不等式的基本性质--习题精选(一)(可编辑修改word版)
北师大八年级下2.2《不等式的基本性质》习题含答案解析

《不等式的基本性质》习题一、选择题1.若m>n ,且am<an ,则a 的取值应满足条件( )A .a>0B .a<0C .a=0D .a ≥02.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n< D .-m >-n 3.下列说法正确的是 ( )A.若a 2>1,则a >1B.若a <0,则a 2>aC.若a >0,则a 2>a D .若1<a ,则a a <24.如果x >0,那么a +x 与a 的大小关系是( )A .a +x >aB .a +x <aC .a +x≥aD .不能确定5.已知5<7,则下列结论正确的( )①5a <7a ②5+a <7+a ③5-a <7-aA. ①②B. ①③C. ②③D. ①②③6.如果a<b<0,下列不等式中错误的是( )A. ab >0B.0<+b aC.1<ba D. 0<-b a 7.-2a 与-5a 的大小关系( )A .-2a <-5aB .2a >5aC .-2a =-5bD .不能确定二、填空题1.用“<”或“>”填空.(1)若a -1>b -1,则a____b ; (2)若a+3>b+3,则a____b ;(3)若5a>5b ,则a____b ; (4)若-5a>-5b ,则a___b .2.x <y 得到ax >ay 的条件应是____________.3.若m +n >m -n ,n -m >n ,那么下列结论(1)m +n >0,(2)n -m <0,(3)mn≤0,(4)n m<0中,正确的序号为________. 4.满足-3x >-18的非负整数有________________________.5.若am <b ,ac 4<0,则m________.6.如果a -3>-5,则a ;如果-2a <0,那么n . 三、解答题1.如图所示,一个已倾斜的天平两边放有重物,其质量分别为a 和b ,如果在天平两边的盘内分别加上相等的砝码c ,看一看,盘子仍然像原来那样倾斜吗?2.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?参考答案一、选择题1.答案:B;解析:【解答】不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.故选B.【分析】运用不等式的基本性质即可知答案.2.答案:A;解析:【解答】∵m-n>0,∴m>n(不等式的基本性质1).故选A.【分析】利用不等式的基本性质1、3,把不等式变形即可知答案.3.答案:B;解析:【解答】A 选项若a 2>1,则a >1错误,B 选项若a <0,则a 2>a 错误,C 选项若a >0,则a 2>a 正确,D .若1<a ,则a a <2错误,故选B.【分析】利用不等式的基本性质分析各选项即可知答案..4.答案:A ;解析:【解答】∵x>0,∴a+x>a(不等式的基本性质1),故选A.【分析】利用不等式的基本性质1,把不等式变形即可知答案.5.答案:C ;解析:【解答】①当a <0时5a <7a 不成立,②5+a <7+a 正确,③5-a <7-a 正确,故选C.【分析】利用不等式的性质分析各选项即可知答案.6.答案:C ;解析:【解答】∵a <b <0,∴A 选项ab >0正确;B 选项a+b <0正确; C 选项a 1b<错误;D 、a-b <0正确.故选C .【分析】利用不等式的性质把不等式变形即可知答案.7.答案:D ;解析:【解答】当a >0时,-2a <-5a ;当a <0时,-2a >-5a ;当a=0时,-2a=-3a ;所以,在没有确定a 的值时,-2a 与-5a 的大小关系不能确定.故本题选D .【分析】对于a 的值要分情况讨论,可知答案.二、填空题1.答案:(1)>(2)>(3)>(4)<;解析:【解答】解:(1)a -1>b -1两边都加1得a >b ;(2)a+3>b+3两边都减3得a >b ;(3)2a>2b 两边都除以2得a >b ;(4)-2a>-2b 两边都除以-2得a <b .故答案为:>;>;>;<.【分析】利用不等式的基本性质,把不等式变形即可知答案.2.答案:a <0;解析:【解答】解:∵x <y 得到ax >ay 是两边同时乘以a ,不等号的方向发生了改变,∴a <0.【分析】运用不等式的基本性质把不等式变形可知答案.3.答案:(4);解析:【解答】解:∵m+n >m-n ,n-m >n ;∴n >-n ,-m >0;∴n >0,m <0.