子,肝脏中存在一种叫做细胞色素P450 (CYP450) 的酶系统,它是许多药物代谢的主要途径。

然而,CYP450 系统的不同亚型之间存在基因多态性,这就导致了不同的人对于同一种药物代谢速度的不同。

如果某个患者存在一种药物代谢酶的突变,使得他的代谢速度较慢,那么他就需要更少的药物才能产生和其他人一样的效果,否则可能会出现过度药效或药物副作用。

因此,在临床上判断合适的药物剂量会考虑患者的基因多态性。

二、基因多态性与疾病易感性人类有些疾病的发生和基因多态性有密切关系。

例如,乳腺癌、子宫内膜癌等妇科肿瘤患者中,存在一种特定的BRCA1 基因变异。

这种基因变异使得患者乳腺癌和卵巢癌的风险增加很多倍。

另外,糖尿病、哮喘、心血管疾病等也和基因多态性有关。

基因多态性决定了某些人是否容易患上这些疾病,在对这些疾病的防治上也有着重要的意义。

例如,针对某些人可能存在的基因易感性,我们可以通过生活方式、营养等方面进行干预,减少疾病的风险。

三、基因多态性与个性化医疗随着基因测序技术的进步,我们将更好地了解基因多态性与人类疾病的关系。

个性化医疗将基于患者的基因多态性定制治疗方案,从而实现更好的疗效和安全性。

例如,在细胞治疗领域,针对患者基因多态性的治疗才能产生最好的效果,而不同的治疗方法也可能对于不同的基因多态性有不同的效果。

因此,在良性肿瘤和癌症的治疗中,也在逐渐发展基于基因多态性的个性化医疗。

铁死亡特征基因

铁死亡特征基因

铁死亡特征基因随着科学技术的不断发展,人类对于基因的研究也越来越深入。

基因是生物个体遗传信息的载体,它决定了个体的生理特征和表现形态。

而铁死亡特征基因则是近年来备受关注的一个研究方向。

铁死亡特征基因是指与铁代谢相关的基因,在人体中起着重要的调控作用。

铁是人体必需的微量元素之一,它参与了许多重要的生理过程,如氧气运输、能量代谢和免疫功能等。

然而,过量的铁元素也会对人体健康造成危害。

当铁离子超过一定浓度时,就会产生自由基,导致氧化应激反应的增加,引起细胞损伤和炎症反应,最终导致器官和组织的损害,甚至引发一系列疾病。

铁死亡特征基因的研究发现,人体内存在许多与铁代谢有关的基因,它们可以调节体内铁的吸收、转运和储存等过程。

其中,最为重要的基因包括HFE基因、HAMP基因、TFRC基因等。

这些基因的突变或多态性可能会导致铁代谢紊乱,进而影响人体的健康。

HFE基因是铁死亡特征基因中最为重要的一个。

它编码了一种蛋白质,可以与细胞膜上的受体结合,调控肠道铁的吸收和肝脏铁的储存。

HFE基因突变会导致铁过量的积累,进而引发遗传性血色素沉着病、亨廷顿舞蹈病等疾病。

HAMP基因编码的蛋白质则可以调节肠道铁的吸收和肝脏铁的释放,它的突变与家族性铁过载症密切相关。

TFRC基因则编码了一种铁载体蛋白质,突变会导致铁代谢紊乱,进而引发贫血等疾病。

除了这些基因,还有许多其他的基因也与铁死亡特征密切相关。

例如,HJV基因编码的蛋白质可以调控肝脏铁的吸收和释放,突变会导致家族性肠道铁负荷过重症。

SLC40A1基因编码的蛋白质则调节肠道铁的吸收和肝脏铁的释放,突变会引发遗传性铁负荷过重症。

这些基因的突变或多态性对于铁代谢的调控起着重要的作用。

铁死亡特征基因的研究不仅可以揭示人体铁代谢的分子机制,还有助于解析铁代谢相关疾病的发病机制。

通过对这些基因的研究,可以开发出更加准确的诊断方法和个体化的治疗策略。

例如,通过检测HFE基因的突变,可以预测遗传性血色素沉着病患者的风险,并进行早期干预和治疗。

遗传学知识:基因多态性的分析

