八年级数学下册定义与命题
初二数学定义与命题试题答案及解析

初二数学定义与命题试题答案及解析1.有下列命题:①两直线平行,同旁内角相等;②无限小数是无理数;③的平方根是±;④点P(1,﹣2)在第四象限,其中是真命题的有.(填序号)【答案】③④【解析】利用平行线的性质、无理数的概念、平方根的意义及平面直角坐标系的知识分别进行判断后即可判定命题的真假.解:①两直线平行,同旁内角互补,故原命题错误,为假命题;②无限不循环小数是无理数,故原命题错误,为假命题;③的平方根是±,正确,为真命题;④点P(1,﹣2)在第四象限,正确,为真命题,故答案为:③④.点评:本题考查了平行线的性质、无理数的概念、平方根的意义及平面直角坐标系的知识,属于基础题,难度较小.2.“等腰梯形同一底上的两个角相等”这个命题的逆命题是,它是命题(填“真”或“假”).【答案】同一底上的两个角相等的梯形是等腰梯形,真【解析】将原命题的假设与结论反下就可得到其逆命题.解:“等腰梯形在同一底上的两个角相等”的条件是:有一梯形为等腰梯形,结论是:同一底上的两个角相等;则它的逆命题是:同一底上的两个角相等的梯形是等腰梯形,是真命题,故答案为:同一底上的两个角相等的梯形是等腰梯形,真.点评:考查了命题与定理,正确的写出一个命题的逆命题的关键是搞清楚原命题的条件和结论.3.命题“任意两个直角都相等”的题设是,结论.【答案】两个角是直角,相等【解析】任何一个命题都是由条件和结论组成.解:“任意两个直角都相等”的题设是:两个角是直角,结论是:相等.故答案为:两个角是直角,相等.点评:本题考查了命题的条件和结论的叙述.4.“有两个角相等的三角形是等腰三角形”的逆命题是.【答案】等腰三角形的两个底角相等【解析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.解:因为原命题的题设是:“有两个角相等”,结论是“这个三角形是等腰三角形”,所以命题“有两个角相等的三角形是等腰三角形”的逆命题是“等腰三角形的两个底角相等”.故答案为:等腰三角形的两个底角相等.点评:本题考查了命题与定理,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.5.“等腰梯形同一底上的两个角相等”改为如果,那么.【答案】同一底边上的两个角相等,这个梯形是等腰梯形【解析】任何一个命题都可以写成“如果…那么…”的形式.如果是条件,那么是结论.解:“等腰梯形同一底上的两个角相等”改为如果同一底边上的两个角相等,那么这个梯形是等腰梯形,故答案为:同一底边上的两个角相等,这个梯形是等腰梯形.点评:本题考查了命题的叙述形式.属于基础题,比较简单.6.(1)命题“两锐角之和一定是钝角”的题设:,结论:;(2)命题“内错角相等,两直线平行”的题设:,结论:.【答案】(1)命题“两锐角之和一定是钝角”的题设:两个角是锐角,结论:两个角的和为钝角;(2)命题“内错角相等,两直线平行”的题设:内错角相等,结论:两直线平行.两个角是锐角,两个角的和为钝角;内错角相等,两直线平行.【解析】把命题改写成“如果…,那么…”的形式,然后根据如果后面的是题设,那么后面的是结论写出即可.解:(1)命题“两锐角之和一定是钝角”的题设:两个角是锐角,结论:两个角的和为钝角;(2)命题“内错角相等,两直线平行”的题设:内错角相等,结论:两直线平行.两个角是锐角,两个角的和为钝角;内错角相等,两直线平行.点评:本题考查了命题与定理,把命题改写成“如果…,那么…”的形式是解题的关键,难度较小.7.试写出命题“两条直线相交,只有一个交点”的题设部分和结论部分.判断它是真命题还是假命题,并简要说明理由.【答案】见解析【解析】命题分为题设和结论两部分,题设是如果后面的部分,结论是那么后面的部分.解:这个命题的条件是两条直线相交,结论是它们只有一个交点,是真命题,因为平面内两条直线只有两种位置关系:相交和平行,没有交点就平行,有一个交点就是相交.点评:考查了命题与定理的知识,一般命题可写成“如果…那么…”的形式,其中如果后面的部分是题设,那么后面的部分是结论.8.用几何符号语言表示“互为邻补角的平分线互相垂直”的题设与结论,并画出图形.【答案】见解析【解析】首先根据题意画出图形,然后将命题的题设当做条件,将结论当做问题的结论,用几何语言描述出来即可.解:已知:AB,CD相交于O,OE,OF分别平分∠AOC,∠AOD,求证:OE⊥OF.点评:此题主要考查了邻补角与垂线,题目比较基础,但有很多同学不能根据命题画出图形,写出已知与求证,从而导致错误.9.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)等角的余角相等;(2)平行线的同旁内角的平分线互相垂直;(3)和为180°的两个角叫做邻补角.【答案】见解析【解析】先根据有关性质与定理,对命题的真假进行判断,如果是假命题,再举出反例即可.解:(1)等角的余角相等,正确,是真命题;(2)平行线的同旁内角的平分线互相垂直,正确,是真命题;(3)和为180°的两个角叫做邻补角,错误,是假命题,如两个不同书本上的两个和为180°的角.点评:此题考查了命题与定理,关键是掌握有关性质与定理,对命题的真假进行判断,正确的命题叫真命题,错误的命题叫做假命题.10.下列命题中,不正确的是()A.一组邻边相等的矩形是正方形B.等腰梯形的对角线相等C.直角三角形斜边上的高等于斜边的一半D.圆既是轴对称图形,又是中心对称图形【答案】C【解析】对每个选项逐一判断后即可得到答案.解:A、邻边相等的矩形是正方形,正确,不符合题意;B、等腰梯形的对角线相等,正确,不符合题意;C、直角三角形斜边上的中线等于斜边的一办,错误,符合题意;D、圆既是轴对称图形,又是中心对称图形,正确,符合题意.故选C.点评:本题考查了命题与定理,利用基本概念对每个命题进行分析,作出正确的判断.11.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)同角的补角相等;(3)同位角相等;(4)如果a2>b2,那么a>b;(5)有公共顶点且相等的两个角是对等角.其中真命题的个数是()A.1B.2C.3D.4【答案】A【解析】利用学过的定义、性质及定理进行判断即可求解.解:(1)当a=﹣1,b=3时命题错误;(2)同角的补角相等,正确;(3)只有两直线平行,同位角才相等;(4)当a=﹣3,b=2时命题错误;(5)有公共顶点且相等的两个角是对顶角,错误故选A.点评:本题考查了命题与定理,解题的关键是熟练掌握有关的定理及性质.12.下列四个命题是真命题的是()A.同位角相等B.