八年级数学下册 16.1 二次根式练习 (新版)新人教版
专题01 : 16。1二次根式 - 人教版数学八年级下册

专题01 :2022年人教新版八年级(下册)16.1 二次根式-期末复习专题训练一、选择题(共10小题)1.在下列代数式中,不是二次根式的是()A.B.C.D.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤53.若二次根式有意义,则x的取值范围为()A.x<1B.x>1C.x≤1D.x≥14.式子在实数范围内有意义,则x的取值范围是()A.x≠1B.x≥1C.x≤1D.x≥﹣15.若式子有意义,那么x的取值范围是()A.x≥0B.x≠1C.x≥0或x≠1D.x≥0且x≠1 6.二次根式有意义,则x的取值范围是()A.x≤﹣7B.x≥﹣7C.x<﹣7D.x>﹣77.若,则x的取值范围是()A.﹣3≤x≤3B.x>3C.x≤3D.﹣3<x<38.若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.9.二次根式有意义时,x的取值范围是()A.B.x<C.x>D.x≥10.若代数式有意义,那么x的取值范围是()A.x>2B.x≥1C.x≥1且x≠2D.x≠2二、填空题(共5小题)11.若a、b为实数,且b=+4,则a+b=.12.如果y=,那么x+=.13.若+在实数范围内有意义,则实数x的取值范围是.14.中a的取值范围是.15.已知是正整数,则满足条件的n的最小值是.三、解答题(共5小题)16.若y=2++,求的值.17.已知实数x、y为实数,是否存在实数m满足关系式=如果存在,求出m的值;如果不存在,说明理由.18.已知y=++2020,求x2+y﹣3的值.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.20.(1)已知x﹣4的平方根为±2,x+2y+7的立方根是3,求x+y的平方根.(2)已知b=﹣1,求(a﹣b)3.专题01 :2022年人教新版八年级(下册)16.1 二次根式-期末复习专题训练参考答案与试题解析一、选择题(共10小题)1.在下列代数式中,不是二次根式的是()A.B.C.D.【解答】解:A、,是二次根式,故此选项不合题意;B、,是二次根式,故此选项不合题意;C、,是二次根式,故此选项不合题意;D、,不是二次根式,故此选项符合题意;故选:D.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.3.若二次根式有意义,则x的取值范围为()A.x<1B.x>1C.x≤1D.x≥1【解答】解:根据题意,得:1﹣x≥0,解得:x≤1.故选:C.4.式子在实数范围内有意义,则x的取值范围是()A.x≠1B.x≥1C.x≤1D.x≥﹣1【解答】解:由在实数范围内有意义,得1﹣x≥0.解得x≤1,故选:C.5.若式子有意义,那么x的取值范围是()A.x≥0B.x≠1C.x≥0或x≠1D.x≥0且x≠1【解答】解:若式子有意义,则x≥0,且x﹣1≠0,解得:x≥0且x≠1.故选:D.6.二次根式有意义,则x的取值范围是()A.x≤﹣7B.x≥﹣7C.x<﹣7D.x>﹣7【解答】解:由题意,得x+7≥0,解得x≥﹣7,故选:B.7.若,则x的取值范围是()A.﹣3≤x≤3B.x>3C.x≤3D.﹣3<x<3【解答】解:∵=,又∵,∴,解得﹣3≤x≤3.故选:A.8.若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.【解答】解:(A)1+x≥0,x≥﹣1,故x=﹣3不能使该二次根式有意义;(B)2x+5≥0,x≥﹣,故x=﹣3不能使该二次根式有意义;(C)3x﹣4≥0,x≥,故x=﹣3不能使该二次根式有意义;(D)4﹣x≥0,x≤4,故x=﹣3能使该二次根式有意义;故选:D.9.二次根式有意义时,x的取值范围是()A.B.x<C.x>D.x≥【解答】解:根据二次根式的意义,被开方数3﹣2x≥0,解得x≤.故选:A.10.若代数式有意义,那么x的取值范围是()A.x>2B.x≥1C.x≥1且x≠2D.x≠2【解答】解:由题意得,x﹣1≥0且x﹣2≠0,解得x≥1且x≠1.所以x≥﹣2且x≠2,故选:C.二、填空题(共5小题)11.若a、b为实数,且b=+4,则a+b=5或3.【解答】解:由被开方数是非负数,得,解得a=1,或a=﹣1,b=4,当a=1时,a+b=1+4=5,当a=﹣1时,a+b=﹣1+4=3,故答案为:5或3.12.如果y=,那么x+=5.【解答】解:由题意得:,解得:x=3,则y=,x+=3+2=5,故答案为:5.13.若+在实数范围内有意义,则实数x的取值范围是x≥1且x≠3.【解答】解:由题意得:x﹣1≥0,且x﹣3≠0,解得:x≥1且x≠3,故答案为:x≥1且x≠3.14.中a的取值范围是a≥﹣1且a≠1.【解答】解:由题意,得a+1≥0且a﹣1≠0.解得a≥﹣1且a≠1.故答案是:a≥﹣1且a≠1.15.已知是正整数,则满足条件的n的最小值是2.【解答】解:是正整数,则2n是一个完全平方数,又2n=2×2=4,则2n是一个完全平方数,所以n的最小值是2.故答案为:2.三、解答题(共5小题)16.若y=2++,求的值.【解答】解:∵,∴x=2,∴y=,∴=+.17.已知实数x、y为实数,是否存在实数m满足关系式=如果存在,求出m的值;如果不存在,说明理由.【解答】解:由题意得:,解得:x+y=100,∴+=0,∴,解得:m=102,∴存在,m的值为102.18.已知y=++2020,求x2+y﹣3的值.【解答】解:由题意得,x2﹣4≥0,4﹣x2≥0,则x2﹣4=0,解得,x2=4,∴y=2020,则x2+y﹣3=4+2020﹣3=2021.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.【解答】解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.(1)已知x﹣4的平方根为±2,x+2y+7的立方根是3,求x+y的平方根.(2)已知b=﹣1,求(a﹣b)3.【解答】解:(1)∵x﹣4的平方根为±2,∴x﹣4=4,∴x=8,∵x+2y+7的立方根是3,∴x+2y+7=27,∴y=6,∴x+y=14的平方根为±;(2)由题意得:,解得:a2=4,∴a=±2,∵a﹣2≠0,∴a≠2,∴a=﹣2,则b=﹣1,∴(a﹣b)3=(﹣2+1)3=﹣1.。