遗传学知识:基因多态性的分析

遗传学知识:基因多态性的分析基因多态性的分析基因多态性指的是同一物种中基因序列的变异。

这种基因变异的存在能够导致个体在性状、健康状况、药物代谢等方面出现差异。

分析基因多态性是研究人类基因组的重要手段之一。

本文将从基因多态性的定义、应用、评估等方面进行阐述。

一、基因多态性的定义基因多态性是指基因序列中存在的可变性。

现有研究表明,基因组中约有1%的序列存在变异。

基因多态性的具体表现形式包括单核苷酸多态性(SNP)、串联重复序列(VNTR)等。

基因多态性的存在能够对生物学过程产生影响,如个体的健康状况、药物代谢等。

二、基因多态性的应用基因多态性的存在对个体特征的表现产生影响。

目前,许多研究开展了基因多态性和疾病之间的关联分析,以探究特定基因型与疾病的发生发展之间的关联。

例如,糖尿病、高血压等疾病就与特定基因型有着密切的联系。

另外,基因多态性在个体化用药方面也有广泛的应用。

现有研究表明,基因多态性能够影响药物的代谢和吸收,从而导致个体在药理治疗中出现不同的反应。

因此,在药物治疗中,针对个体基因多态性进行评估和应用,能够提高药物治疗效果和降低不适应症的发生率。

三、基因多态性评估目前,基因多态性的评估主要有两种方式:基于PCR的单纯性分析和基于芯片的多基因分型分析。

基于PCR的单纯性分析是最常见的基因多态性评估方式。

该技术采用特定引物进行扩增,得到基因对应位点的DNA序列,进而对基因型进行分析。

该技术具有操作简单、针对单一基因位点、成本低等特点。

基于芯片的多基因分型分析可以同时评估多个基因位点的多态性。

该技术采用芯片上固定的探针来检测基因多态性,具有高通量、高灵敏度等特点。

但该技术由于成本和技术难度较高,目前仅在特定研究领域得以应用。

四、总结基因多态性评估能够在疾病诊断、药物个体化治疗等方面发挥重要作用。

目前,基于PCR和芯片的技术已成为基因多态性评估的主要手段。

基因多态性是人类基因组研究的重要内容之一,未来随着技术的发展和深入研究,其应用领域和价值将不断扩大和深化。

生物体内铁代谢的分子调控机制

生物体内铁代谢的分子调控机制

生物体内铁代谢的分子调控机制铁是人类体内必需的微量元素,它参与许多体内生物过程,如血红蛋白合成、细胞呼吸以及细胞生长等。

但是,铁也是一种活泼的离子,当它在体内过量时,会生成自由基,导致氧化应激和细胞损伤。

因此,生物体内铁代谢的平衡与调控极为重要。

铁的进口和储存人类体内的铁主要来源于食物。

在小肠上皮细胞表面存在铁转运蛋白(Transferrin receptor),它可识别铁载体转铁蛋白(Transferrin)并与之结合,使铁进入细胞。

一旦细胞摄取了足够的铁元素,它就会被转运到铁质蛋白(Ferritin)中进行储存,从而维持体内铁离子稳定的水平。

铁离子一旦达到过量,则会被转运到细胞外,通过细胞外铁调控蛋白(Hepcidin)的调控被排泄出体外。

铁在体内代谢的调控机制当人体内铁水平过低时,机体会分泌一种铁缺乏诱导因子(Iron Regulatory Protein,简称IRP),它能识别并结合体内间接铁离子合成相关基因(Iron-responsive element,简称IRE)的RNA结构,从而促进铁转运蛋白和铁载体转铁蛋白的合成,以提高铁离子的吸收和利用。

相反的,当铁过量时,机体会产生抑制因子Hepcidin,使细胞表面的铁转运蛋白被内化分解并阻止铁的进口,同时也增加了铁在Ferritin中的储存,从而降低了体内铁的水平。