如果两个角的和是180度,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直【答案】C【解析】利用学习过的有关的性质、定义及定理进行判断后即可得到正确的结论.解:A、只有两直线平行,同位角才相等,故选项错误;B、两个角的和是180度,只能是互补,不一定是邻补角,故选项错误;C、在同一平面内,平行于同一直线的两条直线互相平行,故选项正确;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故选项错误;故选C.点评:本题考查了命题与定理的知识,解题的关键是熟悉有关的性质、定理及定义.13.下列定理没有逆定理的是()A.线段垂直平分线上的点到线段两端点的距离相等B.相似三角形的三边对应成比例C.同角的余角相等D.直角三角形斜边上的中线等于斜边的一半【答案】C【解析】没有逆定理就是逆命题不正确的选项.解:A、逆命题是到线段两端点距离相等的点在线段的垂直平分线上;B、逆命题是三边对应成比例的两三角形相似;C、没有逆命题;D、一边上的中线等于这边的一半的三角形是直角三角形.点评:本题考查了命题与定理的知识,解题的关键是了解这些命题的逆命题,然后判断其真假.14.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.点评:此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.15.在命题:“三角形的一个外角大于三角形的每一个内角”、“底边及一个内角相等的两个等腰三角形全等”、“两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直中,真命题的个数有()A.0B.1C.2D.3【答案】B【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而得出答案.解:三角形的一个外角大于任何与之不相邻的一个内角,故原命题错误,为假命题;底边及一个底角相等的两个等腰三角形全等,故原命题错误,为假命题;两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直,正确,为真命题,故选B.点评:本题考查了命题与定理的知识,能够熟练掌握有关的命题及定理是解答本题的关键.16.下列各命题中,属于假命题的是()A.若m﹣n=0,则m=n=0B.若m﹣n>0,则m>nC.若m﹣n<0,则m<nD.若m﹣n≠0,则m≠n【答案】A【解析】利用不等式的性质逐项进行判断后即可得到答案,也可举出反例.解:A、m﹣n=0,则m=n,但不一定都为0,故错误,是假命题;B、C、D移项即可得到答案,故正确,是真命题.故选A.点评:本题考查了命题与定理的知识,判断一个命题的真假时可以举出反例.17.有下列四个命题:①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④三点确定一个圆.其中正确的有()A.1个B.2个C.3个D.4个【解析】根据圆周角,圆周角定理,垂径定理以及确定圆的条件即可求解.解:①同圆或等圆中,等弧所对的圆周角相等,故正确;②在同圆或等圆中,相等的圆周角所对的弧相等,故错误;③平分弦(不是直径)的直径垂直于弦,故错误;④不在同一直线上的三点确定一个圆,故错;故选A.点评:本题主要考查了圆周角的性质定理,以及确定圆的条件等圆的基本知识.解题的关键是要注意命题的细节,逐一做出准确的判断.18.下列句子中不是命题的是()A.负数都小于零B.所有的素数都是奇数C.过直线l外一点作l的垂线D.直角都相等【答案】C【解析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解:C不是可以判断真假的陈述句,不是命题;A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.故选C.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.19.(2013•河西区一模)下列命题中真命题是()A.任意两个等边三角形必相似B.对角线相等的四边形是矩形C.以40°角为内角的两个等腰三角形必相似D.一组对边平行,另一组对边相等的四边形是平行四边形【答案】A【解析】根据相似三角形的判定、矩形和平行四边形的判定即可作出判断.解:A,正确;B,错误,等腰梯形的对角线相等,但不是矩形;C,错误,没有说明这个40度角是顶角还是底角;D,错误,等腰梯形也满足此条件,但不是平行四边形.故选A.点评:本题考查了特殊四边形的判定和全等三角形的判定和性质.20.下列命题是假命题的是()A.单项式﹣的系数是﹣4πB.x<y,则x+2008<y+2008C.平移不改变图形的形状和大小D.若|x+2|+(y﹣5)2=0则x=﹣2,y=5【答案】A【解析】分析是否为假命题,可以举出反例,也可以运用相关基础知识分析找出真命题,从而利用排除法得出答案.解:A、单项式﹣的系数是﹣,是假命题,故正确;B、由不等式的性质可知是真命题,故错误;C、由平移的性质可知是真命题,故错误;D、由非负数的性质可知是真命题,故错误.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。
八年级数学定义与命题

命题的概念与分类
概念
命题是一个陈述句,它表达了一个数 学事实或关系,可以判断其真假。
分类
根据命题的真假性质,可以分为真命 题和假命题。真命题是指描述事实正 确的命题,而假命题则是描述事实错 误的命题。
02 数学中的定义
数的定义
有理数
实数
有理数包括整数和分数,整数包括正整 数、零和负整数,分数包括正分数和负 分数。有理数可以进行四则运算。
实数是有理数和无理数的总称,包括 所有可以表示的数。实数集是数学中 一个最大的数集。
无理数
无理数是不能表示为两个整数的比的 数,常见的无理数有无限不循环小数, 如圆周率π。
运算的定义
01
02
03
04
加法
加法是将两个数合并成一个数 的运算,用加号"+"表示。
减法
减法是从一个数中去掉另一个 数的运算,用减号"-"表示。
证明几何定理
利用命题,可以证明几何定理,如 勾股定理、平行四边形的性质等。
解决几何问题
通过命题,可以解决几何问题,如 求图形的面积、周长等。
在代数中的应用
01
02
03
建立代数方程
利用命题,可以建立代数 方程,如解一元一次方程、 一元二次方程等。
证明代数定理
利用命题,可以证明代数 定理,如合并同类项法则、 分配律等。
例如,要证明“所有的三角形都有内角 和等于180度”,我们可以假设存在一 个三角形其内角和不等于180度,然后 推导出矛盾,从而证明原命题。
反证法
01