人教版八年级数学下册16.1---16.3基础练 含答案

人教版八年级数学下册16.1二次根式一.选择题1.下列各式一定是二次根式的是()A.B.C.D.(a+b)2 2.已知是二次根式,则a的值不能是()A.B.3.14 C.﹣2 D.6 3.使代数式有意义的x的取值范围是()A.x≥﹣1 B.x>﹣1 C.x≥1D.x>1 4.若有意义,则x满足条件是()A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣3 5.若x=2能使下列二次根式有意义,则这个二次根式可以是()A.B.C.D.6.设x、y为实数,且y=+﹣4,则|x﹣y|的值是()A.2 B.4 C.6 D.8 二.填空题7.若有意义,那么x满足的条件是.8.若代数式有意义,则x的取值范围是.9.设x、y为实数,且y=4++,则x﹣y的值是.10.若实数x,y满足,则y x的值为.11.已知x,y为实数,y=,则x+8y=.三.解答题12.若实数a、b满足,求a+b的平方根.13.已知x、y都是实数,且y=+﹣3,求(x+y)2020的平方根.14.已知=b+1(1)求a的值;(2)求a2﹣b2的平方根.15.已知,(1)求a+b的值;(2)求7x+y2020的值.16.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.参考答案一.选择题1.解:A、﹣9<0,它不是二次根式,故本选项不合题意;B、它开3次方,该式子不是二次根式,故本选项不合题意;C、x取任意实数,x2+1≥1,是二次根式,故本选项符合题意;D、(a+b)2没有开平方,该式子不是二次根式,故本选项不合题意.故选:C.2.解:是二次根式,则a的值应该是非负数,即a≥0,故a的值不可能是负数,故选:C.3.解:使代数式有意义,则x﹣1≥0,解得,x≥1,故选:C.4.解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.5.解:当x=2时,A、x﹣3=2﹣3=﹣1<0,无意义,不合题意;B、1﹣x=1﹣2=﹣1<0,无意义,不合题意;C、3+x=5>0,有意义,符合题意;D、﹣2x=﹣2×2=﹣4<0,无意义,符合题意;故选:C.6.解:要使有意义,必须x﹣2≥0,要使有意义,必须2﹣x≥0,解得,x=2,则y=﹣4,∴|x﹣y|=|2+(﹣4)|=6,故选:C.二.填空题7.解:要使有意义,则1﹣x≥0,解得,x≤1,故答案为:x≤1.8.解:∵代数式有意义,∴x﹣2≠0且x﹣1≥0且x﹣1≠4,解得x≥1且x≠2或5,∴x的取值范围是x≥1且x≠2或5,故答案为:x≥1且x≠2或5.9.解:根据题意得5﹣x≥0且x﹣5≥0,∴x=5,当x=5时,y=4,∴x﹣y=5﹣4=1.故答案为1.10.解:根据题意知,.解得x=2,所以y=﹣,所以y x=(﹣)2=2.故答案是:2.11.解:根据题意得x2﹣16≥0且16﹣x2≥0,解得x2=16,∴x=4或x=﹣4,而x﹣4≠0,∴x=﹣4,当x=﹣4时,y==﹣,∴x+8y=﹣4+8×(﹣)=﹣5.故答案为﹣5.三.解答题12.解:∵,∴,∴b=4,把b=4代入上式得a=2,∴a+b=2+4=6,∴a+b的平方根为.13.解:∵y=+﹣3,∴4﹣2x≥0,2x﹣4≥0,解得:x=2,∴y=﹣3,∴(x+y)2020=(2﹣3)2020=1,∴(x+y)2020的平方根是:±1.14.解:(1)∵,有意义,∴,解得:a=5;(2)由(1)知:b+1=0,解得:b=﹣1,则a2﹣b2=52﹣(﹣1)2=24,则平方根是:.15.解:(1)由题意可知:,解得:a+b=2020.(2)由于×=0,∴∴解得:∴7x+y2020=14+1=15.16.解:(1)由题意得,x﹣2020≥0,2020﹣x≥0,解得,x=2020,则y=﹣2019,∴x+y=2020﹣2019=1,∵1的平方根是±1,∴x+y的平方根±1;(2)由题意得,a+2+a+5=0,解得,a=﹣,则a+2=﹣+2=﹣,∴x=(﹣)2=.16.2二次根式的乘除一.选择题1.下列各式成立的是()A.=1B.()3=﹣3C.=﹣4D.=±32.将化简后的结果是()A.2B.C.2D.43.下列式子中,正确的是()A.=﹣B.=±6C.﹣=﹣0.6D.=﹣8 4.下列计算结果正确的是()A.=±2B.(﹣)2=2C.|﹣3|=﹣3D.=±2 5.已知a>b,化简二次根式的正确结果是()A.b2B.b2C.﹣b2D.﹣b26.下列运算正确的是()A.=9B.=C.÷=D.3×=277.二次根式的一个有理化因式是()A.B.C.+D.﹣8.下列各式:①,②,③,④中,最简二次根式有()A.1个B.2个C.3个D.4个9.把(2﹣x)的根号外的(2﹣x)适当变形后移入根号内,得()A.B.C.﹣D.﹣10.当a<2时,化简的结果是()A.a B.﹣a C.a D.﹣a二.填空题11.