像差的分类

合集下载

光学像差实验报告总结(3篇)

光学像差实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过光学像差实验,加深对光学像差的理解,掌握光学像差的基本原理和分类,并学会使用光学仪器测量和评估光学系统的像差。

二、实验原理光学像差是光学系统中存在的缺陷,会导致成像质量下降。

根据像差与颜色是否有关、像差是轴上点产生的还是轴外点产生的,可以将像差分为多种类型,如球差、慧差、像散、场曲、畸变等。

三、实验仪器与材料1. 光学系统:包括透镜、反射镜、光阑、光束整形器等;2. 光源:激光器;3. 探测器:光电探测器;4. 仪器:成像系统、光束整形器、光路控制器等。

四、实验内容1. 实验一:测量球差(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出球差值。

2. 实验二:测量慧差(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变光轴倾斜角度,记录不同倾斜角度下探测器的信号强度;(4)分析信号强度与倾斜角度的关系,得出慧差值。

3. 实验三:测量像散(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变光轴倾斜角度,记录不同倾斜角度下探测器的信号强度;(4)分析信号强度与倾斜角度的关系,得出像散值。

4. 实验四:测量场曲(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出场曲值。

5. 实验五:测量畸变(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出畸变值。

单色像差有哪些分类

单色像差有哪些分类

单色像差有哪些分类
单色像差即是对单色光而言的像差,按照理想像平面上像差的大小与物高、入射光瞳口径的关系可区分为:
 1.球差:与物高无关而与入射光瞳口径三次方成正比的像差。

