高考专题复习--参数方程(教案)
参数方程》教案(新人教选修

“参数方程》教案(新人教选修)”一、教学目标1. 理解参数方程的定义和特点。
2. 学会将直角坐标方程转换为参数方程。
3. 能够解参数方程并将其转换回直角坐标方程。
4. 掌握参数方程在实际问题中的应用。
二、教学内容1. 参数方程的定义和特点引入参数方程的概念,解释参数方程中的参数意义。
分析参数方程与直角坐标方程的关系。
2. 参数方程的转换教授如何将直角坐标方程转换为参数方程。
练习将给定的直角坐标方程转换为参数方程。
3. 解参数方程讲解参数方程的解法步骤。
练习解给定的参数方程并将其转换回直角坐标方程。
4. 参数方程的应用通过实际问题引入参数方程的应用。
练习解决实际问题,运用参数方程。
三、教学方法1. 讲授法:讲解参数方程的定义、特点和转换方法。
2. 练习法:通过练习题让学生巩固参数方程的转换和解法。
3. 问题解决法:通过实际问题引导学生运用参数方程解决实际问题。
四、教学准备1. 教学PPT:制作参数方程的相关PPT课件。
2. 练习题:准备一些参数方程的练习题供学生练习。
3. 实际问题:准备一些实际问题供学生解决。
五、教学过程1. 引入参数方程的概念,解释参数方程中的参数意义。
2. 讲解如何将直角坐标方程转换为参数方程,并进行练习。
3. 讲解参数方程的解法步骤,并进行练习。
4. 通过实际问题引入参数方程的应用,并进行练习。
教学反思:在课后对教学效果进行反思,观察学生对参数方程的理解程度和应用能力。
根据学生的反馈情况进行调整教学方法和教学内容,以便更好地达到教学目标。
六、教学评估1. 课堂问答:通过提问学生,了解他们对参数方程的理解程度。
2. 练习题:布置一些参数方程的练习题,评估学生的掌握情况。
3. 实际问题解决:让学生解决一些实际问题,观察他们运用参数方程的能力。
七、拓展与延伸1. 讲解参数方程在实际应用中的更深入例子,如工程、物理等领域。
2. 介绍参数方程与其他数学概念的联系,如极坐标方程。
3. 引导学生进行参数方程的相关研究项目,加深对参数方程的理解。
《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义解释参数方程的概念,强调参数在方程中的作用。
举例说明参数方程的常见形式,如直线参数方程和圆参数方程。
1.2 参数方程的表示方法介绍参数方程的表示方法,包括参数图和参数曲线。
讲解如何从参数方程中得出曲线或图形的几何性质。
第二章:参数方程的求解与变换2.1 参数方程的求解讲解如何求解参数方程中的参数值,重点讲解代数方法和解的存在性。
举例说明求解参数方程的步骤和技巧。
2.2 参数方程的变换介绍参数方程之间的变换方法,如参数替换和变量替换。
讲解如何将一个参数方程转换为另一个参数方程,并解释其几何意义。
第三章:参数方程的应用3.1 物体的运动方程讲解参数方程在物体运动中的应用,如匀速直线运动和圆周运动。
举例说明如何根据物体的运动特点建立参数方程。
3.2 优化问题的参数方程解决方法介绍参数方程在优化问题中的应用,如最短路径问题和最大值问题。
讲解如何利用参数方程来解决优化问题,并给出实例。
第四章:参数方程与普通方程的互化4.1 参数方程与直角坐标方程的互化讲解如何将参数方程转换为直角坐标方程,反之亦然。
举例说明互化过程中的注意事项和转换方法。
4.2 参数方程与极坐标方程的互化讲解如何将参数方程转换为极坐标方程,反之亦然。
举例说明互化过程中的关键点和转换方法。
第五章:参数方程的综合应用5.1 参数方程在几何问题中的应用讲解参数方程在几何问题中的应用,如求解曲线的长度、面积和角度等。
举例说明如何利用参数方程解决几何问题。
5.2 参数方程在实际问题中的应用介绍参数方程在实际问题中的应用,如电子束聚焦和运动规划。
讲解如何将实际问题转化为参数方程问题,并给出解决方法。
第六章:参数方程在物理问题中的应用6.1 经典力学中的参数方程讲解参数方程在经典力学中的应用,如在描述抛体运动、圆周运动等问题。
举例说明如何根据物理定律建立参数方程,并分析其物理意义。
《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的基本概念1.1 参数方程的定义与形式引导学生了解参数方程的定义,理解参数方程与普通方程的区别。
举例说明参数方程的形式,如圆的参数方程、直线的参数方程等。
1.2 参数方程的应用场景通过实际问题引入参数方程的应用,如物体的运动轨迹、几何图形的构造等。
引导学生理解参数方程在实际问题中的优势。
第二章:参数方程的求解方法2.1 参数方程的求解步骤介绍参数方程求解的一般步骤,如确定参数的范围、求解参数的值等。
通过具体例子演示参数方程的求解过程。
2.2 参数方程的图像分析引导学生了解参数方程的图像特征,如曲线的变化趋势、交点等。
通过绘制参数方程的图像,帮助学生直观理解参数方程的性质。
第三章:常见参数方程的类型及解法3.1 三角函数型参数方程介绍三角函数型参数方程的特点和解法,如正弦曲线、余弦曲线等。
通过例题讲解三角函数型参数方程的求解方法。