若=1,那么x的取值范围是.12.比较大小:(用>,<或=填空).13.计算:=.14.化简﹣()2的结果是.15.若=﹣x,则x的取值范围是.三.解答题16.化简:(1);(2).17.当x的取值范围是不等式组的解,试化简:()2+﹣x.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣.19.有这样一类题目:将化简,如果你能找到两个数m、n,使m2+n2=a且mn =,则a±2将变成m2+n2±2mn,即变成(m±n)2,从而使得以化简.例如,因为5+2=3+2+2=()2+()2+2×=(+)2,所以==+.请仿照上面的例子化简下列根式:(1);(2).参考答案与试题解析一.选择题1.【解答】解:A、原式==,故A不成立.B、原式=﹣3,故B成立.C、原式=4,故C不成立.D、原式=3,故D不成立.故选:B.2.【解答】解:==2,故选:C.3.【解答】解:A.=﹣,故本选项符合题意;B.=6,故本选项不符合题意;C.﹣=﹣0.6,故本选项不符合题意;D.=8,故本选项不符合题意;故选:A.4.【解答】解:A.=2,故本选项不符合题意;B.(﹣)2=2,故本选项符合题意;C.|﹣3|=3﹣,故本选项不符合题意;D.=﹣2,故本选项不符合题意;故选:B.5.【解答】解:∵a>b,∴中﹣ab5≥0,∴b≤0,∴=b2,故选:B.6.【解答】解:A、原式=3,故本选项不符合题意.B、原式=,故本选项不符合题意.C、原式=,故本选项符合题意.D、原式=9,故本选项不符合题意.故选:C.7.【解答】解:因为×=a﹣b,所以二次根式的一个有理化因式可以是.故选:B.8.【解答】解:①是最简二次根式;②=,不是最简二次根式;③=2,不是最简二次根式;④=,不是最简二次根式;最简二次根式有1个,故选:A.9.【解答】解:(2﹣x)=﹣(x﹣2)=﹣=﹣,故选:D.10.【解答】解:∵a<2,∴a﹣2<0,∵a3(a﹣2)≥0,∴a≤0,∴=﹣a.故选:B.二.填空题(共5小题)11.【解答】解:∵==1,∴|3x﹣1|=1﹣3x,∴1﹣3x>0,解得:x,故答案为:x<.12.【解答】解:∵==+,==+,>,∴<.故答案为:<.13.【解答】解:原式===3.故答案为:3.14.【解答】解:要使有意义,则1﹣x≥0,解得,x≤1,则﹣()2=﹣(1﹣x)=2﹣x﹣1+x=1,故答案为:1.15.【解答】解:∵=﹣x,∴﹣x≥0,x+5≥0,解得:﹣5≤x≤0.故答案为:﹣5≤x≤0.三.解答题(共4小题)16.【解答】解:(1)原式=;(2)原式==.17.【解答】解:,解不等式①,得x>;解不等式②,得x≤2;∴x的取值范围是,∴1﹣2x<0,x﹣3<0,∴()2+﹣x=|1﹣2x|+|x﹣3|﹣x=2x﹣1﹣x+3﹣x=2.18.【解答】解:由数轴可知:a<0,b>0,a﹣b<0所以|a﹣b|﹣=|a﹣b|﹣|b|=b﹣a﹣b=﹣a.19.【解答】解:(1)∵4+2=()2+12+2××1=(+1)2,∴==|+1|=+1,(2)∵9﹣4=()2+22﹣2××2=(﹣2)2,∴==|﹣2|=﹣2.16.3 《二次根式的加减》一.选择题1.下列二次根式中,与可以合并的是()A.B.C.D.2.下列计算正确的是()A.﹣=B.=C.=D.﹣=63.=()A.B.C.D.4.在①;②;③;④中计算正确的有()A.0个B.1个C.2个D.3个5.已知是整数,则n的值不可能是()A.2 B.8 C.32 D.406.一块正方形的瓷砖,面积为50cm2,它的边长大约在()A.4cm~5cm之间B.5cm~6cm之间C.6cm~7cm之间D.7cm~8cm之间7.已知a2﹣12a+1=0,当0<a<1时,则的值为()A.B.C.D.二.填空题8.计算﹣的结果是.9.不等式x>x﹣1的解集是.10.当a=时,最简二次根式与可以合并.11.(2+)2019(2﹣)2020=.12.已知ab=5,则a+b=.三.解答题13.计算:(1)(2).14.计算:(1)(2).15.化简并求值:+x﹣4y﹣,其中x=1,y=2.16.若最简二次根式和可以合并.(1)求x,y的值;(2)求的值.17.有一块矩形木块,木工采用如图方式,求木板上截出两个面积分别为18dm2和32dm2的正方形木板,求剩余木料的面积.18.材料:海伦公式是利用三角形三条边长求三角形面积的公式,用符号表示为:S=(其中a,b,c为三角形的三边长,p=,S为三角形的面积).利用上述材料解决问题:当a=,b=3,c=2时.(1)直接写出p的化简结果为.(2)写出计算S值的过程.参考答案一.选择题1.解:A、与被开方数不同,不可以合并;B、=2与被开方数不同,不可以合并;C、=2与被开方数不同,不可以合并;D、=2与被开方数相同,可以合并.故选:D.2.解:A、原式=2﹣,所以A选项错误;B、原式=2+3=5,所以B选项错误;C、原式=,所以C选项正确;D、原式=5﹣=4,所以D选项错误.故选:C.3.解:|﹣2|=2﹣.故选:B.4.解:与不能合并,所以①错误;5与3不能合并,所以②错误;7﹣3=4,所以③错误;÷==3,所以④错误.故选:A.5.解:A、当n=2时,=2,是整数;B、当n=8时,=4,是整数;C、当n=32时,=8,是整数;D、当n=40时,==4,不是整数;故选:D.6.解:设正方形的边长为a,则a2=50,∴,∵正方形的边长a>0,∴=,又∵<,即7<<8,7<a<8;故选:D.7.解:∵a2﹣12a+1=0,∴a﹣12+=0,∴a+=12,()2=a﹣2+=12﹣2=10,∴=±,∵0<a<1,∴=﹣.故选:B.二.填空题8.解:原式=4﹣3=,故答案为:.9.解:x>x﹣1,移项,得x﹣x>1,化系数为1,得x>.