(1)两个数的绝对值不确定,符号也不确定,错误;(2)n-m 属于大数减小数,结果应大于0,错误;(3)mn 不会出现等于0的情况,错误;(4)异号两数相除,结果为负,正确;∴正确结论的序号为(4).【分析】运用不等式的基本性质把不等式变形,得n >0,m <0.据此可知答案.4.答案:0,1,2,3,4,5;解析:【解答】解:∵不等式-3x >-18,∴x <6,∴满足x <6的非负整数有0,1,2,3,4,5.【分析】运用不等式的基本性质把不等式变形即可知答案.5.答案:>ab ; 解析:【解答】∵ac 2<0,又知:c 2>0,∴a <0;根据不等式的基本性质3可得:m >b a .【分析】运用不等式的基本性质把不等式变形即可知答案.6.答案:a >-2, a >0;解析:【解答】根据不等式的基本性质1,不等式a-3>-5两边同时加一个数3,不等号的方向不变,则a >-2;如果-2a <0两边同时乘以-2,不等号的方向改变,那么a >0. 【分析】运用不等式的基本性质把不等式变形即可知答案. 三、解答题1.答案:盘子仍然像原来那样倾斜.解析:【解答】从图中可看出a>b ,存在这样一个不等式,两边都加上c ,根据不等式的基本性质1,则a+c>b+c ,所以,盘子仍然像原来那样倾斜.【分析】运用不等式的基本性质即可知答案.2.答案:两人的观点都不对.解析:【解答】因为a 的符号没有确定:①当a>0时,由性质2得7a>6a ,②当a<0时,由性质3得7a<6a ,③当a=0时,得7a=6a=0.所以两人的观点都不对.【分析】实际a 为任意数,有三种情况:a 为负数,a 为正数,a 为0,应全面考察各种.。
不等式的基本性质--习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ; 5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
不等式的基本性质经典练习题

不等式的基本性质经典练习题9.1.2 不等式的基本性质练题要点感知不等式的性质有:不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变,即如果 $a>b$,那么 $a\pmc>b\pm c$。
不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变,即如果 $a>b。
c>0$,那么 $ac>bc$(或$\frac{a}{c}>\frac{b}{c}$)。
不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变,即如果 $a>b。
c<0$,那么 $ac<bc$(或$\frac{a}{c}<\frac{b}{c}$)。
预练1-1:若 $a>b$,则 $a-b>0$,其依据是(A)不等式性质1.1-2:若$a”“<”或“=”)。
1-3:设 $a>b$,用“”填空,并说出是根据哪条不等式性质。
1) $3a>3b$,根据不等式性质2.2) $a-8<b-8$,根据不等式性质1.3) $-2a<-2b$,根据不等式性质3.4) $2a-5<2b-5$,根据不等式性质1.5) $-3.5a-1<-3.5b-1$,根据不等式性质2.知识点1:认识不等式的性质1.如果 $b>0$,那么 $a+b$ 与 $a$ 的大小关系是(C)$a+b\geq a$。
2.下列变形不正确的是(D)$-5x>-a$ 得 $x>$。
3.若 $a>b。
am<bm$,则一定有(B)$m<0$。
4.在下列不等式的变形后面填上依据:1) 如果 $a-3>-3$,那么 $a>0$;依据不等式性质1.2) 如果 $3a<6$,那么 $a<2$;依据不等式性质2.3) 如果 $-a>4$,那么 $a<-4$;依据不等式性质3.5.利用不等式的性质填“>”或“<”。
不等式的基本性质-习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35 C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a -b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.(注:文档可能无法思考全面,请浏览后下载,供参考。
(完整版)《不等式的基本性质》练习题