IRP和Hepcidin的调控机理IRP的激活大致可以分为两类情况:一种是IRP与IRE同等级别,阻止转铁蛋白合成;另一种是IRP与IRE处于不同级别,促进铁转运蛋白合成。

IRP的调控主要是受体的上调和铁离子浓度的影响。

IRP谷氨酸依赖性氧化酵素(Prolyl hydroxylase,简称PHD)的活性会受到铁的影响而发生变化。

当体内铁离子浓度过低时,PHD的活性被抑制,从而使聚乙二醇分解酯酶4(Poly ubinat edEsterase4,简称P4H)的降解被抑制,聚乙二醇化酶(Polyubiquitination,简称PU)的结合被降低,从而增加了IRP的活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E DITORIALS&P ERSPECTIVESI ron homeostasis, like other physiological processes,relies on precise and timely interactions between key proteins involved in either its uptake or release. At the core of this is hepcidin, a small acute phase antimi-crobial peptide that now also appears to synchronously orchestrate the response of iron transporter and regula-tory genes to ensure proper balance between how much dietary iron is absorbed by the small intestine or released into the circulation by macrophages.1Several studies suggest that there are strong genetic compo-nents that underlie hepcidin regulation beyond the usual suspects(i.e. infection, inflammation, erythropoiesis, hypoxia and iron), in a manner that could impinge on phenotypic differences in susceptibility to iron-over-load or anemia. Based on variation in hepcidin expres-sion phenotypes, new emerging data suggest that there are heritable regulatory polymorphisms within the pro-moter that are linked to diseases of iron metabolism. Here we provide a perspective of what factors could determine such variability, giving some insight into how gene-gene, gene-environment, gene-nutrient inter-actions and even circadian rhythms may contribute to hepcidin ex pression variation and diseases associated with such variation.Role of human genetics in hepcidin expression variationSusceptibility to diseases of iron metabolism is often due to inappropriate levels of hepcidin expression or fer-roportin resistance to its effects.2Evidence suggests that these diseases cannot be fully explained by mutations in susceptibility genes alone i.e. those intimately linked to iron metabolism since most of these genes may have no mutations at all. This is particularly true for hepcidin because only a few mutations have been identified in the human hepcidin gene yet there are large variations in iron and hepcidin levels between individuals.3-5In other words, there are heritable differences in hepcidin expression that may determine phenotypic variation in iron metabolism between individuals. This is because like most other genes, hepcidin does not express at the same levels or in the same temporal order in every indi-vidual, a phenomenon known as the genomics of gene expression or expression level polymorphisms.6Hepcidin regulation: the story so farFor a whole host of reasons, gene expression is invari-ably stochastic. Thus, a random population-sampling would reveal wide variations in gene expression profiles and in hepcidin levels. Variation in hepcidin expression may be sex ually dimorphic or it may depend on age, iron levels, and infection/inflammation or simply on time of day.For example, estradiol has been shown to repress hepcidin transcription in fish7suggesting that dif-ferences in the complement of sex hormones could induce some variation in hepcidin expression within and between the sexes; this may underlie variation in hep-cidin ex pression and liver iron loading between males and females.3-5, 7-9Regulatory variation in hepcidin ex pression may be determined by polymorphic cis-acting, non-coding regions of the gene. Thus these regions are just as crucial to quantitative differences in its ex pression as point mutations within its open-reading frame (ORF) because some of these regions contain transcription factor-bind-ing sites. Trans-acting factors also determine hepcidin expression variation; these include transcription factors and iron regulatory or modifier proteins.2Structural vari-ation in the hepcidin gene i.e. gene dosage or copy num-ber polymorphism, inversions and insertions,10may also determine variability in its ex pression. We conjecture that where certain individuals inherit different copy numbers or structural variants of the hepcidin gene, there may be consequential variation in hepcidin expres-sion and iron absorption. Although conceptually possi-ble, this type of variation has not yet been identified. Cis-acting regulatory polymorphisms