分母有理化,得x>.故答案是:x>.10.解:∵最简二次根式与可以合并,∴a+2=5﹣2a,解得a=1.故答案为:1.11.解:原式=[(2+)(2﹣)]2019•(2﹣)=(4﹣3)2019•(2﹣)=2﹣.故答案为2﹣.12.解:原式=a+b=+,∵ab=5,∴当a>0,b>0时,原式=2=2;当a<0,b<0时,原式=﹣2=﹣2;即a+b=±2.故答案为±2.三.解答题13.(1)==0 (2)===14.解:(1)原式=3﹣5+=﹣;(2)原式=3﹣5+3﹣﹣2=﹣2.15.解:原式=5+x×﹣4y×﹣×y=5+﹣4﹣=,当x=1,y=2时,原式==.16.解:(1)根据题意知,解得:;(2)当x=4、y=3时,===5.17.解:∵两个正方形木板的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为:=3(dm),=4(dm),∴剩余木料的面积为:(4﹣3)×3=×3=6(dm2).18.解:(1)∵a=,b=3,c=2,∴p===;故答案为:;(2)S=====3.。
初中数学同步训练必刷题(人教版八年级下册16

初中数学同步训练必刷题(人教版八年级下册16.1 二次根式)一、单选题(每题3分,共30分)1.(2022八下·顺平期末)下列各式是二次根式的是()3D.√x A.√−2B.−√2C.√2【答案】B【知识点】二次根式的定义【解析】【解答】A.√−2无意义,故A不符合题意;B.−√2是二次根式,故B符合题意;3不是二次根式,故C不符合题意;C.√2D.√x(x≥0)才是二次根式,故D不符合题意.故答案为:B.【分析】形如√a(a≥0)的式子叫做二次根式,据此判断即可.2.(2022八下·灌云期末)代数式√x+1在实数范围内有意义,则实数x的取值范围是()A.x>−1B.x<−1C.x≤−1D.x≥−1【答案】D【知识点】二次根式有意义的条件【解析】【解答】解:代数式√x+1在实数范围内有意义,则x+1≥0,解得:x≥-1.故答案为:D.【分析】根据二次根式有意义的条件列出不等式求解即可。
3.(2022八下·威县期末)若√1−n是二次根式,则n的值可以是()A.−1B.2C.3D.5【答案】A【知识点】二次根式有意义的条件【解析】【解答】解:∵√1−n是二次根式,∴1-n≥0,解得n≤1,符合条件的n 值只有-1, 故答案为:A .【分析】利用二次根式有意义的条件求出1-n≥0,再求解即可。
4.(2022八下·顺平期末)若√2取1.414,则与√50最接近的整数是( )A .6B .7C .8D .10【答案】B【知识点】估算无理数的大小;二次根式的性质与化简 【解析】【解答】因为√50=5√2≈5×1.414≈7.07,所以接近的整数是7, 故答案为:B .【分析】由于√50=5√2,将 √2≈1.414代入求值即可判断.5.(2022八下·铁东期末)已知n 是正整数,√3n 是整数,则n 的最小值是( )A .0B .1C .3D .-3【答案】C【知识点】非负数的性质:算术平方根【解析】【解答】解: ∵n 是正整数,√3n 是整数,∴符合n 的最小值是3. 故答案为:C .【分析】根据二次根式的性质满足开平方即可解得.6.(2022八下·范县期末)√5−m√m+1=√5−m m+1成立的条件是( )A .m≥﹣1B .m≤﹣5C .﹣1<m≤5D .﹣1≤m≤5【答案】C【知识点】二次根式有意义的条件【解析】【解答】解:根据题意,得:5﹣m≥0,m+1>0,∴﹣1<m≤5, 故答案为:C .【分析】先求出5﹣m≥0,m+1>0,再求解即可。
新人教版八年级下册二次根式(全章)习题及答案

二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
2019八年级数学下册第十六章二次根式小专题(一)二次根式的运算练习(新版)新人教版

小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136;解:原式=(6×13)2×6=212=4 3.(2)(-45)÷5145;解:原式=-45÷(5×355)=-45÷3 5=-43.(3)72-322+218;解:原式=62-322+6 2=212 2.(4)(12-418)-(313-40.5). 解:原式=23-2-3+2 2=3+ 2.2.计算:(1)(6+10×15)×3; 解:原式=32+56× 3 =32+15 2 =18 2.(2)354×(-89)÷7115;解:原式=3×(-1)×54×89÷7115=-348÷765 =-3748×56 =-6710.(3)(25+3)×(25-3);解:原式=(25)2-(3)2=20-3=17.(4)(32-6)2-(-32-6)2;解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.或原式=[(32-6)+(-32-6)]×[(32-6)-(-32-6)]=-26×6 2=-24 3.(5)(5+3+2)(5-3+2).解:原式=[(5+2)+3][(5+2)-3]=(5+2)2-3=5+210+2-3=4+210.3.计算:(1)(2 019-3)0+|3-12|-63;解:原式=1+23-3-2 3 =-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32;解:原式=5-2-12+5+32 =25-1.(3)(-1)2 018+(-3)2-13×27+(2+3)(2-3).解:原式=1+3-3+4-3=2.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=ab (a -b ).