椭圆的定义及其标准方程教学设计

合集下载

高中数学“椭圆的定义与标准方程”教学设计

高中数学“椭圆的定义与标准方程”教学设计

精品案例高中数学“椭圆的定义与标准方程”教学设计文|景朝英一、教材分析对于本课内容,新课标提出要引导学生经历具体情境,并从中抽象出椭圆产生过程,概括并理解椭圆定义,并掌握标准方程。

椭圆的定义与标准方程的研究方法和之后需要学习的双曲线、抛物线并没有什么区别,而且教材对椭圆研究也非常重视,所以本部分知识起着承上启下的作用。

此外,本节内容还涉及数形结合意识、转化思想等,因此教师在对这部分内容进行教学时需要将这些数学思想融入其中。

二、教学目标1.理解椭圆概念,掌握椭圆标准方程,能够运用坐标法解决几何问题。

2.用坐标法推导椭圆标准方程,锻炼发现、概括、认知规律以及解决实际问题的能力。

3.感受椭圆具有的对称美和简洁美,并增强数形结合思想。

4.培养直观想象、数学建模和数学运算等数学学科素养。

三、教学重点椭圆定义和椭圆两种形式标准方程的理解、掌握,能够运用坐标法解决几何问题。

四、教学难点引导学生经历椭圆标准方程推导过程,培养学生的直观想象、数学建模和数学运算等数学学科素养。

五、学情分析高二学生在之前的学习中已经接触过一些圆锥曲线概念,如圆、椭圆等,但他们的抽象思维能力和数形结合意识还不太强,而椭圆的定义与标准方程这部分内容涉及的概念较为抽象,需要学生具备较强的抽象思维能力,而且本章学习重点是数形结合,需要学生建立代数方程与椭圆之间的联系,所以在本节教学中教师一定要注意这一点。

根据教材内容、学生实际情况以及课本要求,本课教学可采用如下策略:1.用问题探索活动引起学生学习兴趣,促使学生主动思考。

2.借助实验探究活动让学生亲身感受椭圆画图过程,帮助学生更好地理解椭圆定义。

3.引导学生动手、动脑推导椭圆标准方程,帮助学生更深刻地理解概念,掌握其标准方程。

4.引导学生回忆圆方程求解步骤,通过知识迁移建立椭圆直角坐标系,通过列式运算推导出椭圆标准方程。

5.对典型求解椭圆标准方程例题进行变式,引导学生采用不同的求解方法和思路,帮助学生掌握这类习题本质。

椭圆的定义与标准方程(公开课)教案

椭圆的定义与标准方程(公开课)教案

2.1.1椭圆的定义与标准方程宁德二中高二(1)班马茂鸿 2010.11.26一、教材分析圆锥曲线是高中数学中十分重要的内容,它的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用。

本节是《圆锥曲线与方程》的第一节课,主要学习椭圆的定义和标准方程。

它是本章也是整个解析几何部分的重要基础知识。

第一,在教材结构上,本节内容起到一个承上启下的重要作用。

前面学生用坐标法研究了直线和圆,而对椭圆概念与方程的研究是坐标法的深入,也适用于对双曲线和抛物线的学习,更是解决圆锥曲线问题的一种有效方法。

第二,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想。

而这种思想,将贯穿于整个高中阶段的数学学习。

第三,对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础。

二、学生情况分析1.在学习本节内容以前,学生已经学习了直线和圆的方程,初步了解了用坐标法求曲线的方程及其基本步骤,经历了动手实验、观察分析、归纳概括、建立模型的基本过程,这为进一步学习椭圆及其标准方程奠定了基础。