它使理想像平面中各像点都成为同样大小的圆斑。

轴上物点只有球差这一种像差。

通过入射光瞳上不同环带的光线,经过光学系统后会聚在光轴上的不同点。

这些点与近轴光的像点之差称为轴向球差。

 2.彗差:与物高一次方、入射光瞳口径二次方成正比的像差。

若仅存在彗差,轴外物点发出的通过入射光瞳不同环带的光线,会在理想像平面上形成半径变化的并且沿视场半径方向偏移的像圈。

它们的组合会使物点的像成为形状同彗星相似的弥散斑。

 3.场曲和像散:与物高二次方、入射光瞳口径一次方成正比的像差。

若仅存在场曲,则所有物平面上的点都有相应的像点,但分布在一个球面上;若采用弯成此种形状的底片,则可获得处处清晰的像。

此时在理想像平面上,像点呈现为圆斑。

 4.畸变:仅与物高三次方成正比的像差。

若仅有畸变,得到的像是清晰的,只是像的形状与物不相似。

 上述单色像差,仅与物高和入射光瞳口径的幂总共三次方成正比,称为三。

低频 中高频 超高频光学像差

低频 中高频 超高频光学像差

光学像差是指在光学系统中由于透镜或反射镜的制造或组装不理想而引起的光学偏差。

它会导致成像质量下降,图像出现模糊、扭曲、色散等问题。

根据频率的不同,可以将光学像差分为低频、中高频和超高频光学像差。

1. 低频光学像差低频光学像差主要包括球面像差、横向色差和像散。

其中,球面像差是由于透镜或反射镜的表面不是一个完美的球面而产生的。

当光线通过非完美球面时,会导致不同波长的光线聚焦在不同的位置,从而产生色差。

横向色差是由于不同波长的光再次聚焦时位置不重合而产生的。

像散是由于光线在距离光轴较远的位置聚焦而产生的。

2. 中高频光学像差中高频光学像差主要包括像场弯曲、像散和畸变。

像场弯曲是指成像平面不是一个平面而是一个曲面,从而导致不同位置的物体成像位置不同。

像散是由于光线通过透镜或反射镜时产生的非线性效应而导致的。

畸变是由于透镜或反射镜的形状不理想而产生的图像形状扭曲。

3. 超高频光学像差超高频光学像差主要包括像散、像散分散场曲率和像散色散场曲率。

像散是由于透镜或反射镜的曲率不理想而产生的,主要表现为在像差较大的情况下像差不仅与孔径有关,还与观察点位置有关。

像散分散场曲率是指在大视场下,像差与视场位置有关。

像散色散场曲率是指在大视场下,不同波长的光经过同一透镜或反射镜成像时表现出不同的像差。

除了以上提到的光学像差外,还有其他一些特定频率的像差,如非球面像差、星散、焦散等。

光学像差对于光学成像系统的性能有着重要影响,因此在光学系统设计和制造过程中需要充分考虑和控制各种像差的影响。

在实际的光学系统中,常常通过多种方法来补偿和消除光学像差,如使用复合透镜、非球面透镜、抛物面镜等。

透过光学系统,改进设备的制造工艺和提高工艺控制的水平也是减小光学像差的重要途径。

光学像差是光学系统中不可避免的问题,但通过合适的设计和制造工艺控制可以有效减小其影响,从而提高光学系统的成像质量。

随着光学技术的不断发展和进步,光学像差的控制和消除技术也将不断完善,为光学成像技术的发展提供更好的支持。

第六章像差理论

第六章像差理论

轴外点发出充满入瞳的一束光,这束光以通过入瞳中心的
主光线为对称中心,其中包含主光线和光轴的平面称为子
午面。过主光线且垂直于子午面的平面为弧矢面。显然子
午面是光束的对称面。
9
对子午面的情况:主光线Z和一对上下光线a、b,折射前, 上下光线与主光线对称,折射后,上下光线对不再对称于主 光线,它们的交点偏离了主光线。
14
弧矢 子午像点和弧矢像点 像面 都位于主光线上,通
子午 常可将子午像距和弧 像面 矢像距投影到光轴上,
像平 则像散表示为:

主光 线
xts lt ls
15
像散的存在使轴外物点的成像在子午方向和弧矢方向各 有不同的聚焦位置。子午方向的光线聚焦成垂直于子午 面的短焦线T′,而弧矢方向的光线聚焦成子午面内的短 焦线S′,两焦线之间是一系列由线到椭圆到圆再到椭圆 再到线的弥散斑变化。 因此,接收器在像方找不到同时能使各个方向的线条都 清晰的像面位置。
xt lt l

xs

ls

l
有像散必然有场曲,但如果没有像散存在,像面弯曲现
象也会因球面光学系统的本身特性而存在。
球面 物体
折射 球面
理想像 平面
17
根据物像同向移动的原则,B的像点进一步偏离理想像平面 P′,这种偏离随视场的大小而变化,使得垂直于光轴的平面 物体经球面成像后变得 弯曲,这种弯曲还没有考虑像散的 影响,把像散为0时的像面弯曲称为匹兹伐场曲。
Lm A1hm2 A2hm4 0 A1 A2hm2
L
h

2A1h 4A2h3
0
h 0.707hm
此时,在0.707孔径处的光线具有最大剩余球差。校正球

第七章 像差

第七章 像差
1 1 1 = (n − 1) − r r f' 1 2
点物不能成点像,而得到不同位置的单色像, 点物不能成点像,而得到不同位置的单色像, 某一截面为彩色弥散斑
二 分类
轴向色差——对光轴上的物,其红色像与紫色像的像距 对光轴上的物, 轴向色差 对光轴上的物 之差(位置色差) 之差(位置色差) ' ' ' 现象: 现象:彩色光斑
三 消除方法 1.配曲(利用透镜形状与球差的关系消除单透镜的 配曲( 配曲 像差) 像差) 透镜的纵向球差与透镜的折射率nL和曲率半径 , 透镜的纵向球差与透镜的折射率 和曲率半径r1, 和曲率半径 r2都有关,因透镜焦距 也是 和r1,r2这三个 都有关, 也是nL和 , 这三个 都有关 因透镜焦距f也是 参量的函数, 对给定的nL, 参量的函数,故对给定的 ,同样焦距的透镜 可以有不同的曲率比r1/r2,选择这个比值,可 可以有不同的曲率比 ,选择这个比值, 使球差的数值达到最小
象散Astigmation 五 象散 若把光阑缩到无限小, 若把光阑缩到无限小,只允许沿主光线的无限细光束通 则彗差不存在, 过,则彗差不存在,但是有细光束的像散和场曲存在 1.什么是象散? 什么是象散? 什么是象散 光束的子午像点和弧矢像点不重合, 光束的子午像点和弧矢像点不重合,两者分开的距离称 为象散 宽光束像散 细光束像散 象散的大小随物体离开光轴的高低不同而不同 由于对称性, 由于对称性,象散曲面为一旋转抛物面
a
弧矢彗差:前后光线经系统后的交点B 到主光线 弧矢彗差:前后光线经系统后的交点 S’到主光线 的垂直于光轴方向的距离, 的垂直于光轴方向的距离, KS’ 弧矢面光线的结构特点 由于系统像差的存在,对称于主光线两侧的” 由于系统像差的存在 对称于主光线两侧的”弧 对称于主光线两侧的 矢光线对” 经系统后交点必然在子午面上 经系统后交点必然在子午面上,但不 矢光线对”,经系统后交点必然在子午面上 但不 在主光线上,也不在理想像面上 在主光线上 也不在理想像面上 正彗差: 正彗差:彗星头朝向光轴 负彗差: 负彗差:彗星尾巴朝向光轴