3.2 反比例函数型参数方程介绍反比例函数型参数方程的特点和解法,如双曲线等。
通过例题讲解反比例函数型参数方程的求解方法。
第四章:参数方程与普通方程的互化4.1 参数方程与直角坐标方程的互化引导学生了解参数方程与直角坐标方程的关系,掌握互化的方法。
通过例题演示参数方程与直角坐标方程的互化过程。
4.2 参数方程与极坐标方程的互化引导学生了解参数方程与极坐标方程的关系,掌握互化的方法。
通过例题演示参数方程与极坐标方程的互化过程。
第五章:参数方程在实际问题中的应用5.1 参数方程在物理学中的应用通过实际问题引入参数方程在物理学中的应用,如抛物线运动、电磁波等。
引导学生理解参数方程在物理学中的重要作用。
5.2 参数方程在工程中的应用通过实际问题引入参数方程在工程中的应用,如优化问题、设计问题等。
引导学生理解参数方程在工程中的实际意义。
第六章:参数方程的优化问题6.1 参数方程优化问题的定义与特点引导学生了解参数方程优化问题的定义,理解优化问题的实际意义。
《参数方程》教案(新人教选修

《参数方程》教案(新人教选修)第一章:参数方程简介1.1 参数方程的概念引导学生了解参数方程的定义和特点举例说明参数方程在实际问题中的应用1.2 参数方程的表示方法介绍参数方程的表示方法,包括参数和变量的关系练习将直角坐标方程转换为参数方程第二章:参数方程的图像2.1 参数方程的图像特点分析参数方程图像的性质和特点举例说明参数方程图像的形状和变化趋势2.2 参数方程的图像绘制学习如何绘制参数方程的图像练习绘制不同类型的参数方程图像第三章:参数方程的应用3.1 参数方程在几何中的应用利用参数方程解决几何问题,如计算线段长度、角度等举例说明参数方程在圆锥曲线中的应用3.2 参数方程在物理中的应用介绍参数方程在物理学中的应用,如描述物体的运动轨迹练习解决物理问题,如求解物体在参数方程下的速度和加速度第四章:参数方程的转换4.1 参数方程与直角坐标方程的转换学习如何将参数方程转换为直角坐标方程练习将参数方程转换为直角坐标方程,并解决相关问题4.2 参数方程与其他形式的方程的转换介绍参数方程与其他形式的方程(如极坐标方程)的转换方法练习将参数方程转换为其他形式的方程,并进行问题求解第五章:参数方程的综合应用5.1 参数方程在实际问题中的应用分析实际问题,建立合适的参数方程模型练习解决实际问题,如计算曲线的长度、面积等5.2 参数方程在数学竞赛中的应用介绍参数方程在数学竞赛中的应用,如解决综合题练习解决数学竞赛中的参数方程问题第六章:参数方程与曲线积分6.1 参数方程下的曲线积分概念引入曲线积分的概念,解释其在参数方程中的应用举例说明曲线积分的计算方法6.2 参数方程下的曲线积分计算学习如何利用参数方程计算曲线积分练习计算不同类型曲线积分问题第七章:参数方程与曲面面积7.1 参数方程下的曲面面积概念引入曲面面积的概念,解释其在参数方程中的应用举例说明曲面面积的计算方法7.2 参数方程下的曲面面积计算学习如何利用参数方程计算曲面面积练习计算不同类型曲面面积问题第八章:参数方程与优化问题8.1 参数方程在优化问题中的应用引入优化问题的概念,解释参数方程在优化问题中的应用举例说明参数方程在优化问题中的解法8.2 参数方程优化问题的解决方法学习如何利用参数方程解决优化问题练习解决实际优化问题,如最短路径问题等第九章:参数方程与微分方程9.1 参数方程与微分方程的关系解释参数方程与微分方程之间的联系举例说明微分方程在参数方程中的应用9.2 参数方程微分方程的求解方法学习如何利用微分方程求解参数方程练习求解不同类型的参数方程微分方程问题第十章:参数方程的综合应用案例分析10.1 参数方程在工程中的应用案例分析分析实际工程问题,利用参数方程进行问题建模练习解决工程问题,并进行案例分析10.2 参数方程在科学研究中的应用案例分析分析实际科学研究问题,利用参数方程进行问题建模练习解决科学研究问题,并进行案例分析重点和难点解析重点一:参数方程的概念与特点学生需要理解参数方程的定义,即变量与参数之间的关系强调参数方程在解决实际问题中的应用价值重点二:参数方程的图像特点与绘制方法学生应掌握参数方程图像的性质和变化趋势练习将参数方程转换为图像,并分析图像的特点重点三:参数方程在几何和物理中的应用学生需要学会利用参数方程解决几何问题,如计算线段长度、角度等强调参数方程在物理学中的应用,如描述物体的运动轨迹重点四:参数方程的转换方法学生应掌握参数方程与直角坐标方程、极坐标方程等的转换方法练习将参数方程转换为其他形式的方程,并解决相关问题重点五:参数方程在曲线积分、曲面面积和优化问题中的应用学生需要理解参数方程在曲线积分和曲面面积计算中的作用强调参数方程在解决优化问题中的应用,如最短路径问题重点六:参数方程与微分方程的关系和求解方法学生应理解参数方程与微分方程之间的联系练习利用微分方程求解参数方程,并解决实际问题重点七:参数方程的综合应用案例分析学生需要学会将参数方程应用于工程和科学研究问题强调案例分析的重要性,通过实际问题加深对参数方程的理解本教案围绕参数方程的概念、图像、应用和转换等方面进行了详细的讲解和练习。
高中数学参数方程全集教案

高中数学参数方程全集教案教学目标:1. 了解参数方程的概念与特点。