2.在本节课的学习过程中,椭圆定义的归纳概括、方程的推导化简对学生是一个考验,可能会有一部分学生探究学习受阻,教师要适时加以点拨指导。

三、教学目标1.通过观察、实验、证明等方法的运用,让学生更好的理解椭圆的定义,掌握椭圆标准方程的两种形式,会根据条件求椭圆的标准方程。

2.通过对椭圆的认识及其方程的推导,培养学生的分析、探究、抽象、概括等逻辑思维能力,加强用坐标法解决圆锥曲线问题的能力。

3.鼓励学生大胆猜想、论证,激发学生的学习热情,使他们获得成功的体验。

四、教学重点和难点1.重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法。

2.难点:椭圆标准方程的推导。

《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。

椭圆的定义及标准方程教案

椭圆的定义及标准方程教案

椭圆及其标准方程长治八中 李玲一、教学目标 1.知识与技能理解椭圆的定义,掌握椭圆的标准方程及推导过程. 2.过程与方法通过椭圆定义概念的引入与椭圆标准方程的推导过程,培养学生分析探索能力,熟练掌握解决解析几何问题的方法——坐标法. 3.情感、态度与价值观通过椭圆定义及标准方程的学习,渗透数形结合的思想,启发学生研究问题时,抓住问题本质,严谨细致思考,规范解答,体会运动变化、对立统一的思想. 二、教学重点难点1.重点:椭圆的定义和椭圆的标准方程.2.难点:椭圆标准方程的推导,椭圆定义中对常数加以限制的原因. 三、教学方法:启发引导,合作探究 四、教具:多媒体、三角板 五、教学过程(一)创设情境,引入概念由嫦娥二号绕月飞行的运动轨迹,太阳系中行星的运行轨道等及现实生活中的多幅椭圆图片引入,让学生从感性上认识椭圆。

(二)实验探究,形成概念动手实验:学生分组动手画出椭圆。

试验一:把一根长为a 2的细绳的两端用图钉分别固定在图板的两点处,套上铅笔,拉紧绳子,移动笔尖,画出的是什么图形? (1)在这个运动过程中,什么是不变的?(2)在上面过程中,你能说出移动的笔尖(动点)满足的几何条件吗?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 概括椭圆定义引导学生概括椭圆定义椭圆定义:平面内与两个定点21,F F 距离的和等于常数的点的轨迹叫椭圆。

(三)归纳定义,完善定义试验二:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?(学生分组讨论)M 2F 1F当两定点间距离等于线段||AB 长度时的轨迹(为一条线段)和当两定点距离大于线段||AB 长度时的轨迹(不存在),由学生完善椭圆定义中常数的范围。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+定义的应用例1.已知定点F 1,F 2 ,且|F 1F 2 |=10,动点M 分别满足下列条件时的轨迹是什么? (1)|MF 1|+|MF 2| =10; (2)|MF 1|+|MF 2| =16; (3)|MF 1|+|MF 2|=6.(1)因为|MF 1|+|MF 2|=10= | F 1F 2 | ,所以动点M 的轨迹是线段F 1F 2.(2)因为|MF 1|+|MF 2| =16>10= | F 1F 2 | ,所以动点M 的轨迹是以F 1 , F 2为焦点的椭圆.(3)因为|MF 1|+|MF 2| =6<10= | F 1F 2 | ,所以动点M 的轨迹不存在. 变式练习1.若动点M 到定点F 1(-1,0), F 2 (1,0)的距离之和为2,则动点M 的轨迹是( ) A.椭圆 B.直线F 1F 2C.线段F 1F 2D.线段F 1F 2的垂直平分线 点拨:|MF 1|+|MF 2| =2= | F 1F 2 |,故M 的轨迹为线段F 1F 2(四)研讨探究,推导方程1、知识回顾:利用坐标法求圆的方程的一般方法和步骤是什么?(1)建系 (2)设点 (3)列式 (4) 化简2、研讨探究问题:如图已知焦点为21,F F 的椭圆,且21F F =2c,对椭圆上任一点M ,有a MF MF 221=+,尝试推导椭圆的方程。