摄影中常见的镜头畸变问题及解决方法

摄影中常见的镜头畸变问题及解决方法

摄影中常见的镜头畸变问题及解决方法摄影是一门创造性的艺术,通过镜头来捕捉和记录人们眼中的世界。

然而,在摄影过程中,我们常常会遇到一些挑战,其中一个常见问题就是镜头畸变。

本文将介绍镜头畸变的不同类型,以及一些常用的解决方法。

一、畸变的定义和分类镜头畸变是指在拍摄过程中,镜头将真实世界中的直线或平面呈现出弯曲、变形、扭曲或失真的现象。

根据畸变变形的形态不同,镜头畸变一般分为以下三种主要类型。

1. 几何畸变几何畸变是指通过镜头拍摄时,物体的直线在照片上呈现为曲线形状。

根据畸变的具体形态,几何畸变又可分为桶形畸变和枕形畸变。

桶形畸变使物体中心部分向外凸起,而枕形畸变则使物体中心部分向内凹陷。

2. 像差畸变像差畸变是指由于镜头制作和设计上的限制,图像边缘部分的亮度、对比度和清晰度等参数与图像中心部分有所不同。

通常,在图像的边缘部分,会出现胶片纹理、色彩偏差、镜头亮斑等问题。

3. 透视畸变透视畸变是指在摄影中,当镜头与拍摄对象的距离很近时,物体的大小和位置比例会发生变化,使物体呈现出变形的效果。

透视畸变通常在拍摄建筑物或拍摄人像等特定场景中较为明显。

二、解决镜头畸变的方法为了解决镜头畸变的问题,摄影师可以采取一些常见的方法。

下面将介绍几种常用的解决镜头畸变的方法。

1. 使用不同的镜头不同类型的镜头对畸变问题的表现也有所不同。

广角镜头在去中心畸变能力上较强,适合于拍摄需要获得大广角视角的场景。

而在一些特殊需要时,如需要进行微距拍摄或变焦拍摄时,可以选择专门设计用于这些拍摄需求的镜头。

2. 调整拍摄角度和距离在拍摄时,合理调整拍摄角度和距离也是解决镜头畸变的有效方法。

对于几何畸变问题,可以通过改变相机与被摄物体的距离和角度,来减轻或修正畸变现象。

3. 后期修复在拍摄完成后,摄影师可以通过后期修复来解决一部分镜头畸变的问题。

通过使用图像处理软件,可以对图像进行畸变校正、透视校正和像差校正等操作,使图像恢复到更加真实和准确的状态。

镜头的性能、缺陷、与评价

镜头的性能、缺陷、与评价
62
横坐标为像面中心到测试点的距离,纵坐标为MTF值。
63
传递函数曲线的评价 1.曲线越高越好 2.曲线越平直越好 3.径向与切向两条曲线越接近越好。曲线越接近表
明影像中像散(最顽固的一种像差)越小。 我国照相机镜头的MTF值的国家标准如下(这只是
一个及格标准):
64
分辨率与锐度的业余检查: 在良好的照明条件下用三脚架拍摄横幅头像与横幅
19
位置色差
一束平行光线(或入射角较小的近轴光线)经过镜 头之后汇聚于前后不同位置的像点上,其中短波(蓝 紫)光线焦距较短,长波(红光)焦距较长,这种像 差称为位置色差或轴向色差。位置色差与焦距成正比, 长焦与超长焦镜头中尤为严重。
20
倍率色差
轴外光点(远轴光线)发出的混合光线通过镜头之 后汇聚于不同的高度上,使影像的边缘分解出朦胧的 彩虹。这种色差使物体同一点发出的不同色光所形成 的影像具有不同的摄影倍率(影像大小不同),称为倍率 色差(横向色差,垂直色差)。
标准镜头的分辨率最高,长焦镜头的分辨率较低, 但是中心、边缘相差较少。
54
2. 锐度与调 制传递函数
55
锐度对还原影调层次的作用 56
分辨率与锐度 对不同景物影 像质量的影响
57
锐度的测定 1.低反差分 辨率标板拍 摄法,简便 易行,但受 胶片本身的 锐度的影响。
58
2.传递函数法 客观,需用仪器测定
镜头的性能、缺陷、与评价
镜头的像差 一个理想的镜头,应能在全部有效视场内将
物平面上的每一个物点,都在像平面上相应的位 置处形成一个清晰的像点,但实际的镜头并不能 在像面上各处都形成理想的像。镜头所形成的实 际影像与理想的影像之间的差异称为像差。常见 的像差可分为单色像差和色差两大类。