反证法是一种常用的数学证明方 法,其基本思想是假设某一命题 不成立,然后通过推理导出矛盾 ,从而证明原命题的正确性。
初二数学定义与命题试题

初二数学定义与命题试题1.已知下列命题:①若a>0,b>0,则a+b>0;②若a2≠b2,则a≠b;③对角线互相垂直的平行四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的序号是.【答案】③④【解析】分别判断其原命题及逆命题的正确性,然后进行选择即可.解:①原命题正确,逆命题错误;②原命题正确,逆命题错误;③原命题和逆命题分别是菱形的判定定理和菱形的性质定理,均正确,是真命题;④原命题与逆命题均正确.故答案为:③④.点评:本题考查命题与定理,解题的关键是写出其逆命题并判断其真假.2.写出“同位角相等,两直线平行”的题设为,结论为.【答案】两直线平行;同位角相等【解析】命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.“两直线平行,同位角相等”的条件是两直线平行,结论是同位角相等.解:命题中,已知的事项是“两直线平行”,由已知事项推出的事项是“同位角相等”,所以“两直线平行”是命题的题设部分,“同位角相等”是命题的结论部分.故答案为:两直线平行;同位角相等.点评:本题考查了命题与定理的知识,命题有题设和结论两部分组成,命题的题设是已知事项,结论是由已知事项推出的事项.3.“若xy<0,则P(x,y)是第二象限内的点”是假命题,我们可以举出反例:.【答案】当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点【解析】利用两数之积小于0得到两数异号,可以举出x为正数,y为负数的情况均可.解:∵xy<0,∴x、y异号,∴当x=1,y=﹣2时,则P(x,y)是第四象限内的点,故答案为:当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点.点评:本题考查了命题与定理的知识,判断一个命题是假命题,可以举出反例.4.命题“互为相反数的两个数的和为0”的逆命题为.【答案】和为0的两数互为相反数【解析】根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.解:命题“互为相反数的两个数的和为0”的题设是“两数互为相反数”,结论是“和为0”,故其逆命题是和为0的两数互为相反数,故答案为:和为0的两数互为相反数.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.用语言叙述这个命题:如图AB∥CD,EF交AB于点G,交CD于点H,GM平分∠BGH,HM平分∠GHD,则GM⊥HM.【答案】见解析【解析】根据题目提供的几何语言用文字语言将该命题表示出来即可;解:根据AB∥CD,EF交AB于点G,交CD于点H可得两条平行线北第三条直线所截;根据GM平分∠BGH,HM平分∠GHD,则GM⊥HM可得同旁内角的平分线互相垂直.故答案为:两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.点评:本题考查了文字语言与数学语言的相互转化,解题的关键是熟悉用几何语言表示文字语言.6.下列命题是假命题的是()A.互补的两个角不能都是锐角B.两直线平行,同位角相等C.若a∥b,a∥c,则b∥c D.同一平面内,若a⊥b,a⊥c,则b⊥c【答案】D【解析】利用互补的定义、平行线的性质及垂线的性质分别进行判断后即可得到正确的选项.解:A、互补的两个角不能是锐角,正确,是真命题;B、两直线平行,同位角相等,正确,是真命题;C、根据平行线的传递性可以判断该命题为真命题;D、同一平面内,若a⊥b,a⊥c,则b∥c,故原命题为假命题,故选D.点评:本题考查了互补的定义、平行线的性质及垂线的性质,难度不大,属于基础题,解题的关键是牢记有关的定义及性质.7.下列各命题中,属于假命题的是()A.若m﹣n=0,则m=n=0B.若m﹣n>0,则m>nC.若m﹣n<0,则m<nD.若m﹣n≠0,则m≠n【答案】A【解析】利用不等式的性质逐项进行判断后即可得到答案,也可举出反例.解:A、m﹣n=0,则m=n,但不一定都为0,故错误,是假命题;B、C、D移项即可得到答案,故正确,是真命题.故选A.点评:本题考查了命题与定理的知识,判断一个命题的真假时可以举出反例.8.有下列四个命题,其中所有正确的命题是()①如果两条直线都与第三条直线平行,那么这两条直线也相互平行②两条直线被第三条直线所截同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点由且只有一条直线与已知直线垂直.A.①②B.①④C.②③D.③④【答案】B【解析】利用有关的定义及性质对四个命题进行判断后即可得到答案;解:①如果两条直线都与第三条直线平行,那么这两条直线也相互平行正确;②两条平行线被第三条直线所截,同旁内角互补,故原命题错误;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也相互平行,故原命题错误;④在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,故选B.点评:本题考查了命题与定理,解题的关键是了解有关的性质、定义及定理.9.(2013•福田区一模)下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.平行四边形的对边相等C.对角线相等的四边形是矩形D.矩形的对角线相等【答案】C【解析】根据平行四边形及矩形的性质进行逐一判断即可.解:A、正确,符合平行四边形的判定定理;B、正确,符合平行四边形的性质;C、错误,例如等腰梯形;D、正确,符合矩形的性质.故选C.点评:本题考查了特殊四边形的判定和性质.10.(2009•潮阳区模拟)下列命题中,正确命题是()A.直角三角形三个内角中一定有两个锐角B.经过三点一定能确定一个圆C.等腰梯形四个底角都相等D.两条对角线相等的四边形是矩形【答案】A【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A、根据三角形的内角和定理知直角三角形三个内角中一定有两个锐角,正确;B、如果三点共线,则不能确定圆,错误;C、等腰梯形的内角和为360°,四个底角不相等,错误;D、两条对角线相等的四边形是有可能是平行四边形,错误.故选A.点评:此题综合考查三角形的内角和、经过不在同一直线上三点一定能确定一个圆等知识,要准确把握.。