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计一、教学目标:1、知识与技能目标(1)掌握椭圆的定义及焦点、焦距的概念,能正确推导椭圆的标准方程.(2)掌握求椭圆标准方程的定义法和待定系数法.2、过程与方法目标(1)经历椭圆的形成过程,培养学生运动变化的观点,训练学生的动手的能力、合作学习能力和运用所学知识解决实际问题的能力.(2)通过联系曲线方程的求法,推导椭圆的标准方程,培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感态度与价值观目标(1)通过小组合作,培养学生的协作、友爱精神,体验成功的快乐.(2)激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、重点、难点:重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;难点:椭圆标准方程的推导与化简.三、教学方法:探究式教学法,即教师通过问题诱导f启发讨论f探索结果,引导学生直观观察f归纳抽象f总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.五、教学设计情景引入学习探究(一)材料2:地球围绕着太阳旋转;材料3:“嫦娥三号”升空录像.引入课题:椭圆及其标准方程.动手实验:(1)取一定长的细绳,把它的两个端点固定在黑板的同一点处,套上铅笔,拉紧绳子,旋转一周,会得到什么图形?(2)把绳子的两个端点拉开一段距离,再套上铅笔旋转,又会得到什么图形?(3)继续拉远两个端点的距离,直到把绳子拉直,又会得到什么图形?(4)动画演示椭圆的形成过程.师:引导学生观察:椭圆在实际生活中是很常见师:引导学生观察动画,地球运行轨道是椭圆;问“嫦娥三号”的运行轨道是什么?生:常娥三号着陆先是按椭圆轨道运行,再直线着陆.师:板书课题.请学生拿出课前准备的硬纸板、细线、铅笔实验(1)教师演示,学生观察思考.实验(2)、(3),各小组学生利用手中工具在图板上进行实验,一起合作画椭圆.利用学生熟知的地理规律:地球围绕太阳转引入,让学生感到亲切自然;通过“嫦娥三号”的升空录像,让学生感受现实,激发学生的兴趣,培养爱国思想.通过做实验,让学生动手实践,体验椭圆的形成过程,加深对椭圆定义的理解将学生分为四人一组,通过分组讨论、研究,增强学生的合作意识.学习探究(二)【学情预设】学生可能会建系如下几种情况:方案一:把匚、F2建在X轴上,以FF的中点为原点;12方案二:把匚、F2建在X轴上,以匚为原点;方案三:把匚、F2建在x轴上,以F原点;2方案四:把匚、F2建在X轴上,以.F2与x轴的左交点为原点;方案五:把匚、F2建在x轴上,以FF与x轴的右交点为原点;12经过比较确定方案一.下面我们来建立椭圆的方程建系:以F,F所在的直线为x轴,以12线段F]F2的垂直平分线为y轴建立直角坐标系xOy.设点:设点M(x,y)是椭圆上的任意一点,点M到F,F的距离和为2a,焦距12为2c(c〉0),则.(—c,0),F2(C,0)列式:由定义:|M「1+叫=2a,即(2)如何设点?(3)怎样列式?⑷如何化简?建立椭圆的方程是本节课的难点,为降低难度,让学生回顾求曲线方程的步骤,以已有的知识来探求新的知识,温故知新,教师再加以正确的引导,新知会自然形成.生:回顾求曲线方程的步骤:⑴建系,⑵设点,⑶列式,⑷化简.师:引导学生按求曲线方程的步骤建立椭圆的方程.生:思考,回答:(1)怎样建立适当的坐标系生:分析化简的方法,在J(x+c)2+y2+J(x-c)2+y2=2a练习本上完成化简.化简:整理,得(a2一c2)x2+a2y2=a2(a2一c2)•.•a〉0,c〉0,2a〉2c a2(a2—c2)>0.方程的两边都除以a2(a2—c2),得教学环节教学过程师生互动设计思想学习探究(二)OF=OF=c12则|MO|=、.;a2-c2,令b=\;'a2-c2,则b2=a2-c2,那么方程变为:=1(a>b>0).多媒体展示动画:将椭圆的焦点放在y轴上结论:当焦点在y轴是时,椭圆的方程为:y2x2—+一=1(a>b>0).a2b2多媒体展示图表:让学生对照图形、方程理解记忆.师:请同学们在图中找出长度等于a,c的线段,则师:引导学生推出椭圆的标准方程.师:指出其焦点在x轴上,坐标为F](―c,0),F2(C,0)生:观察图像,识记方程.活动过程:点拨-----板演-----点评师:若焦点放在y轴上,方程又怎样?生:小组讨论椭圆的方程,相互交流、补充,得出结论.生:分析方程、图形,识记椭圆的标准方程.师:引导学生如何根据方程判断焦点的位置?实践体验1、你能判断下列椭圆的焦点位置生:根据所学椭圆的标吗?并写出焦点坐标.⑵25x2+16y2=400.准方程,思考后回答.师生共同矫正.生:总结如何判断焦点的位置?椭圆的标准方程的导出,放手给学生有很大的难度,这里采取有意义的接受学习的方式,教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用.展示动画,通过类比的方法,让学生对照焦点在x轴的情形,写出焦点在y轴上时,椭圆的标准方程.通过图表便于对比,加深学生对两个方程及几何意义的认识.尝试练习,加深对方程及几何意义的理解.六、板书设计:七、布置作业:。