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22)=(9-8)×4 2 =4 2.5.已知a =5+2,b =5-2,求b a +ab +2的值.解:由a +b =25,a·b =1,得b a +a b +2=a 2+b 2+2abab=(a +b )2ab=(25)21=20.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时,原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y (x +y ) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+2mn 2, ∴a =m 2+2n 2,b =2mn.这样小明就找到了一种把a +b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:13+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =13或7.。
最新 练习16.1 二次根式 课后练习 2021—2022学年人教版八年级数学下册

第十六章二次根式 16.1 二次根式课后练习一、选择题1.在平面直角坐标系内有一点P (x ,y ),已知x ,y|3y +5|=0,则点P 所在的象限是() A .第一象限B .第二象限C .第三象限D .第四象限2.下列式子一定是二次根式的是() ABCD3.已知下列各式:,其中二次根式有()A .1个B .2个C .3个D .4个4.若a=5,则下列各式是二次根式的是( ) A BC .D .5是整数,则n 的值不可能是() A .2B .8C .32D .406A .对于任意实数,它表示的算术平方根B .对于正实数,它表示的算术平方根C .对于正实数,它表示的平方根D .对于非负实数,它表示的算术平方根7.马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是() A .a 8÷a 4=a 2B .a 3a 4=a 12C 2D .2x 3x 2=2x 58.若最简二次根式a 、b 的值分别是( ) A .2和1B .1和2C .2和2D .1和19.下列各式中,正确的是()A 3-B .3=-C 3=±D 3±10.实数a ,b a b a b -++的结果是()A .21a b -+B .21a b -+C .21a b -+-D .21a b +-二、填空题11.若实数a ,b 满足关系式24a b +=,则ab =______.12.如果二次根式与是同类二次根式,那么满足条件的中最小正整数是________.13.已知,则x= __________ .14.要使式子有意义,则a 的取值范围是___.15.已知y =12x +3y 的算术平方根为_____. 三、解答题16.观察下列各等式:a 52-2a 32-⎛⎫ ⎪⎝⎭a a a a a a a a 3a①x 1311212==+⨯;②x 2711623=+⨯;③x 313111234==+⨯,……. (1)根据以上规律,请写出第4个等式:;(2)请利用你所发现的规律,计算x 1+x 2+x 3+…+x 90﹣91.17.实数a 、b 互为相反数,c 、d 互为倒数,x ,求代数式2x18.已知a 、b 、c a ﹣c +1|a +b +c 的平方根.19.已知x ,y 为实数,是否存在实数m 55x y --求出m 的值;如果不存在,说明理由. 20.先观察下列等式,再回答问题111111112+-=+;111112216+-=+;1111133112=+-=+.(1. (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数). 21.已知方程组的解满足x 为负数,y 为非正数(1)求m 的取值范围; (2)化简(3)在第(1)小题的取值范围内,当m 为何整数时,不等式2mx-x<2m-1的解集为x>1? 22.根据要求,解答问题. (1)观察下列各式:,,,……根据以上规律,你所发现的结论为(n 为正整数);(2)当时,由你发现的结论可得,并验证时结论的正确性;(3)计算:.23.观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证;(2)针对上述各式反映的规律,写出用a(a为自然数,且)表示的等式,并进行验证;(3)用a(a为任意自然数,且)写出三次根式的类似规律,并进行验证.【参考答案】1.D2.C3.D4.B5.D6.D7.D8.D9.B10.C11.12.413.714.a≥﹣3且a≠±1.15.216.(1)42111 2045x===+⨯;(2)191-17.818..19.存在,720.(1)111441+-+,1120,11119191+-+,11380;(2)11(1)n n++21.(1);(2)1-2m;(3)0 22.(1)1+;(2);(3)8 23.(1);(2);(3).勾股定理的逆定理一、选择题1.满足下列条件的三角形中,不是直角三角形的是()A.三个内角比为1∶2∶1B.三边之比为1∶2∶5C.三边之比为3∶2∶5D. 三个内角比为1∶2∶32.在△ABC中,∠A,∠B,∠C的对边分别是 a,b,c,那么下面不能判定△ABC是直角三角形的是()A.∠B=∠C-∠AB.a2 = (b+c) (b-c)C.∠A:∠B:∠C=5 :4 :3D.a : b : c=5 : 4 : 33.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1:;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半。