定义与命题(4种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)

定义与命题(4种题型)【知识梳理】一、定义能界定某个对象含义的句子叫做定义.二、命题判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.命题通常由条件、结论两个部分组成,通常可以写成“如果……那么……”的形式.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以.三、定理用推理方法证明为正确的,并进一步作为判断其他命题真假的原始依据.要点诠释:也就是说同时满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.【考点剖析】一、判断是否是命题例1.(2022秋·浙江温州·八年级统考期中)下列语句不是..命题的是()A.三角形的内角和等于180度B.把16开平方C.直角都相等D.对顶角相等【答案】B【分析】根据命题的定义即可进行解答.【详解】解:A、C、D都是命题,B不是命题;故选:B.【点睛】本题主要考查了命题的定义,解题的关键是掌握:“判断一件事情的语句是命题”.【变式1】(2022秋·浙江杭州·八年级校联考期中)下列定理中,下面语句是命题的是( )A .π是有理数B .已知3a =,求2aC .作ABC ∠的角平分线D .正数大于一切负数吗? 【答案】A【分析】根据命题的定义逐一判断后即可确定正确的选项.【详解】解:A 、对事情作出了判断,是命题,符合题意;B 、为陈述句,没有对问题作出判断,不是命题,不符合题意;C 、为陈述句,没有对问题作出判断,不是命题,不符合题意;D 、为疑问句,没有对问题作出判断,不是命题,不符合题意.故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解命题是判断一件事情的句子,难度不大.【变式2】下列语句中,哪些是命题,哪些不是命题?(1)若,则;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.二、判断命题真假例2. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4),两条直线平行吗?(5)鸟是动物; (6)若,求的值;(7)若,则=.【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. a b <<-b a −2230x x −−=a b 24a =a 22a b =a b句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句. 【变式】(2022秋·浙江·八年级专题练习)下列命题中是假命题的是( )A .两条直线相交有2对对顶角B .互为邻补角的两个角的平分线互相垂直C .同一平面内,垂直于同一条直线的两条直线平行D .互补的两个角一定是邻补角【答案】D【分析】利用对顶角的定义、垂直的定义、平行线的判定及邻补角的定义分别判断后即可确定正确的选项. 【详解】解:A 、两条直线相交有2对对顶角,正确,是真命题,不符合题意;B 、互为邻补角的两个角的平分线互相垂直,正确,是真命题,不符合题意;C 、同一平面内,垂直于同一条直线的两条直线平行,正确,是真命题,不符合题意;D 、互补的两个角不一定是邻补角,故错误,是假命题,符合题意.故选:D .【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的定义、垂直的定义、平行线的判定及邻补角的定义,难度不大.三、举例说明命题真假【答案】C【分析】根据当1n =时,214n =<即可得到答案. 【详解】解:当1n =时,214n =<,∴若2n >−,则24n >”是假命题的反例是1n =,故选:C .【点睛】本题主要考查了命题与定理,熟练掌握假命题的概念是解题的关键. 【变式】.(2023秋·浙江绍兴·八年级统考期末)要说明命题“若22a b >,则a b >”是假命题,能举的一个反例是( )A .1a =,2b =−B .2a =,1b =C .4a =,1b =-D .3a =−,2b =−【答案】D【分析】要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【详解】解:A 、当1a =,2b =−时,()2212<−不符合22a b >, ∴1a =,2b =−不是假命题的反例,不符合题意;B 、当2a =,1b =时,2221>,而21>,∴2a =,1b =,不是假命题的反例,不符合题意;C 、当4a =,1b =-时,224(1)>−,而41>−,4a ∴=,1b =-不是假命题的反例,不符合题意;D 、当3a =−,2b =−时,()()2232−>−,而32−<−,3a ∴=−,2b =−是假命题的反例,符合题意.故选:D .【点睛】本题主要考查的是命题与定理,解题的关键是掌握要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.四、写出命题的条件与结论例4.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。
八年级数学下册知识点重点总结重点难点

第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”或“≤”, “>”或“≥”连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系;3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0≥0 <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0≤0 <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:1 不等式的两边加上或减去同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.2 不等式的两边都乘以或除以同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc,cb c a >. 3 不等式的两边都乘以或除以同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:a 、b 分别表示两个实数或整式 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1不等号的改变问题 4. 