2.2 《不等式的基本性质》练习题一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m > D 、1mn >2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0ab < D 、-a >-b3、由不等式ax >b 可以推出x <ba ,那么a 的取值范围是( )A 、a≤0B 、a <0C 、a≥0D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t≥aD 、不能确定5、如果34a a<--,则a 必须满足( )A 、a≠0B 、a <0C 、a >0D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是() a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y--<, 则x >y 。
其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3(2)-5m______-5n(3)3m -______3n - (4)3-m______2-n(5)0_____m -n(6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______32; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。
9.1.2《不等式的性质》同步练习题(1)及答案

9.1.2《不等式的性质》同步练习题(1)知识点:1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b,那么a±c>b±c.2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,用式子表示:如果a > b,c>0,那么ac > bc 或ac>bc.3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示:a>b,c<0,那么,ac < bc 或ac<bc.同步练习:1.用a>b,用“<”或“>”填空:⑴ a+2 b+2 ⑵ 3a 3b ⑶-2a -2b⑷ a-b 0 ⑸-a-4 -b-4 ⑹ a-2 b-2;2. 用“<”或“>”填空:⑴若a-b<c-b,则a c ⑵若3a>3b,则a b⑶若-a<-b,则a b ⑷若2a+1<2b+1,则a b3.已知>b,若<0则b,若>0则b;4. 用“<”或“>”填空:⑴若a-b>a则b 0 ⑵若>则 b ⑶若a<-b 则 a - b⑷若a<b则a-b 0 ⑸若a<0,b 0时ab≥05.若<,则一定满足()A、>0B、<0C、≥0D、≤06.若x>-y,则下列不等式中成立的有()A、x+y<0B、x-y>0C、x>yD、3x+3y>07.若0<x<1,则下列不等式成立的是()A、>>B、>>C、>>D、>>8.若方程组的解为x,y,且x+y>0,则k的范围是()A、k>4B、k>-4C、k<4D、k<-49.用不等式表示下列各式,并利用不等式性质解不等式。
⑴a的是非负数⑵m的2倍与1的和小于7⑶a与4的和的20%不大于-5⑷x的与x的3倍的和是非负数。
9.1.2《不等式的性质》同步练习题(1)答案:1、> > < > < >2、< ;> ; > ; <3、< >4、< > < < ≤5、B6、CD7、 D8、B9、⑴ a ≥ 0 ⑵ 2m + 1 < 7⑶20%(a + 4 ) ≤ - 5 ⑷x + 3x ≥ 0。
高中数学--不等式的基本性质-习题(含答案)

高中数学 不等式的基本性质 习题1.已知a >b >c ,a +b +c =0,则必有( ).A .a ≤0 B.a >0 C .b =0 D .c >02.若a <1,b >1,那么下列命题中正确的是( ).A .11a b >B .1b a> C .a 2<b 2 D .ab <a +b -13.设a >1>b >-1,则下列不等式中恒成立的是( ).A .11a b <B .11a b> C .a >b 2 D .a 2>2b 4.已知1≤a +b ≤5,-1≤a -b ≤3,则3a -2b 的取值范围是( ).A .B .C .D .5.已知a <0,b <-1,则下列不等式成立的是( ).A .2a a a b b >> B .2a a a b b >> C . 2a a a b b >> D .2a a a b b>> 6.已知-3<b <a <-1,-2<c <-1,则(a -b )c 2的取值范围是__________. 7.若a ,b ∈R ,且a 2b 2+a 2+5>2ab +4a ,则a ,b 应满足的条件是__________.8.设a >b >c >0,x =y =,z =x ,y ,z 之间的大小关系是__________.9.某次数学测验,共有16道题,答对一题得6分,答错一题倒扣2分,不答则不扣分,某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?