in hepcidin expression level variationA CCAAT-enhancer-binding protein (C/EBP) recogni-tion site within the hepcidin promoter provided the first evidence for cis-acting regulation of its ex pression by C/EBPα.11Subsequently, we showed that hepcidin expression was also regulated by Upstream Stimulatory Factor (USF) and c-Myc/Max through several E-box es with the consensus sequence CAnnTG (n is any other nucleotide); these are binding sites for the basic helix-loophelix leucine zipper family of transcription factors.12 Genes that are regulated through E-boxes including the Clock genes period,timeless and clock tend to be under cir-cadian rhythmic transcriptional control,13suggesting that hepcidin may also be transcribed in pulses. This may account for the wide diurnal variations in hepcidin expression5which may cause cyclical changes in iron levels. We also showed that single nucleotide polymor-phisms (SNPs) within the cognate promoters of the genes in different mouse strains could contribute to vari-ability in mouse hepcidin gene ex pression as some of these SNPs constituted USF binding sites.14Similarly hepcidin ex pression by STAT3 (Signal Transducer and Activator of Transcription 3) is thought to be mediated by the STAT response element (also referred to as inter-feron-γactivation sequence, GAS), TTCTTGGAA.15In support of the contribution of regulatory SNPs in hep-cidin expression variation and iron metabolism, Island et al.found a C>T polymorphism (underlined) in one ofGenetic variation in hepcidin expression and its implications for phenotypic differences in iron metabolismHenry K. Bayele, and Surjit Kaila S. SraiDepartment of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK. E-mail: kaila@. doi:10.3324/haematol.2009.010793two bone morphogenetic protein response elements,BMP-RE, (GGCGCC →GGTGCC) in the promoter thatimpaired transcription of the gene, its IL-6-responsive-ness and binding by Smads.16Similarly, Marco et al.found association between a -582A>G polymorphism inthe hepcidin promoter and iron overload in thalassemiamajor.17Porto et al.previously reported a SNP (a G to Asubstitution) in the 5’UTR of the human hepcidin genewhich correlated with severe hemochromatosis. ThisSNP generated a short ORF upstream of the gene, caus-ing a marked reduction in hepcidin ex pression.18Suchshort ORFs abound in the human genome; they arehighly polymorphic and some have been linked to avariety of human diseases because they cause significantreductions in the ex pression of prox imal downstreamgenes.19Trans-acting regulatory variation in hepcidin expression Transcriptional regulators that may cause variation in hepcidin expression levels between individuals are pri-marily involved in the inflammation arm of hepcidin regulation i.e. the JAK/STAT (IL-6/STAT3), and BMP/Smad signaling pathways.20However, the signals that culminate in iron-dependent hepcidin transcription or the cognate proteins that mediate this pathway remain obscure. Although we showed that USF regu-lates hepcidin expression,12the underlying signal trans-duction pathway remains unclear. The increasing num-ber of transcription factors for hepcidin ex pression (STAT3, Smads, USF1/2, c-Myc/Max, C/EBP α,and HIF-1) has major implications because quantitative or quali-tative differences in their expression (i.e. due to regula-tory polymorphisms or structural variation, respective-Figure 1.Regulatory pathways in hepcidin expression. In the BMP/Smad pathway,the binding of BMPs to the BMP receptor induces recep-tor regulated Smads (R-Smads); following phosphorylation,R-Smads heterodimerize with Smad 4 (common Smad) and co-migrate to the nucleus where they bind to the BMP response elements (BMP-RE) in the hepcidin promoter.R-Smads can be inhibited by inhibitory Smads (I-Smads). An iron sensor complex which may include HFE,TfR2,HJV and TMPRSS6,is regulated by transferrin-bound iron (Tf-Fe). This (hypothetical) complex transmits iron signals via ERK1/2 for activation of a putative iron-responsive transcription factor which binds to the hepcidin promoter or modulates Smad phosphorylation and influences levels of hepcidin expression. Homo- and/or heterodimers of USF1/USF2 compete with HIF-1 for binding to the E-boxes; the signals for this may be generated by the iron sensor