一元一次不等式基本情形为ax>b 或ax<b ①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为ab x <; 5. 不等式应用的探索利用不等式解决实际问题列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:1分别求出不等式组中各个不等式的解集;2利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况a 、b 为实数,且a<b第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系;因式分解与整式乘法的区别和联系: 1整式乘法是把几个整式相乘,化为一个多项式; 2因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如: )(c b a ac ab +=+2. 概念内涵:1因式分解的最后结果应当是“积”;2公因式可能是单项式,也可能是多项式;3提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+3. 易错点点评:1注意项的符号与幂指数是否搞错;2公因式是否提“干净”; 3多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:1平方差公式: ))((22b a b a b a -+=-2完全平方公式: 222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 3. 因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.4. 运用公式法:1平方差公式: ①应是二项式或视作二项式的多项式;②二项式的每项不含符号都是一个单项式或多项式的平方;③二项是异号.2完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方; ③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法.如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅= , 21c c c ⋅=, 且满足1221c a c a b +=,往往写成c 2a 2c 1a 1的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:3. 规律内涵:1理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.2如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.4. 易错点点评:1十字相乘法在对系数分解时易出错;2分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.第三章 分式一. 分式1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式. 整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA为分式,对于任意一个分式,分母都不能为零.2. 整式和分式统称为有理式,即有: ⎩⎨⎧分式整式有理式3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变.4. 一个分式的分子分母有公因式时,可以运用分式的基本性质,把这个分式的分子分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二. 分式的乘除1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:BD AC D C B A =⋅, CB DA C DB A DC B A ⋅⋅=⋅=÷ 2. 分式乘方,把分子、分母分别乘方. 即: )(为正整数n B A B A nn n=⎪⎭⎫⎝⎛逆向运用nn n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n nB A B A =⎪⎭⎫⎝⎛成立.3. 分子与分母没有公因式的分式,叫做最简分式. 三. 分式的加减法1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.2. 分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.1同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是:CBA CBC A ±=± 2异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCAD BD BC BD AD D C B A ±=±=±3. 概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解. 四. 分式方程1. 解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去. 2. 列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出分式方程; ④解方程,并验根;⑤写出答案.第四章 相似图形一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. 2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.3. 注意点: ①a:b=k,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b 之外,a:b ≠b:a, b a 与ab互为倒数;⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc, 则dc b a = 二. 黄金分割1. 如图1,点C 把线段AB 分成两条线段AC 和BC,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 2.黄金分割点是最优美、最令人赏心悦目的点. 四. 相似多边形1. 一般地,形状相同的图形称为相似图形.2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. 