16.1 二次根式(第二课时 二次根式的性质)(练习)(解析版)2021学年八年级数学下册(人教版)

第十六章 二次根式16.1 二次根式(第二课时 二次根式的性质)精选练习答案一、单选题(共10小题)1.(2020·江苏淮安市·9﹣m ,则实数m 的取值范围是( ) A .m >9B .m <9C .m ≥9D .m ≤9 【答案】D【分析】根据算数平方根的定义可知9-m 是非负数,所以可得9﹣m≥0,求解不等式即可得出结果.【详解】根据二次根式的性质以及绝对值的意义,列不等式求解即可.|9﹣m |=9﹣m , ∴9﹣m ≥0,∴m ≤9,故选:D .【点睛】此题考查二次根式的性质,注意被开方数和开方的结果都是非负数是关键. 2.(2020·陕西西安市八年级期中)已知a 、b 、c 是三角形的三边长,如果满足()26100a c --=,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形【答案】D【分析】根据非负性求解出a ,b ,c 的具体值,再由勾股定理的逆定理判断即可.【详解】∵()260a -≥0≥,100c -≥,又∵()26100a c -+-=,∴60a -=,80b -=,100c -=,解得:6a =,8b =,10c =,∵22268366410010,∴是直角三角形.故选:D .【点睛】本题考查绝对值,二次根式,完全平方式的非负性,及勾股定理的逆定理,熟练掌握相关代数式的非负性是解题关键.3.(2020·金华市七年级期中)已知非零实数a ,b 满足212a b a -+-=-则a -b 等于( )A .−1B .0C .1D .2【答案】D【分析】先由条件得出20a -≥,然后即可将原式去掉一个绝对值,从而即可求出a 、b 的值,可得到答案.【详解】解:由212a b a -+-=-可知,20a -≥,∴212a b a -+-=-,即10b -=∴10b -=, 30a -=,∴1b =, 3a =,∴312a b -=-=,故选:D .【点睛】本题考查了绝对值和算术平方根的非负性,得到20a -≥是解题的关键.4.(2020·辽宁阜新蒙古族自治县八年级期末)实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b【答案】A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴2-a b a +=-a-b+a=-b ,故选:A .【点睛】 此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.5.(2020·广东揭阳市·3 ) A .3B 3C 3D 3【答案】D【分析】 直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数; 【详解】3 3 =33. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键;6.(2020·甘肃白银市·八年级期中)当1<a <2+|a ﹣1|的值是( ) A .1B .﹣1C .2a ﹣3D .3﹣2a 【答案】A【分析】 根据二次根式的化简方法将原式化简成21a a -+-,再根据a 的取值范围化简绝对值.【详解】解:∵12a <<,∴20a -<,10a ->, ∴原式21211a a a a =-+-=-+-=.故选:A .【点睛】本题考查绝对值的化简和二次根式的化简,解题的关键是掌握绝对值和二次根式的化简方法.7.(2020·=则x 可取的整数值有( ).A .1个B .2个C .3个D .4个【答案】B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.8.(2020·清远市八年级期中)下列四个数中,是负数的是( )A .2-B .2(2)-C .2-D .2(2)-【答案】C【分析】 先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】A 、220-=>,不符合题意;B 、()2240-=>,不符合题意;C 、20-<,符合题意;D 、()2220-=>,不符合题意;故选:C .9.(2020·吉林长春市·九年级期中)2(3)-等于( ) A .3B .-3C .±3D .9【答案】A【分析】根据实数的性质即可化简.【详解】 2(3)-3-=3故选A .【点睛】此题主要考查实数的性质,解题的关键是熟知实数的运算法则.10.(2020·西安市八年级期中)当2a <3(2)a a - )A .(2)a a -B .(2)a a a --C .(2)a a a -D .(2)a a a --【答案】B【分析】根据二次根式的性质即可化简.【详解】解:∵2a <∴a 20-<-故选:B .【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.二、填空题(共5小题)11.(2020·_____.1.【分析】直接根据二次的性质进行化简即可.【详解】>1,|1(11=-=1.【点睛】()(0)0(0)a a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键.12.(2020·=_____.【答案】【分析】根据二次根式的性质计算,即可得到答案.【详解】故答案为:43. 【点睛】 本题考查了二次根式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解. 13.