2. 掌握参数方程表示的直线、抛物线、圆等几何图形的方法。
3. 能够应用参数方程解决实际问题。
教学内容:1. 参数方程的概念与意义。
2. 直线的参数方程。
3. 抛物线的参数方程。
4. 圆的参数方程。
5. 应用题解析。
教学流程:一、导入(5分钟)通过展示一道简单的参数方程题目引起学生对参数方程的兴趣。
二、教学理论与实践(30分钟)1. 参数方程的概念与意义。
2. 直线、抛物线、圆的参数方程推导与展示。
3. 学生跟随教师完成一些简单的参数方程练习。
三、示范与练习(20分钟)1. 教师示范更复杂的参数方程计算方法。
2. 学生分组完成一些参数方程应用题。
四、梳理知识(10分钟)1. 整理参数方程的要点。
2. 鼓励学生提出问题与疑惑。
五、拓展应用(15分钟)1. 学生尝试解决更具挑战性的参数方程应用题。
2. 学生展示解题过程与答案。
六、作业布置(5分钟)安排相关参数方程题目作业,并要求学生在下节课前完成。
教学反馈:在下节课开始时,教师可以让学生展示他们的参数方程作业,并进行讨论和纠正。
教学资源:1. 教材《高中数学参数方程》。
2. 大黑板、彩色粉笔等。
教学评价:通过观察学生在课堂上的表现以及他们完成的作业,评估学生对参数方程的理解与掌握情况,并根据需要调整后续教学计划。
备注:本教案仅作示范参考,具体实施时可根据学生情况和教学进度做出适当调整。
高三数学总复习参数方程教案选修

高三数学总复习 参数方程教案选修4-4【教学目标】(1) 极坐标与直角坐标系的互化和特殊位置的直线、圆的极坐标方程.(2) 参数方程与普通方程的互化、直线的参数方程中参数的几何意义,直线和圆锥曲线参数方程的应用. (3) 伸缩变换. 【教学重点】(1) 极坐标与直角坐标系的互化(2) 参数方程与普通方程的互化、直线的参数方程中参数的几何意义,直线和圆锥曲线参数方程的应用. 【教学难点】直线的参数方程中参数的几何意义,直线和圆锥曲线参数方程的应用. 【教学过程】一、主干知识梳理1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x 、y 的另一种曲线方程的形式,它体现了x 、y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcos α,y =y 0+lsin α(l 为参数).l 是有向线段P 0P 的数量.(2) 圆方程(x -a)2+(y -b)2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数).(3) 椭圆方程x 2a 2+y2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数).(4) 双曲线方程x 2a 2-y2b 2=1(a>0,b>0)的参数方程是⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px(p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4. 在参数方程与普通方程的互化中注意变量的取值范围.二、热点分类突破题型1 极坐标与直角坐标的转化【例1】(理)(2012·乌鲁木齐地区诊断)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-32t ,y =12t .(t 为参数),以O 为极点,x 轴的正半轴为极轴(长度单位与直角坐标系xOy 中相同)的极坐标系中,曲线C 的方程为ρ=2a cos θ(a >0),l 与C 相切于点P . (1)求C 的直角坐标方程; (2)求切点P 的极坐标.【变式1】已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为(4,π3),则|CP |=________.【题型2】参数方程和普通方程的互化【例2】在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的坐标方程为(1) 求C 的参数方程(2) 设D 在C 上,C 在D 出的切线与直线l :垂直,根据(1)中你得到的参数方程,确定D 的坐标。
参数方程教案

参数方程(复习)学习目标:1、 掌握将曲线的参数方程互为普通方程的基本方法2、 能将一些简单的参数方程化为普通方程3、 掌握圆的参数方程,了解其他常见曲线的参数方程。
学习重点:参数方程和普通方程的互化。
学习难点:参数方程的应用。
一、例题解析例1:把下列参数方程化为普通方程① ⎩⎨⎧-=+=ααsin 2cos 3y x α为参数 ②⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 23521t 为参数例2:过)0,3(-p 且倾斜角为30 的直线和曲线C:⎪⎩⎪⎨⎧-=+=t t y t t x 11t 为参数,相交于A 、B 两点,求弦长AB 为多少?练习1:求过C:⎩⎨⎧==ααsin 3cos 5y x (α为参数)的右焦点且与⎩⎨⎧-=-=t y t x 324 (t 为参数)平行的直线的普通方程。