complex. The inflam-matory (JAK-STAT) pathway engages IL-6 and its receptor,causing phosphorylation of the Janus kinase; this phosphorylates STAT3 which subsequently forms homodimers and translocates to the nucleus where they bind to the interferon γ-activation sequence (GAS) on the hepcidin promoter to drive transcription. The C/EBPs may also be regulated by this pathway (shown with a stippled arrow). The JAK-STAT pathway can b e inhib ited by the suppressors of cytokine signaling (SOCS),phosphotyrosine phosphatases (SHPS) and PIAS (Protein Inhibitor of Activated STAT). Both the SOCS and SHPs are induced byIL-6 but inhibit JAK-STAT signaling in a negative feed-back loop.ly), could determine phenotypic variation in hepcidin expression between individuals. For example, Huang et al.21found an association between biliary atresia and a polymorphism in USF2 that decreased hepcidin expres-sion by this transcription factor.Mouse genetics suggests that there may be epistatic interactions between the hepcidin gene and TMPRSS6, HFE,TfR2and HJV.TMPRSS6mutations that increase systemic hepcidin levels in humans have been found to cause iron-deficiency anemia2,22,23while mutations or deletions of TfR2,HJV and HFE invariably reduce hep-cidin levels and cause iron-overload.2It is therefore probable that polymorphisms or mutations at any of these loci or their upstream regulators could cause sig-nificant variability in hepcidin expression and differen-tial iron-loading. Thus the potential for hepcidin expres-sion variation increases exponentially with every identi-fiable regulator along the pathways depicted in Figure 1. Epigenetic regulation of hepcidin expressionThe most important epigenetic modifiers of hepcidin expression are the environment and diet because of their potential to influence chromatin structure e.g. through DNA methylation.24For ex ample, individuals that are ex posed to infectious diseases may ex press more hep-cidin than those in relatively sterile environments. Similarly, diets that are rich in iron may increase hep-cidin synthesis. On the other hand, individuals living in chronically hypox ic environments (e.g. high altitude) may express reduced levels of hepcidin compared with those at sea-level. Unfortunately these assumptions are based on our working knowledge of hepcidin ex pres-sion dynamics as no epidemiological data are available to support them. Nevertheless, it is highly likely that gene-environment and gene-nutrient interactions may critically modify hepcidin ex pression levels between individuals or populations, and their predisposition to iron-overload or anemia.Concluding remarksThe exquisite sensitivity of hepcidin to fluctuations in systemic iron levels would make it a good reporter of iron metabolism but this is confounded by its equal sen-sitivity to inflammatory mediators and environmental vagaries. In this perspective, we have described how hepcidin regulation is multi-pronged and that hepcidin-dependent susceptibility to disorders of iron metabolism may be highly complex. A number of suggestions could be made to untangle this complexity.1. For hepcidin to be a veritable diagnostic biomarker and a faithful reporter of disease, we must be able to dis-tinguish between spurious or normal inconsequential biological processes that result in transient changes in its expression, from those that inform us of incipient dis-ease.2. Reference values are also urgently required to enable early disease diagnosis and staging, patient strat-ification and response to treatment.3. Re-sequencing efforts should be made to identify polymorphisms in hepcidin genes particularly in popula-tion clusters with idiopathic iron-overload or deficiency.4. The increasing complex ity of iron metabolism requires a bottom-up,systems biology approach that begins with a computational assemblage of all the infor-mation available on hepcidin regulation. This would pro-vide a unified, plug-and-play even if imperfect executable model to test new hypotheses and to validate ex isting pathways for its regulation. Such an approach will enable our understanding of how hepcidin integrates and/or controls iron metabolism in health and disease.Dr. Henry K Bayele is a Senior Research Fellow in the Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, UK. Dr. Surjit