列出其中的不等关系.10.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较33S a 与55S a 的大小.参考答案1. 答案:B 解析:由a >b >c ,a +b +c =0知3a >0,故a >0.2. 答案:D 解析:由a <1,b >1得a -1<0,b -1>0,所以(a -1)(b -1)<0,展开整理即得ab <a +b -1.3. 答案:C 解析:取a =2,b =12-,满足a >1>b >-1,但11a b>,故A 错;取a =2,13b =,满足a >1>b >-1,但11a b <,故B 错;取54a =,56b =,满足a >1>b >-1,但a 2<2b ,故D 错,只有C 正确.4. 答案:D 解析:令3a -2b =m (a +b )+n (a -b ),则32m n m n +=⎧⎨-=-⎩,,所以125.2m n ⎧=⎪⎪⎨⎪=⎪⎩, 又因为1≤a +b ≤5,-1≤a -b ≤3, 所以115()222a b ≤+≤,5515()222a b -≤-≤, 故-2≤3a -2b ≤10. 5. 答案:C 解析:∵a <0,b <-1,则0a b >,b <-1,则b 2>1,∴211b <. 又∵a <0,∴0>2a b>a .∴2a a a b b >>.故选C. 6. 答案:(0,8) 解析:依题意0<a -b <2,1<c 2<4,所以0<(a -b )c 2<8. 7. 答案:a ≠2或b ≠12 解析:原不等式可化为(ab -1)2+(a -2)2>0.故a ≠2或b ≠12. 8. 答案:x <y <z 解析:x 2-y 2=a 2+(b +c )2-b 2-(c +a )2=2c (b -a )<0,所以x <y ,同理可得y <z ,故x ,y ,z 之间的大小关系是x <y <z .9. 答案:解:设至少答对x 题,则6x -2(15-x )≥60.10. 答案:解:当q =1时,333S a =,555S a =,所以3535S S a a <; 当q >0且q ≠1时,353511243511(1)(1)(1)(1)S S a q a q a a a q q a q q ---=---=23544(1)(1)10(1)q q q q q q q -----=<-, 所以有3535S S a a <.综上可知有3535S S a a <.。
不等式的基本性质-习题精选

不等式的基本性质 同步练习一、判断下列各题是否正确?正确的打“√”,错误的打“×”。
1. 如果a 是有理数,那么-8a >-5a 。
( )2. 如果a 为有理数,则a >-a 。
( )3. 如果a >b ,那么ac 2>bc 2。
( )4. 如果-x >8,那么x >-8。
( )5. 若a <b ,则a +c <b +c 。
( )6. 如果a >b ,那么3-2a >3-2b 。
( ) 二、 填空题1、 若a <0,则-2b a +____-2b 2、 设a <b ,用“>”或“<”填空: a -1____b -1, a +3____b +3, -2a____-2b ,3a ____3b 3、若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 4、实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b____0, a +b____0,ab____0,a 2____b 2,a 1____b 1,︱a ︱____︱b ︱ 5、若a <b <0,则21(b -a )____0 三、选择题1、 若x >y,则ax >ay ,那么a 一定为( )。
A.a >0 B .a<0 C .a≥0 D .a ≤02、若m <n,则下列各式中正确的是( )。
A .m -3>n-3 B.3m >3n C.-3m >-3n D.m /3-1>n /3-13、若a <0,则下列不等关系错误的是( )。
A .a +5<a +7 B.5a >7a C.5-a <7-a D.a /5>a /74、下列各题中,结论正确的是( )。