例3:曲线C:⎩⎨⎧==ααsin 2cos 2y x (α为参数),),(y x p 为C 上的动点,求y x S +=的最值。
练习2:(08年江苏)点),(y x p 是1322=+y x 上的动点,求y x S +=的最值二、高考热身:(05年江苏单招)已知曲线方程为08cos 5sin 84cos 2222=+++-+αααy y x x )2,0[πα∈1、问该曲线是何种类型的二次曲线2、求该曲线的焦点坐标和准线方程3、求该曲线的中心轨迹方程三、小结:参数方程化为普通方程用消参的方法,在消元的过程中,经常用到一些三角恒等式。
四、作业:试卷答案:例3:原式可以化为:112)cos (3)sin (22=+--ααx y 所以该曲线为焦点在y 轴上的双曲线,假想坐标原点为(ααsin ,cos -),基本函数为112322=-x y 所以焦点坐标1F (-αcos ,15sin +α)和2F (-αcos ,15sin -α) 准线方程为:αsin 515+±=y 设中心坐标为),(y x C则令ααsin cos =-=y x )2,0[πα∈消参,得122=+y x 所以该曲线的中心轨迹方程为单位圆。
高中数学参数方程讲解教案

高中数学参数方程讲解教案
教学目标:
1. 了解参数方程的概念及特点;
2. 能够根据图形描述、方程组等条件求解参数方程;
3. 能够应用参数方程解决实际问题。
教学重点:
1. 参数方程的概念和基本性质;
2. 根据条件确定参数方程;
3. 参数方程的应用。
教学难点:
1. 理解参数方程和坐标系之间的关系;
2. 能够灵活应用参数方程解决实际问题。
教学准备:
1. 教案、黑板、彩色粉笔;
2. 教材、习题册。
教学过程:
一、导入(5分钟)
教师引导学生回顾直角坐标系的基本概念,引出参数方程的概念。
二、讲解参数方程(15分钟)
1. 参数方程的概念:通过示意图和实例,说明参数方程是由一组参数表示的方程。
2. 参数方程的性质:讲解参数方程的特点,如多解性、通解性等。
三、解题方法(20分钟)
1. 根据条件确定参数方程:通过示例,讲解如何根据图形描述、方程组等条件确定参数方程。
2. 参数方程的应用:通过实例,讲解如何应用参数方程解决实际问题。
四、练习与讨论(15分钟)
教师布置练习题,让学生独立完成,并进行讨论和解答。
五、总结(5分钟)
教师进行总结,强调参数方程的重要性和应用价值。
六、作业布置(5分钟)
布置作业,要求学生复习参数方程的相关知识,并解决相应问题。
教学反思:
本节课主要介绍了参数方程的概念、性质和解题方法,并通过示例和练习加深学生的理解和应用能力。
教师在讲解过程中要注重引导学生思考和启发学生独立解题,同时要注意实际问题的应用,让学生能够将理论知识应用到实际生活中去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4—4 ⎪⎪⎪坐标系与参数方程第1课坐标系[课前回扣教材][过双基]1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0). 4.常见曲线的极坐标方程(1)圆心在极点,半径为r 的圆的极坐标方程:ρ=r (0≤θ<2π). (2)圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆的极坐标方程:ρ=2r sin_θ(0≤θ<π). (3)过极点,倾斜角为α的直线的极坐标方程:θ=α(ρ∈R)或θ=π+α(ρ∈R). (4)过点(a,0),与极轴垂直的直线的极坐标方程:ρcos θ=a ⎝⎛⎭⎫-π2<θ<π2. (5)过点⎝⎛⎭⎫a ,π2,与极轴平行的直线的极坐标方程:ρsin_θ=a (0<θ<π).[小题速通]1.已知曲线的极坐标方程为ρ=4cos 2θ2-2,则其直角坐标方程为________________.2.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________. 3.点P 的直角坐标为(1,-3),则点P 的极坐标为________.4.在极坐标系中,过点A ⎝⎛⎭⎫1,-π2引圆ρ=8sin θ的一条切线,则切线长为________. [清易错]1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π)(k ∈Z),(-ρ,π+θ+2k π)(k ∈Z)表示同一点的坐标. 1.圆ρ=5cos θ-53sin θ的圆心的极坐标为________.2.若圆C 的极坐标方程为ρ2-4ρcos ⎝⎛⎭⎫θ-π3-1=0,若以极点为原点,以极轴为x 轴的正半轴建立相应的平面直角坐标系xOy ,则在直角坐标系中,圆心C 的直角坐标是________.极坐标与直角坐标的互化[典例] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.[方法技巧]1.