(2020·西青区八年级期中)写出m n -的一个有理化因式:_______.【答案】m n -【分析】平方根与平方是互逆运算,据此解题.【详解】2()m n m n m n -⋅-=-m n ∴-的一个有理化因式是m n -,故答案为:m n -.【点睛】本题考查二次根式的有理化,是基础考点,难度较易,掌握相关知识是解题关键. 14.(2020·高台县八年级期末)已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________【答案】2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此2()()a b a b b a a b -+=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.15.(2020·)0y >=______.【答案】2【分析】根据二次根式的性质进行化简根式即可.【详解】2x =∵0y >,2=故答案为2【点睛】本题主要考查二次根式的化简,熟练掌握二次根式的性质是解题的关键.三、解答题(共2小题)16.(2020·福建三明市八年级期中)先阅读下列解答过程,然后再解答:小芳同学在研究化437+=,4312⨯=,即:227+=, =2=== 问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +==2m n ±=__________. (3)化简:415-(请写出化简过程) 【答案】(1)31+,3-2;(2)()a b a b ±>;(3)106- 【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果;(3)将15写成1524,4写成3522+,就可以凑成完全平方的形式进行计算. 【详解】解:(1)()242331233131+=++=+=+; 5-26=23-223+⨯()2=3-2=3-2; (2)()()()22222()m n a b a b a b a b a b ±=+±⨯=±=±>;(3)415-15=424-3535=22222+-⨯=210622⎛⎫- ⎪ ⎪⎝⎭=106-22. 【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.17.(2020·福建泉州市·泉州七中八年级期中)已如实数a 、b 在数轴上的位置如图所示,请化简()()22a 1ab 1b +-++-【答案】0【分析】由题意可得:2-<a <1-,0<b <1,从而可得:1a +<0, +a b <0, 1b ->0, 再利()()22a 1a b 1b ++-11a a b b =+-++-,从而可得答案.【详解】解:由题意得:2-<a <1-,0<b <1,1a ∴+<0,+a b <0, 1b ->0,1b -11a a b b =+-++-11a a b b =--+++-0.=【点睛】本题考查的是实数的大小比较,二次根式的性质,二次根式的化简,绝对值的化简,合并同类项,掌握以上知识是解题的关键.。
人教八年级数学下册-二次根式(附习题)

探索新知
思考 (1)面积为3 的正方形的边长为___3____,面积为
S 的正方形的边长为___S____.
被开方数都大于0
(2)一个长方形围栏,长是宽的2 倍,面积为130
m2,则它的宽为__6_5___m.
被开方数可
(3)一个物体从高处自由落下,落以到是地分面数所用的
时间 t(单位:s)与开始落下的高度h(单位:m)满足关系
(1)3的平方根是___3___
(2)3的算术平方根是___3____
(3)5 有意义吗?为什么? 0 呢?
(4)一个非负数a的算术平方根应表示为__a___a___0__
正数有两个平方根且互为相反数;
平方根的性质:0有一个平方根就是0;
负数没有平方根.
算术平方根的性质:正数和0都有算术平方根;
16.1 二次根式
第2课时 二次根式的性质
新课导入
我们知道二次根式 a 中a≥0,那么二次 根式 a 还有哪些性质呢?
学习目标
(1)知道 a ≥0(a≥0),会用非负数的性质
解题.
a
(2)会用公式 a2 =a(a≥0)进行计算.
(3)知道形如 的化简方法及结果.
探索新知
知识点 1 二次根式的性质 探究 当a>0时,a 是什么数? a 0 当a=0时,a 是什么数? a 0 当 a 有意义时,a是什么数? a≥0
2.使 x 3 有意义的x的取值范围是 x≥-3 .
3.下列各式中一定是二次根式的是( B )
A. x 1
B. ( x 1)2
C. a2 1
D. 1 x
4.二次根式
1 a
中,字母a的取值范围是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1 二次根式
第1课时二次根式的概念01基础题
知识点1二次根式的定义
1.下列式子不是二次根式的是( B )
A. 5
B.3-π
C.0.5
D.1 3
2.下列各式中,一定是二次根式的是( C )
A.-7
B.3
m
C.1+x2
D.2x
3.已知a是二次根式,则a的值可以是( C )
A.-2 B.-1
C.2 D.-5
4.若-3x是二次根式,则x的值可以为答案不唯一,如:-1(写出一个即可).
知识点2二次根式有意义的条件
5.x取下列各数中的哪个数时,二次根式x-3有意义(D)
A.-2 B.0
C.2 D.4
6.(2017·广安)要使二次根式2x-4在实数范围内有意义,则x的取值范围是(B) A.x>2 B.x≥2
C.x<2 D.x=2
7.当x是怎样的实数时,下列各式在实数范围内有意义?
(1)-x;
解:由-x≥0,得x≤0.