A.若a>0,b<0,则b/a>0B.若a>b,则a-b>0C.若a<0,b<0,则ab<0D.若a>b,a<0,则b/a<05、下列变形不正确的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b,那么a+c b+C' a —c __________ b —不等式的基本性质2:如果a>b.井且CA O,那么ac_bc ・不等式的基本性质3:如果a>b,并且c<0,那么acbe.2・设avb,用y 或Q'填空.(1) a-1 b-h (2) a+1 __________ b+1; (3) 2a 2b : (4) -2a ____ -2b :a 5) -23・根据不等式的基本性质,用填空.(1)若 a-l>b-L 则 a b : (2)若 a+3>b+3,则 a b : (3〉若 2a>2b.则 a b : (4)若一2a>-2b,则 a b. 4.若a>b, m<0, n>0.肘h 或填空.(1) a+m ___ b+ni : (2) a+n b+n : (3) m —a ni —b : (4) an_______ bn :a ba(5) mm - (6) n下列说法不正确的是()若3>1),则 ac2 >bc- (cHO) B.若 a>b,则 b<aC.若 aAfcb 则一a>—b★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:[学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是C.A. D-若 a>bt b>c,则 a>c(1) x-3>l : (2)>2*3(3) 3XV1+2X : (4) 2x>4・A. 3b<p<3aB. a+2b<p<2a+b C ・ 2b<p<2 (a+b) D. 2a<p<2 (a+b)[创新思维]10・若1">11,且anxan,则a 的取值应满足条件()(二)课本例题变式题1L (课本p6例题变式题)下列不等式的变形正确的是()3A-由 4x —l>2t 得 4x>l B.由 5x>3,得 x>5 D-由—2x<4» 得 XV —2(三)易错题12・若aAb,且m 为有理数,则am? _____ bm --6同桌甲和同桌乙正在对7a>6a 进行争论,甲说:THa 正确乙说「这不可能正确", 你认为谁的观点对?为什么?(四)难题巧解题J2x+y=k+l14,若方程组lx+2yhl 的解为X. y,且衣kv6,贝ij x+y 的取值范帀是,(五)一题多解题15・根据不等式的基本性质,把不等式2X+5V4X 」变为x>a 或xva 的形式.[数学在学校、家處、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,:K 质量分别为a 和b,如果A. boab B ・ aoab C. bc<ab D ・ c+b>a+b9・ 已知关于X 的不等式 已知^ABC 中三边为 Cl —a) x>2变形为xvl ・a.则1—a 是____ 数. a 、b. c,且3>15,那么其周长p 应满足的不等关系是()A- a>0 B. a<0 C- a=0D. a>0XC.由 2>0,得 x>2在天平两边的盘内分别加上相等的舷码C.看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1 元,但甲商店的优惠条件是:购买10本以上,从第H 本开始按标价的70%卖,乙商店的优 惠条件是:从第1本开始就按标价的85%卖.写出甲商店中收款y (元)与购买本数X (本)(x>10) Z 间的关系式.[自主探究]18.命题:a, b 是有理数.若3>1),则a2>b2. (1)若结论保持不变,那么怎样改变条件,命题才能正确? : (2)若条件保持不变・那么怎样改变结论,命题才能正确?[潜能开发]19・甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的 重量大于4个苹果的重量,设每个苹果的重量为X 则有5x>4x.乙说:这肯立是正确的.甲接 着说:设a 为一个实数,那么5a 一楚大于4a.这对吗?乙说:这与5x>4x 不是一回事吗?当 然也是正确的.请问:乙同学的回答正确吗?试说明理由•[涪息处理]20.根据不等式的基本性质,把下列不等变为x>a 或x<a 的形式:_x X 2>-3x 2(1)不等式的两边都乘以2,不等式的方向不变,所以2 ,得x>-6-・2x 6-- >—不等式两边都除以一2,不等式方向改变,所以-2-2,得x>-3・上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的? [开放实践](1) 小明要买20本时,到哪个商店购买较省钱?(2) (3) 小明现有24元钱,最多可买多少本?(1) —X2 >—3:(2) —2xv6解: (2)21.比较a+b 与a-b 的大小•[经典名题,提升自我] [中考链接](2004•山东淄博)如果m<n<0.那么下列结论中错误的是()[奥赛赏析]24.要使不等j^..