极坐标与直角坐标互化公式的3个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的非负半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[即时演练]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1(0≤θ<2π),M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.极坐标方程的应用[典例] (2017·1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.[方法技巧]曲线的极坐标方程的求解策略在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.[即时演练](2017·云南师大附中适应性考试)在直角坐标系xOy 中,半圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数,0≤φ≤π).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=53,射线OM :θ=π3与半圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.1.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.2.(2016·北京高考改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.3.(2015·安徽高考改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值.4.(2015·北京高考改编)在极坐标系中,求点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离.[高考达标检测]1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.2.在极坐标系中,求曲线ρ=4cos ⎝⎛⎭⎫θ-π3上任意两点间的距离的最大值.3.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.4.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标.5.(2017·邯郸调研)在极坐标系中,已知直线l 过点A (1,0),且其向上的方向与极轴的正方向所成的最小正角为π3,求:(1)直线的极坐标方程; (2)极点到该直线的距离.6.(2016·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.7.(2017·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.8.(2017·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.第2课参数方程[课前回扣教材][过双基]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).[小题速通]1.参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t (t 为参数)与极坐标方程ρ=sin θ所表示的图形分别是________.2.曲线⎩⎪⎨⎪⎧x =sin θ,y =sin 2θ(θ为参数)与直线y =x +2的交点坐标为________. 3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为________. 4.参数方程⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数)化为普通方程为________.[清易错]1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.否则不等价. 2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.1.直线y =x -1上的点到曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ上的点的最近距离是________.2.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,则切线的倾斜角为________.[课堂研究高考]参数方程和普通方程的互化[典例] (2016·重庆巴蜀中学模拟)已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos α,y =m +sin α(α为参数),直线l 的参数方程为⎩⎨⎧x =1+55t ,y =4+255t (t 为参数),(1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于P ,Q 两点,且|PQ |=455,求实数m 的值.