Kaila Singh Srai is a Professor of Biochemistry and Molecular Biology, post-graduate tutor, Intercalated B.Sc. tutor in Molecular Medicine in the Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, UK. This work was funded by a grant from the Biotechnology and Biological Sciences Research Council.References1.Chung B, Chaston T, Marks J, Srai SK, Sharp PA. Hepcidindecreases iron transporter expression in vivo in mouse duo-denum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells. J Nutr. 2009 Jun 23. [Epub ahead of print] PubMed PMID: 19549758.2.Lee PL, Beutler E. Regulation of hepcidin and iron-overloaddisease. Annu Rev Pathol 2009;4:489-515.3.Roe MA, Collings R, Dainty JR, Swinkels DW,Fairweather-Tait SJ. Plasma hepcidin concentrations signif-icantly predict interindividual variation in iron absorption in healthy men. Am J Clin Nutr 2009;89:1088-91.4.Van Deuren M, Kroot JJC, Swinkels DW.Time-courseanalysis of serum hepcidin, iron and cytokines in a C282Y homozygous patient with Schnitzler’s syndrome treated with IL-1 receptor antagonist. Haematologica 2009;94: 1297-300.5.Kroot JJ, Hendriks JC, Laarakkers CM, Klaver SM, KemnaEH, Tjalsma H, et al. (Pre)analytical imprecision, between-subject variability,and daily variations in serum and urine hepcidin: implications for clinical studies. Anal Biochem 2009;389:124-9.6.Stamatoyannopoulos JA. The genomics of gene ex pres-sion. Genomics 2004;84:449-57.7.Robertson LS, Iwanowicz LR, Marranca JM. Identificationof centrarchid hepcidins and evidence that 17beta-estradi-ol disrupts constitutive ex pression of hepcidin-1 and inducible ex pression of hepcidin-2 in largemouth bass (Micropterus salmoides). Fish Shellfish Immunol 2009;26: 898-907.8.Courselaud B, Troadec MB, Fruchon S, Ilyin G, Borot N,Leroyer P, et al. Strain and gender modulate hepatic hep-cidin 1 and 2 mRNA expression in mice. Blood Cells Mol Dis 2004; 32:283-9.9.Young MF, Glahn RP, Ariza-Nieto M, Inglis J, Olbina G,Westerman M, et al. Serum hepcidin is significantly associ-ated with iron absorption from food and supplemental sources in healthy young women. Am J Clin Nutr 2009;89:533-8.10.Feuk L, Carson AR, Scherer SW. Structural variation in thehuman genome. Nat Rev Genet 2006;7:85-97.11.Courselaud B, Pigeon C, Inoue Y, Inoue J, Gonzalez FJ,Leroyer P,et al. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J Biol Chem 2002;277:41163-70.12.Bayele HK, McArdle H, Srai SKS. Cis and trans regulationof hepcidin ex pression by Upstream Stimulatory Factor.Blood 2006;108:4237-45.13.Reppert SM, Weaver DR. Molecular analysis of mam-malian circadian rhythms. Annu Rev Physiol 2001;63:647-76.14.Bayele HK, Srai SK. Regulatory variation in hepcidinH ypereosinophilic syndromes (HES) are a group ofdisorders characterized by persistent and markedhypereosinophilia (>1500 per microliter) not dueto an underlying disease known to cause eosinophilexpansion (such as an allergic drug reaction or parasiticinfection), and which is directly implicated in damage ordysfunction of at least one target organ or tissue.1,2Although rare, HES have recently nurtured much inter-est, as fascinating pathogenic mechanisms have been dis-covered in patient subgroups, and novel targeted thera-peutic approaches have recently been proven efficacious.Efforts are now being directed towards improving diag-nostic criteria and classification of disease forms,2inorder to better reflect these advances, and more impor-tantly to provide physicians with a practical diagnosticapproach to patients in whom chronic damage-inducinghypereosinophilia can not be resolved by treating an eas-ily recognized underlying cause. However, this is chal-lenging, as pathogenesis remains unknown in the major-ity of patients, and there are currently no valid biomark-ers which reflect underlying mechanisms leading tohypereosinophilia. Agreement on definitions is also para-mount to design prospective observational studies onlarge multi-center patient cohorts, aiming to better definenatural disease course and to identify markers of diseaseactivity and prognosis. The ultimate goal of theseendeavors is the optimization of treatment recommenda-tions, targeting underlying molecular mechanisms whenpossible, and, for the majority of remaining patients, tak-ing into account the heterogeneity