像差的分类和含义

像差的分类和含义

像差的分类和含义
像差是指光学系统中的成像缺陷,可以分为单色光像差和色光像差。

单色光像差包括球差、彗差、像散、场曲和畸变,色光像差包括位置色差和倍率色差。

1.球差是指轴上点光源发出的光线经屈光系统后,近轴光线与边缘光线像点之间的距离。

存在球差的光学系统所形成的像是对称的弥散圆。

2.彗差是指轴外点光源发出的光线经屈光系统后,上光线和下光线的交点离开主光线的距离。

3.像散是子午面上的像点和弧矢面上的像点的距离。

4.场曲为平面物体通过光学系统后形成的矢状弯曲。

5.畸变为方形物体通过光学系统后周边各点产生了不同棱镜像移所致。

6.位置色差即轴位色差,白光中不同波长的光线经光学系统后形成像点的距离,短波长的交点近于长波长的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

像差的分类
影响结像性能的像差可按下图分类。

赛德尔(Seidel)像差=“点像的扩展”+“成像面弯曲”+“形状畸变”
上述的(1)到(3)是不符合理想成像条件(i)的“点像的扩展”;(4)是不符合(ii)的“成像面弯曲”;(5)是不符合(iii)的“形状畸变”;而(6)、(7)则是由光学系统中使用的玻璃材料的特性产生的成像的“色渗”。

此外,由于“点像的扩展”也包含了衍射的影响,把光作为波考虑并且考虑到相位的“波面像差”也属于“点像的扩展”。

(1)球差(球面像差)
轴上的物点发出的光线入射进透镜时,越是数值孔径(N.A.)大的光线,其折射越强,偏离理想的成像位置而与光轴相交。

这种由于数值孔径(N.A.)的差而造成的成像位置不同的像差被称为“球差”。

(“球差”与数值孔径的3次方成比例。


对物镜而言,数值孔径(N.A.)越大分辨率越高,但存在球面像差恶化的倾向。

本公司的高超设计和制造技术,使高数值孔径(N.A.)的物镜也保持有良好的光学性能。

(2)慧差
即使对球差作很小的校正,轴外物点发出的光线也无法集中于成像平面上的1点,形成像慧星尾巴一样的不对称模糊。

这就叫做慧差。

(3)像散
校正了球差和慧差的透镜,轴外物点的像无法结成一点,而是以同心圆方向分布的线上成像以及放射状方向分布的线上成像分离。

这就叫“像散”。

产生像散时,在焦点位置的前后,纵向、横向上点像的模糊变为不同。

(4)场曲
在垂直于光轴的平面上的物体的成像面,未必是与光轴垂直的平面,一般都成为弯曲的面。

这个现象被称为“场曲像差”。

产生场曲像差时,成像位置会在视场周围出现偏移,如果将焦点对准像的中心,像的周围会出现模糊。

为了使像的周围也很清晰,就需要完全校正该像差。

(5)畸变
物体平面上的形状与成像面上的形状不相似的现象称为“畸变”。

产生畸变时,如图10-6所示的正方形的像会变成桶形或枕形。

(6)色差
光学系统中使用的玻璃具有不同波长产生不同折射率的特性。

因此,每种波长的焦点距离不同,会引起成像位置的偏移。

这个现象被称为“色差”,光轴上轴方向的偏移叫“轴色差”(也叫纵向色差),结像平面上的偏移称为“倍率色差”。

本公司使用多种玻璃能够出色的校正色差。

特别是复消色差透镜(MPlanApo),实现了从紫色(g线:波长435nm)到红色(C 线:波长656nm)光线的大范围色差校正。

相关文档
最新文档