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。

这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。

二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。

但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。

基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。

使同学真正成为课堂的主体。

三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。

2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。

3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。

(2)进行数学美育的渗透,用哲学的观点指导学习。

五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。

教学难点:标准方程的推导。

四、说教学过程(一)、创设情景,导入新课。

(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。

2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。

设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。

椭圆的定义与标准方程教学设计

椭圆的定义与标准方程教学设计

结论:
(1)当 2a>|F1F2|时,是椭圆; (2)当 2a=|F1F2|时,是线段; (3)当 2a<|F1F2|轨迹不存在.
通过师生探索交 流、讨论解决问题方 法,揭示知识间的内 在联系,对学生的思 维进行启迪,方法及 时的点拨,培养学生 的语言表达能力,思 维的严谨性,让学生 在交流中学习数学。
数形结合 学习新知
1、 教师引导学生建立坐标系,教师 利用多屏互助软件展示
2、 选取较为简洁美观的两种方案, 进行研究
设为 M(x,y)椭圆上的任意一点,椭圆
的焦距是 2c ( c 0 ).
则 F1 (c,0), F2 (c,0) , 又 设 M 与 F1, F2 距 离 之 和 等 于 2a ( 2a 2c )
椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐 标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法. 3. 情感态度、价值观目标:
通过数学实验,培养学生的动手能力和合作意识。
二、重点和难点
重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程. 难点:椭圆标准方程的建立和推导.
a2 b2
y2 + x2 =1a > b > 0
a2 b2
课堂小结, 总结提高
课题 2.1.1 椭圆的定义与标准方程
科目 数学
教学对象 高二学生
课时 1 课时
授课类型 新授课
一、教学目标
主备人
1.知识与技能目标: (1)掌握椭圆的定义和椭圆标准方程的两种形式及其推导过程; (2)能根据条件确定椭圆的标准方程; (3)掌握用待定系数法求椭圆的标准方程.
2.过程与方法目标: 通过数学实验探究椭圆的行程过程,培养学生的观察能力和探索能力;通过对