of clinical profiles anddisease severity so that therapeutic and disease aggres-siveness are best matched.Well-characterized pathogenic mechanisms leading tohypereosinophilia described so far in patients fulfilling classical HES diagnostic criteria involve: (i) stem cell mutations leading to expression of PDGFRA-containing fusion genes with constitutive tyrosine kinase (TK)activity (mainly the FIP1L1-PDGFRA fusion gene), and (ii) sustained overproduction of IL-5 by activated T-cell subsets with unusual phenotypes and/or clonal TCR gene rearrangement patterns (Table 1).Discovery of the cryptic interstitial deletion on chro-mosome 4q12, leading to the fusion of FIP1L1 and PDGFRA genes, has represented a major breakthrough in that patients harboring this mutation respond extremely well to treatment with low doses of the TK inhibitor, imatinib mesylate (Glivec).3This discovery was made following the empirical observation that 4 out of 5 patients with HES responded well to Glivec.4Use of agents known to be effective in chronic myeloid leukemia for treatment of HES has been a classical strat-egy since initial description of this syndrome, given the widely held notion that HES could be a chronic myelo-proliferative disorder, at least in some patients with fea-tures including hepato- and/or spleno-megaly, increased vitamin B12, anemia, thrombocytopenia, and circulating myeloid precursors. The dramatic reponse to Glivec in these 4 patients suggested that eosinophil ex pansion was driven by deregulated activity of one of the ima-tinib-responsive TK, a hypothesis that was proven cor-rect shortly thereafter by Cools et al.3and Griffin et al.5in patients with HES, and in the Eol-1 cell line derived from a patient with HES, respectively. Although patients with this mutation are more adequately classified as chronic eosinophilic leukemia (CEL) given the clonal nature of eosinophil ex pansion, the cells are morphologically Hypereosinophilic syndrome variants: diagnostic and therapeutic considerations Florence RoufosseDepartment of Internal Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium, and Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium. E-mail: froufoss@ulb.ac.be. doi:10.3324/haematol.2009.010421ex pression as a heritable quantitative trait. Biochem Biophys Res Commun 2009;384:22-7.15.Wrighting DM, Andrews NC. 2006. Interleukin-6 induces hepcidin expression through STAT3. Blood 108:3204-9.16.Island ML, Jouanolle AM, Mosser A, Deugnier Y, David V,Brissot P , et al. A new mutation in the hepcidin promoter impairs its BMP response and contributes to a severe phe-notype in HFE related hemochromatosis. Haematologica 2009;94:720-4.17.Andreani M, Radio FR, Testi M, De Bernardo C, Troiano M, Majore S, et al. Association of hepcidin promoter C.-582 α>γvariant and iron overload in thalassemia major.Haematologica 2009;94:1293-6.18.Porto G, Roetto A, Daraio F , Pinto JP , Almeida S, Bacelar C,et al. A Portuguese patient homozygous for the -25G>A mutation of the HAMP promoter shows evidence of steady-state transcription but fails to up-regulate hepcidin levels by iron. Blood 2005;106: 2922-3.19.Calvo SE, Pagliarini DJ, Mootha VK. Upstream open read-ing frames cause widespread reduction of protein expres-sion and are polymorphic among humans. Proc Natl Acad Sci USA 2009;106:7507-12.20.Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, et al. Bone morphogenetic protein signaling by hemo-juvelin regulates hepcidin expression. Nat Genet 2006;38:531-9.21.Huang YH, Huang CC, Chuang JH, Hsieh CS, Lee SY,Chen CL. Upstream stimulatory factor 2 is implicated in the progression of biliary atresia by regulation of hepcidin expression. J Pediatr Surg 2008;43:2016-23.22.Melis MA, Cau M, Congiu R, Sole G, Barella S, Cao A, et al. A mutation in the TMPRSS6 gene, encoding a trans-membrane serine protease that suppresses hepcidin pro-duction, in familial iron deficiency anemia refractory to oral iron. Haematologica 2008;93:1473-923.Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J,Camaschella C. The serine protease matriptase-2(TMPRSS6) inhibits hepcidin activation by cleaving mem-brane hemojuvelin. Cell Metab 2008;8:502-11.24.Choi JK, Kim Y-K. Epigenetic regulation and the variability of gene expression. Nat Genet 2008;40:141-7.。

相关文档
最新文档