<a^<a'<a'<a<a-<a^<a"< 有理数a 的取值范帀是()B- a<— 1 C, — l<a<0 D. a>l[趣味数学]25. (1) A 、B 、C 三人去公园玩跷跷板,如图13-2-3®中,试判断这三人的轻重. Q 、R 、S 四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.5. C 点拨:va>b.不等式的两边同时乘以一1,根据不等式的基本性质3,得一a<-b,所以C 选项不正确.6•解:(1) x-3>h X —3+3>1+3,(根据不等式的基本性质1) x>4:22. A. m —9<n —9 B- —m>—n—>— — C. n m D. n>i23. (2004•北京海淀)若a-b<0. 则下列各题中一泄成立的是()aA. a>bB. ab>0 C- b >0D. —a>—bA. 0<3<1(2) P 、 2, (1) < (2) < (3) (4) > (5) > (6) < 3・(1) > (2) >(4)4. (1) > (2) > (4) > (5) < (6) >H].> > > V p s错因分析:m2应为大于或等于0的数,忽略了 m 等于0的情况正解 J S am - > bm -13.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得 7a>6a.错解2:乙对,因为a 为负数或零时,原不等式不成立・错因分析:本题没有加以分析,只片而的认为a 为正数或负数,实际a 为任意数,有三种 情况:a 为负数,a 为正数,a 为0.应全而考察各种・正解:两人的观点都不对,因为a 的符号没有确定:①当a>0时,由性质2得7a>6a,② 当avO 时,由性质3得7av6a,③当a=0时,得7a=6a=0.14. l<x+y<2 点拨J 两方程两边相加得 3 (x+y) =k ・ v3<k<6,即 3v3 (x+y) v6, /. Ivx+yv2・15.解法 1: 2x+5<4x —h 2x+5—5<4x —1—5T 2XV 4X —6, 2x —4xv4x —6—4x. —2x<—6»-2x -6——> —-2 -2, x>3-6 2x —V —解法 2: 2x+5<4x —L 2x+5—2x<4x — 1 —2x, 5+l<2x —1+h 6<2x. 2 2 , 3<x, R 卩 x>3・16.解:从图中可看出a>b,存在这样一个不等式.两边都加上G 根据不等式的基本性 质1,则a+ob+c.所以.盘子仍然像原来那样倾斜•17•腿(1)若到甲商店购买,买20本共需10+1 X 70% X 10=17 (元九到乙商店购买20 本,共需1x0. 85x220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店 中的任一个购买都一样・2 23 3 3(2)— 3 x>—Ir — 3x ・(—2 )<— b (— 2 ),(根据不等式的基本性质 3)xv 2 : x ・ 3x<i+2x, 3x-2x<l+2x-2x,(根据不等式的基本性质1) x<l :2x 4—>-(4) 2x>4, 2 2.(根据不等式的基本性质x>2・7. A 8.负 9・ D 10. BIL B12.错解:am- >bin-© 甲商店中,收款y (元)与购买本数X (本)(x>10)之间的关系式为y=10+€. 7 <x -10),即y=0・ 7x+3 (英中x>10)・⑶小明现有24元钱,若到甲商店购买,可以得到方程24=0. 7X+3,解得x=30(本)•若到乙商店购买,则可买24十(1x0. 85) =28 (本〉• •••30>28,故小明最多哥买30 本・18・解:(Da, b是有理数,若a>b>0.则a'f(2) a, b是有理数,若a>b,则a+l>b+L19・解:乙同学的回答不正确,5a不一定大于4a・当a>0时,5a>4a>0:当a=0时,5a=4a=0;当avO 时,5av4av0・20.解:这里的变形与方程中的"将未知数的系数化为1"相类似,但是也有所不同:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以) 同一个负数,不等号的方向改变•21.解a+b-(a-b)=2b> 当b>0 时,a+b>a-b;当b=0 时,a+b=a-b:当bvO 时,a+lxa-b.23・D22. C24. B点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且rva^va^vO…,则这个负数一世小于一1,故应选B・25.解:(1)三人由轻到重排列顺序是B、A、C-(2)四人由轻到重排列顺序是Q、P、S、R・。