五. 相似三角形_ 图1 _B_C _A1. 在相似多边形中,最为简简单的就是相似三角形.2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.5. 相似三角形周长的比等于相似比.6. 相似三角形面积的比等于相似比的平方. 六.探索三角形相似的条件 1. 相似三角形的判定方法:基本定理:平行于三角形的一边且和其他两边或两边的延长线相交的直线,所截得的三角形与原三角形相似.2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l 1EF BCDE AB3. 平行于三角形一边的直线与其他两边或两边的延长线相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质相似多边形的周长等于相似比;面积比等于相似比的平方.九. 图形的放大与缩小1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.3. 位似变换: ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小.第五章 数据的收集与处理_ 图2 _F_E _D_C_B _A _l _3_l _2 _l _1一. 每周干家务活的时间1. 所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本.2. 为一特定目的而对所有考察对象作的全面调查叫做普查;为一特定目的而对部分考察对象作的调查叫做抽样调查.二. 数据的收集1. 抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.而估计值是否接近实际情况还取决于样本选得是否有代表性.第六章证明一一. 定义与命题1. 一般地,能明确指出概念含义或特征的句子,称为定义.定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现.2. 可以判断它是正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.3. 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.4. 有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.5. 根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.二. 为什么它们平行1. 平行判定公理: 同位角相等,两直线平行.并由此得到平行的判定定理2. 平行判定定理: 同旁内互补,两直线平行.3. 平行判定定理: 同错角相等,两直线平行.三. 如果两条直线平行1. 两条直线平行的性质公理: 两直线平行,同位角相等;2. 两条直线平行的性质定理: 两直线平行,内错角相等;3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.四. 三角形和定理的证明1. 三角形内角和定理: 三角形三个内角的和等于180°2. 一个三角形中至多只有一个直角3. 一个三角形中至多只有一个钝角4. 一个三角形中至少有两个锐角五. 关注三角形的外角1. 三角形内角和定理的两个推论:推论1: 三角形的一个外角等于和它不相邻的两个内角的和;推论2: 三角形的一个外角大于任何一个和它不相邻的内角.。
北师大版初中八年级数学下册-《定义与命题》课件-06

边也相等。
指出下列命题的条件和结论,并改写 “如果……那么……”的形式:
⑴两条边和它们的夹角对应相等的两个 三角形全等;
如果两个三角形有两条边和它们的夹角对 应相等,那么这两个三角形全等。
⑵直角三角形两个锐角互余。
如果两个角是一个直角三角形的两个锐角, 那么这两个角互余。
等式的有关性质和不等式的有关 性质都可以看作公理
在等式或不等式中,一个量可以用它 的等量来代替.例如,如果,那么,这一 性质也看作公理,称为“等量代换”.
小结 拓展
原名、公理、证明、定理 的定义及它们的关系
一些条件
+
原名、公理
推理的过程 叫证明
经过证明的真 命题叫定理
推理
证实其它命 题的正确性
“两点之间,线段最短”这个语句是( A、定理 B、公理 C、定义 D、只是命题
条件
结论
已知事项
由已知事项推断
出来的事项
命题都可以写成“如果……那么……”
的形式;其中“如果”引出的部分是
条件,“那么”引出的部分是结论.
指出下列命题的题设和结论
1、如果两条直线相交,那么它们只 有一个交点; 题设:两条直线相交 结论:它们只有一个交点
指出下列命题的题设和结论
2、如果∠1=∠2,∠2=∠3, 那么∠1=∠3; 题设:∠1=∠2,∠2=∠3 结论:∠1=∠3
将下列命题改写为“如果…… ,那 么……” 的形式。 1、同角或等角的余角相等。
2、平角的一半是直角; 3、末位数字是2的整数是2的倍数;
4、角平分线上的点到角两边的距离 相等。
如何证实一个命题是真命题呢
用我们以前学 过的观察,实验, 验证特例等方
八年级数学下册第六章证明(一)定义与命题
小结 拓展
1、定义:对名称和术语的含义加以描述, 作出明确的规定,也就是给出它们的定 义.
2、命题的定义:判断一件事情的句子,叫 做命题.
3、命题的结构:每个命题都由条件和结论 两部分组成.条件是已知事项,结论是由 已事项推断出的事项.
1、原名: 某些数学名词称为原名. 2、公理: 公认的真命题称为公理.
3、证明: 除了公理外,其它真命题的正确性都通过
推理的方法证实.推理的过程称为证明.
4、定理: 经过证明的真命题称为定理.
经过证明的真
一些条件
推理的过程 叫证明
命题叫定理
+
推理
证实其它命 题的正确性
原名、公理 温馨提示:证明所需的定义、公理和其它定理都
语句.像这样判断一件事情的句子,叫做命题.
寻找命题的“共同的结构特征”
观察下列命题,试找出命题的共同的结构特征 (1)如果两个三角形的三条边对应相等,那么这两个三角形全等 (2)如果一个四边形的一组对边平行且相等,那么这个四边形是
平行四边形; (3)如果一个三角形是等腰三角形,那么这个三角形的两个底角
第六章 证明(一)
定义与命题
眼见未必为实!
a
线段a与线段b哪个 比较长?
b
a bc
谁与线段d在 一条直线上?
d
a
a bc
b
线段a与线段b哪个 比较长?
d
谁与线段d在 一条直线上?
a
b
a=b
a bc d
假如用一根比地球赤道长1 米的铁丝将 地球赤道围起来,那么铁丝与赤道之间的间 隙能有多大(把地球看成球形)?