[方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.[即时演练]将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数).直线的参数方程[典例] (2017·哈师大附中模拟)已知在直角坐标系C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|P A |·|PB |的值.(1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数).当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [方法技巧] [即时演练]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.极坐标、参数方程的综合应用[典例] (2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.[方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[即时演练](2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .1.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.2.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.3.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0, π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.[高考达标检测]1.(2017·吉林实验中学)已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其直线l 的距离相等,求点P 的坐标.2.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)的距离的最小值.3.(2017·辽宁五校联考)倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2. (1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.4.(2017·山西模拟)在极坐标系中,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎫θ+π4.现以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =-2+12t ,y =-3+32t (t 为参数).(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 和曲线C 交于A ,B 两点,定点P (-2,-3),求|P A |·|PB |的值.5.(2017·贵州模拟)极坐标系与直角坐标系xOy 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,曲线C 1的极坐标方程为ρ=4cos θ(ρ≥0),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =m +t cos α,y =t sin α(t 为参数,0≤α<π),射线θ=φ,θ=φ+π4,θ=φ-π4与曲线C 1分别交于(不包括极点O )点A ,B ,C .(1)求证:|OB |+|OC |=2|OA |;(2)当φ=π12时,B ,C 两点在曲线C 2上,求m 与α的值.6.(2017·唐山模拟)将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的 2 倍(纵坐标不变)得到曲线C 2,点A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程; (2)求|AC |-|BD |.7.(2016·长春模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π3. (1)求曲线C 2的直角坐标方程,并指出其表示何种曲线;(2)若曲线C 1和曲线C 2交于A ,B 两点,求|AB |的最大值和最小值.8.(2017·云南一模)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t -1,y =t +2(t 为参数).在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程; (2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围.。