中职数学高二椭圆及其标准方程优质教案

中职数学高二椭圆及其标准方程优质教案

中职数学高二椭圆及其标准方程优质教案一、教学目标1. 理解椭圆的概念,掌握椭圆的标准方程,能解决简单的实际问题。

2. 通过观察椭圆的形状,提高学生的空间想象能力。

3. 通过学习椭圆的方程,培养学生的数学逻辑思维。

二、教学内容1. 椭圆的定义与标准方程2. 椭圆的几何性质三、教学重点与难点重点:椭圆的标准方程,椭圆的几何性质。

难点:理解椭圆的定义,掌握椭圆的标准方程的推导。

四、教具和多媒体资源1. 黑板2. 投影仪3. 教学软件:几何画板五、教学方法1. 激活学生的前知:通过回顾与椭圆的相关的知识,激活学生的前知。

2. 教学策略:采用讲解、示范、小组讨论和案例分析等多种教学策略。

3. 学生活动:组织学生进行小组讨论,自己推导椭圆的标准方程。

六、教学过程1. 导入:通过观察生活中的椭圆形状,例如橄榄球、鸡蛋等,引导学生思考椭圆的定义。

2. 讲授新课:讲解椭圆的标准方程,推导过程采用引导式,让学生理解推导的思路。

通过几何画板展示椭圆在平面上的形成过程,帮助学生理解椭圆的定义。

3. 巩固练习:给出几个点,让学生自己尝试画出椭圆,进一步理解椭圆的形状。

再根据椭圆的标准方程,进行求解点的坐标的练习。

4. 归纳小结:总结椭圆的定义、标准方程以及几何性质,让学生对椭圆有完整的认识。

布置作业,要求学生完成相关练习题,巩固所学知识。

七、评价与反馈1. 设计评价策略:通过课堂小测验、小组报告和观察学生的表现,了解学生的学习情况。

2. 为学生提供反馈:根据评价结果,为学生提供学习建议,帮助他们进一步掌握椭圆的有关知识。

八、作业布置1. 完成教材上的相关练习题。

2. 自己尝试给出几个点的坐标,求出对应的椭圆方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§椭圆的定义及其标准方程
鹿城中学田光海
一、教案背景:
1.面向对象:高中二年级学生
2. 学科:数学
3. 课时:2课时
4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1 第二章圆锥曲线与方程§椭圆及其标准方程
二. 教材分析
本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。

椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。

因此这节课有承前启后的作用,是本章的重点内容之一。

1. 教法分析结合生活经验观察发现、启发引导、探究合作。

在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。

利用多媒体课件, 精心构建学生自主探究的教学平台,启发引导学生观察, 想象, 思考, 实践, 从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识, 体验成功。

主要采用探究实践、启发与讲练相结合。

2. 学法分析从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。

从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语
言转换能力
从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”
的水平,如何给椭圆以数学描述如何“定性” “定量”地描述椭圆是学
生关注的问题,也是学习的重点问题。

他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

3.教学目标
知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准
方程的两种形式,会运用待定系数法求椭圆的标准方程。

过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法坐标法,并渗透数形结合、等价转化的数学思想方法。

情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。

4.教学重点与难点
重点:椭圆的定义和椭圆标准方程的两种形式
难点:椭圆的标准方程的建立和推导教学方法
5.教学准备
通过百度搜索与椭圆有关的图片资料,利用百度搜索相关的教学资料制作多媒体课件,自制教具:绘图板、图钉、细绳。

三、教学过程
方程
X 2
笃1 ( a b 0) (☆)叫做椭圆的标 a b
准方程。

它表示焦点在x 轴上,焦点坐标为
F i ( c,0),F 2(C ,0),其中 c 2 a 2 b 2 .
2 2
y r X
r 1 ( a b 0),它也是椭圆的标准
a b
方程。

此时,椭圆的焦点在y 轴上,
焦点坐标为Fd0,c) F 2(0, C ),其中C 2 a 2 b 2 我们可以发现,以
上两种方案是最好的。

问:观察一下焦点分别在x 轴、y 轴上的椭圆 的标准方程,如何根据方程判断其焦点在 x 轴 上还是在y 轴上(看分母大小,哪个分母大焦 点就在哪一条轴上) 说明:
(1) 在两个方程中,总有a>b>0
(2) 椭圆的三个参数a 、b 、C 满足:C 2 a 2 b 2
流。

确定性,理 解曲线与
学生思考
后主动发 言回答。

方程的关 系,感受恰 当选择坐 标系的优 越性,感受 标准方程 的简洁、对 称、
和谐之 美,并在实 践中通过 对比提
高 决策能
力、 计算能
力、 培养学
生 简约的思 维能力。

以上三条, 尽量由学
生总结出培养学生
的观察、分 析归纳能
2 2
六、板书设计
七、教学反思
本节课整个教学过程为:提出问题一一探索一一解决问题一一归纳反思一一提高。

在问题的设计中,从多角度探究,纵向挖掘知识深度,横向加强知识间的联系, 这样的设计不但突出了重点,更使难点的突破水到渠成。

本节课以问题为纽带,以探究活动为载体,学生在自觉进入问题情境后,在问题的指引下和老师的指导下,通过实践、探索、体验、反思等活动把探究活动层层展开、步步深入,亲身经历知识的产生过程。

使学生在知识的形成过程中,获得数学的情感体验,享受到成功的乐趣,同时在思想方法运用、思维能力等方面得到提高和发展。

课堂进行中通过实际操作、多媒体课件演示等,激发学生的学习兴趣,使学生让学生在生生互动、师生互动中把学生的学习过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,希望对学生的思维品质的培养、数学思想的建立、心理品质的优化起到良好的作用。

本节课学生活动较多,知识拓展较深,运算较困难,因此本节课不能按预计完成,剩余问题下节课解决。

相关文档
最新文档