初二数学定义与命题试题
初二数学定义与命题试题1.下列句子中,不是命题的是( )-A.三角形的内角和等于180度B.对顶角相等C.过一点作已知直线的平行线D.两点确定一条直线【答案】C【解析】根据命题的定义依次分析各项即可判断.A.三角形的内角和等于180度,B.对顶角相等,D.两点确定一条直线,均是命题,不符题意;-C.过一点作已知直线的平行线,不是命题,本选项符合题意.【考点】定义与命题点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.2.下列句子中,是命题的是( )-A.今天的天气好吗 B.作线段AB∥CDC.连接A、B两点 -D.正数大于负数【答案】D【解析】根据命题的定义依次分析各项即可判断.A.今天的天气好吗,B.作线段AB∥CDC.连接A、B两点,均不是命题,故错误;D.正数大于负数,符合命题的定义,本选项正确.【考点】定义与命题点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.3.下列命题是真命题的是( )A.-如果两个角不相等,那么这两个角不是对顶角B.两互补的角一定是邻补角C.如果a2=b2,那么a=bD.如果两角是同位角,那么这两角一定相等【答案】A【解析】依次分析各选项即可得到结论.A.如果两个角不相等,那么这两个角不是对顶角,是真命题,本选项正确.B.两互补的角不一定是邻补角,C.如果a2=b2,那么a=b或a=-b,D.同位角不一定相等,再两直线平行的前提下才相等,均为假命题,故错误.【考点】真命题点评:此类问题知识点综合性较强,主要考查学生对所学知识的熟练掌握程度,在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.4.下列叙述错误的是( )-A.所有的命题都有条件和结论B.所有的命题都是定理-C.所有的定理都是命题D.所有的公理都是真命题【答案】B【解析】依次分析各选项即可得到结论.A.所有的命题都有条件和结论,C.所有的定理都是命题,D.所有的公理都是真命题,均正确,不符合题意;B.只有真命题才是定理,故错误,本选项符合题意.【考点】定义与命题点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.5.下列命题中,真命题有 ( )-①如果△A1B1C1∽△A2B2C2,△A2B2C2∽△A3B3C3,那么△A1B1C1∽△A3B3C3②直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离③如果=0,那么x="±2"④如果a=b,那么a3=b3-A.1个-B.2个-C.3个-D.4个【答案】B【解析】依次分析各选项即可得到结论.①如果△A1B1C1∽△A2B2C2,△A2B2C2∽△A3B3C3,那么△A1B1C1∽△A3B3C3,本小题正确;②直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,本小题错误;③如果=0,那么x=-2,本小题错误;④如果a=b,那么a3=b3,本小题正确;故选B.【考点】真命题点评:此类问题知识点综合性较强,主要考查学生对所学知识的熟练掌握程度,在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.6.写出下列命题的条件和结论:-(1)两条直线被第三条直线所截,同旁内角互补;-(2)如果两个三角形全等,那么它们对应边上的高也相等.【答案】(1)条件:两条直线被第三条直线所截,结论:同旁内角互补;-(2)条件:两个三角形全等,结论:对应边上的高相等【解析】每个命题均可以写成“如果”,“那么”的形式,“如果”后面的是条件,“那么” 后面的是结论. (1)条件:两条直线被第三条直线所截,结论:同旁内角互补;-(2)条件:两个三角形全等,结论:对应边上的高相等.【考点】命题的叙述形式点评:数学语言的组织能力也是数学学习的一个极为重要的方面,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.7.举出反例说明“如果AC=BC,那么点C是AB的中点”是个假命题.【答案】当A、B、C三点不在同一条直线上时【解析】根据点C的位置结合中点的性质即可得到结果.当A、B、C三点不在同一条直线上时,即使AC=BC,点C也不是AB的中点.【考点】反证法点评:此类问题对学生逻辑推理能力要求较高,但由于题型不太好把握,因而在中考中不太常见,难度较大.8.指出下列命题的条件和结论,并判断命题的真假,如果是假命题,请举出反例.-如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.【答案】条件:等腰三角形的两条边长为5和7,结论:等腰三角形的周长为17,是假命题;反例:当腰长为7,底边长为5时,周长为19【解析】每个命题均可以写成“如果”,“那么”的形式,“如果”后面的是条件,“那么” 后面的是结论,再结合等腰三角形的性质即可得到结果.条件:等腰三角形的两条边长为5和7,结论:等腰三角形的周长为17,是假命题;反例:当腰长为7,底边长为5时,周长为19.【考点】真假命题,等腰三角形的性质点评:等腰三角形的性质是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.9.在讨论“对顶角不相等”是不是命题的问题时,甲认为:这不是命题,因为这句话是错误的.乙认为:这是命题,因为它作出了判断,只不过这一判断是错误的,所以它是假命题,你认为谁的说法是正确的?【答案】乙的说法正确【解析】根据命题的定义即可判断.根据正确的判断是真命题,错误的判断是假命题,可得乙的说法正确.【考点】定义与命题点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.10.把下列命题改写成“如果……,那么……”的形式:-同角或等角的余角相等.【答案】如果两个角是同一个角或相等角的余角,那么这两个角相等.【解析】每个命题均可以写成“如果”,“那么”的形式,“如果”后面的是条件,“那么” 后面的是结论. 如果两个角是同一个角或相等角的余角,那么这两个角相等.【考点】命题的叙述形式点评:数学语言的组织能力也是数学学习的一个极为重要的方面,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.。