(2)2x+6;
解:由2x +6≥0,得x≥-3.
(3)x 2
;
解:由x 2≥0,得x 为全体实数. (4)
14-3x
;
解:由4-3x>0,得x<4
3.
(5)
x -4
x -3
. 解:由⎩
⎪⎨⎪⎧x -4≥0,x -3≠0 得x≥4.
知识点3 二次根式的实际应用
8.已知一个表面积为12 dm 2
的正方体,则这个正方体的棱长为(B)
A .1 dm B. 2 dm C. 6 dm
D .3 dm
9.若一个长方形的面积为10 cm 2
,它的长与宽的比为5∶1,则它的长为
02 中档题 10.下列各式中:①
12
;②2x ;③x 3
;④-5.其中,二次根式的个数有(A )
A .1个
B .2个
C .3个
D .4个
11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)
A .x ≥12
B .x ≤12
C .x =1
2
D .x ≠12
12.使式子
1x +3
+4-3x 在实数范围内有意义的整数x 有(C ) A .5个 B .3个 C .4个
D .2个
13.如果式子a +
1ab
有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A)
A .第一象限
B .第二象限
C .第三象限
D .第四象限
14.使式子-(x -5)2
有意义的未知数x 的值有1个.
15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2. 16.要使二次根式2-3x 有意义,则x 的最大值是2
3.
17.当x 是怎样的实数时,下列各式在实数范围内有意义?
(1)
3
2x -1
; 解:x>12.
(2)21-x ; 解:x≥0且x≠1.
(3)1-|x|;
解:-1≤x≤1.
(4)x-3+4-x.
解:3≤x≤4.
03综合题
18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.
解:∵3a-6≥0,2-a≥0,
∴a=2,b=4.
当边长为4,2,2时,不符合实际情况,舍去;
当边长为4,4,2时,符合实际情况,
4×2+2=10.
∴此三角形的周长为10.
第2课时 二次根式的性质
01 基础题 知识点1
a ≥0(a≥0)
1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3. 2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.
知识点2 (a )2
=a (a≥0)
3.把下列非负数写成一个非负数的平方的形式:
(1)5 (2)3.4
(3)16
= (4)x 4.计算:( 2 018)2
=2__018. 5.计算:
(1)(0.8)2
; 解:原式=0.8. (2)(-
34
)2
; 解:原式=3
4.
(3)(52)2
;
解:原式=25×2=50.
(4)(-26)2.
解:原式=4×6=24. 知识点3
a 2
=a (a≥0)
6.计算(-5)2
的结果是(B )
A .-5
B .5
C .-25
D .25
7.已知二次根式x 2
的值为3,那么x 的值是(D)
A .3
B .9
C .-3
D .3或-3
8.当a≥0时,化简:9a 2
=3a . 9.计算:
(1)49; 解:原式=7.
(2)(-5)2
; 解:原式=5. (3)
(-13
)2
;
解:原式=1
3.
(4)6-2
.
解:原式=1
6.
知识点4 代数式
10.下列式子不是代数式的是(C )
A .3x
B .3x
C .x>3
D .x -3
11.下列式子中属于代数式的有(A )
①0;②x;③x+2;④2x;⑤x=2;⑥x>2;⑦x 2
+1;⑧x ≠2.
A .5个
B .6个
C .7个
D .8个
02 中档题
12.下列运算正确的是(A )
A .-(-6)2=-6
B .(-3)2=9
C .(-16)2=±16
D .-(-5)2
=-25
13.若a <1,化简(a -1)2
-1的结果是(D )
A .a -2
B .2-a
C .a
D .-a
14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2
的结果是(A )
A .-2a +b
B .2a -b
C .-b
D .b
15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)
A .m >6
B .m <6
C .m >-6
D .m <-6
16.化简:(2-5)2
17.在实数范围内分解因式:x 2
-5
18.若等式(x -2)2
=(x -2)2
成立,则x 的取值范围是x ≥2. 19.若a 2
=3,b =2,且ab <0,则a -b =-7. 20.计算:
(1)-2
(-18
)2
;
解:原式=-2×1
8
=-14.
(2)4×10-4
; 解:原式=2×10-2
.
(3)(23)2
-(42)2; 解:原式=12-32 =-20. (4)
(213
)2+(-213
)2
.
解:原式=213+21
3
=42
3.
21.比较211与35的大小.
解:∵(211)2
=22
×(11)2
=44, (35)2
=32
×(5)2
=45,
又∵44<45,且211>0,35>0,
∴211<3 5.
22.先化简a+1+2a+a2,然后分别求出当a=-2和a=3时,原代数式的值.解:a+1+2a+a2=a+(a+1)2=a+|a+1|,
当a=-2时,原式=-2+|-2+1|=-2+1=-1;
当a=3时,原式=3+|3+1|=3+4=7.
03综合题
23.有如下一串二次根式:
①52-42;②172-82;③372-122;
④652-162…
(1)求①,②,③,④的值;
(2)仿照①,②,③,④,写出第⑤个二次根式;
(3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.
解:(1)①原式=9=3.
②原式=225=15.
③原式= 1 225=35.
④原式= 3 969=63.
(2)第⑤个二次根式为1012-202=99.
(3)第个二次根式为(4n2+1)2-(4n)2.
化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).。