初中数学课件定义与命题1
初中数学课件定义与命题1一、教学内容本课件基于初中数学教材第七章第一节“定义与命题”,详细内容包括:定义的概念及其重要性,命题的构成要素,真命题与假命题的辨识,以及通过实例来理解数学的定义和命题。
二、教学目标1. 理解定义在数学学习中的基础作用,能够正确运用定义来解释数学概念。
2. 学会分析命题的结构,区分真命题与假命题,增强逻辑思维能力。
3. 通过实例掌握如何运用定义和命题来解决问题。
三、教学难点与重点重点:定义的形成与应用,命题的判断与分析。
难点:如何让学生理解定义的抽象性,并灵活运用于具体的数学问题中。
四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。
2. 学具:练习本、笔。
五、教学过程1. 导入新课:通过生活中的实例,如“一个正方形的四边相等”,引导学生理解定义的重要性。
展示实例,提问学生:“这些句子为什么能帮助我们理解和描述事物?”2. 新课讲解:a. 讲解定义的形成与作用。
b. 通过具体数学命题,讲解命题的构成要素。
c. 分析真命题与假命题,举例说明。
3. 例题讲解:展示例题,如“若一个三角形的两边相等,那么这两边所对的角也相等”。
分步骤讲解解题过程,强调定义和命题在解题中的应用。
4. 随堂练习:发放练习题,要求学生独立完成。
教师巡回指导,解答学生疑问。
强调定义与命题在数学学习中的重要性。
六、板书设计1. 定义的概念与作用。
2. 命题的构成要素。
3. 真命题与假命题的辨识。
七、作业设计1. 作业题目:a. 请列举生活中的三个定义,并说明其作用。
一个四边形有四个角。
一个四边形的四个角都相等。
2. 答案:a. 学生自行完成,教师批改时注意学生是否理解定义的作用。
b. 真命题:一个四边形有四个角。
假命题:一个四边形的四个角都相等。
八、课后反思及拓展延伸1. 反思:本节课学生对定义和命题的理解程度,以及解题过程中的困难。
2. 拓展延伸:引入更复杂的命题,如含有一个或多个条件的复合命题,提高学生的逻辑思维能力。
2022北师大版八年级数学下册全套教案
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“体验型课堂”学习方案数学(八年级下册)班级:姓名:学号:___
命题者:徐巧波审核者:裘爱尔
4.1定义与命题(2)
[学习导言]:我会判断一个命题的真假吗?我了解公理和定理得含义吗?
课前尝试:尝试体验(对话课本,记下问题,尝试练习)
【对话课本】阅读教材72页到73页
【记下重点与问题】
1.正确的命题叫;不正确的命题叫。
2. 叫做公理。
3. 叫做定理.
[记下问题]
【尝试练习】
1.命题“如果ab=0,那么a=0”是________命题;
命题“如果a=0,那么ab=0”是________命题.
2.下列4个命题中,真命题个数是 ( )
①两个数的差一定是正数②两个整式的和一定是整式③同类项的系数必相同④
如果∠1+∠2=90°,那么∠1与∠2互余
A. 1个 B.2个 C. 3个 D.4个
3.“两点之间,线段最短”是一个 ( )
A. 公理 B.定理 C,定义 D.需要的证明的命题
4.对于命题:“如果∠1+∠2=90°,那么∠1≠∠2"能说明它是假命题的例子是 ( ) A.∠1=50°,∠2=40° B.∠1=50°,∠2=50°
C. ∠1=∠2=45° D.∠1=40°,∠2=40°
5.下列说法正确的是()
A.定理不一定是真命题; B.真命题不一定正确
C.假命题不一定错误; D.公理一定是真命题
课内对话:合作体验(检评预习,审视问题,独立练习,纠错反审)
【检评预习】同桌交换学案,检查评价
批语:
【审视问题】审视下面的学习要点,思考提出的问题
【尝试例题】
例1请说出一个公理,一个定义和两个定理.
例2命题“若x ≠1,则分式
21
x x 有意义”是真命题还是假命题?请说明理由.
【独立练习】
1.下列命题为假命题的是( )
A .对顶角相等;
B .同位角相等
C .等角的余角相等;
D .点到直线的所有线段中,垂线段最短
2.下列命题为真命题的是( )
A .直角三角形斜边上的中线等于斜边的一半
B .两个锐角之和一定是钝角
C .两个负数的差一定是负数
D .三角形的一个外角等于两个内角之和
3.把下列命题中,是真命题的题号写在横线上________________________.
(1)同位角相等,两直线平行. (2)凡是相等的角,都是对顶角.
(3)三角形的中线是射线. (4)两条直线与第三条直线相交,内错角相等.
(5)a 是实数,则|a|>0.
4.已知下列命题:①有一个内角是60°的三角形是等边三角形;•②有一个内有是60°的
等腰三角形是等边三角形;③有两个内角是60°的三角形是等边三角形;④三个内角相
等的三角形是等边三角形.其中真命题有( )
A .1个
B .2个
C .3个
D .4个
如图,已知∠1=∠2 ,则A B ∥CD.请用推理的方法说明它是
真命题.
课后反审:反审体验(审查错误原因,检查练习,完成作业)
【反思审查】再仔细审查学案,用红笔作出示意。
【作业练习】作业本(2)4.1(2)。