数学《有理数》知识点与复习教案范
第一章有理数总结教案

第一章有理数总结教案第一章:有理数总结教案一、教学目标通过本章学习,学生应掌握以下能力:掌握有理数的基本概念,包括正数、负数、整数、分数等。
掌握有理数的四则运算,包括加法、减法、乘法、除法及乘方。
理解并能够运用有理数的性质,如相反数、绝对值等。
能够在实际问题中运用有理数的知识,进行简单的数学建模。
二、教学内容及方法有理数的概念:通过实例引入正数、负数、整数、分数等概念,让学生明确有理数的范围和分类。
有理数的四则运算:通过例题讲解和课堂练习,让学生掌握加法、减法、乘法、除法的运算方法和运算律。
同时,引入乘方的概念,让学生理解其运算规则。
有理数的性质:讲解相反数和绝对值的概念,通过实例让学生理解并运用这些性质。
数学建模:选取一些实际问题,引导学生运用有理数的知识建立数学模型,提高其解决实际问题的能力。
三、教学重点与难点重点:有理数的概念和四则运算。
这些是有理数学习的基础,对于后续的学习至关重要。
难点:有理数的性质理解和运用,特别是绝对值的概念。
需要通过大量的实例和练习帮助学生理解。
四、教学评价与反馈课堂练习:通过课堂练习,检查学生对有理数知识的掌握情况,及时发现并纠正学生的错误。
课后作业:布置适量的有理数练习题,要求学生按时完成,巩固所学知识。
单元测试:进行单元测试,全面了解学生对有理数知识的掌握程度,为后续教学提供依据。
反馈与指导:根据学生的练习、作业和测试情况,进行有针对性的反馈和指导,帮助学生解决学习中遇到的问题。
五、教具和多媒体资源黑板:用于展示例题和重要的概念、公式。
投影仪:用于展示PPT课件,帮助学生更好地理解有理数的概念和运算过程。
教学软件:使用数学教育软件进行辅助教学,如GeoGebra等,可以动态展示数学概念和运算过程。
教学卡片:用于制作各种数学概念的卡片,便于学生进行复习和记忆。
教学模型:如数轴等,可以帮助学生直观理解数学概念和性质。
六、学生活动设计分组讨论:将学生分成小组,让他们在小组内讨论有理数的概念和性质,互相交流学习心得。
七年级数学上册有理数及其运算复习教案9篇

七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
七年级数学《有理数》教案模板

七年级数学《有理数》教案模板教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。
有理数指整数可以看作分母为1的分数。
下面就是整理的《有理数》教案,希望大家喜欢。
《有理数》教案1一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.《有理数》教案2教学目标1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
有理数教案 初中

有理数教案初中一、教学目标:1. 让学生理解有理数的定义,掌握有理数的分类及特点。
2. 培养学生运用有理数解决实际问题的能力。
3. 引导学生掌握有理数的运算方法,提高学生的数学运算能力。
二、教学内容:1. 有理数的定义及分类2. 有理数的运算(加法、减法、乘法、除法)3. 有理数的应用三、教学重点与难点:1. 重点:有理数的定义、分类、运算及应用。
2. 难点:有理数的运算规律及应用。
四、教学方法:1. 采用情境教学法,让学生在实际问题中感受有理数的重要性。
2. 运用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
3. 采用练习法,巩固所学知识,提高学生的实际应用能力。
五、教学过程:1. 导入:通过生活中的实例,如温度、海拔等,引出有理数的概念。
2. 新课讲解:讲解有理数的定义、分类及特点。
举例说明有理数在实际生活中的应用。
3. 课堂互动:让学生举例说明有理数的运算方法,引导学生发现运算规律。
4. 练习巩固:布置课堂练习题,让学生运用所学知识解决实际问题。
5. 总结:对本节课内容进行总结,强调有理数在实际生活中的重要性。
六、课后作业:1. 复习本节课所学内容,巩固有理数的定义、分类及运算方法。
2. 完成课后练习题,提高运用有理数解决实际问题的能力。
3. 思考:有理数在生活中的应用,举例说明。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生作业完成情况,评估学生对课堂所学知识的掌握程度。
3. 单元测试:定期进行单元测试,了解学生对有理数的整体掌握情况。
通过本节课的学习,让学生掌握有理数的基本概念、分类、运算及应用,培养学生运用有理数解决实际问题的能力,为后续数学学习奠定基础。
七年级数学上册《有理数》总复习教案

《有理数》总复习(第1课时)一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算, 科学计数法、近似数与有效数字三部分。
因此,本章总复习的三课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算;第三课时科学计数法、近似数与有效数字。
第一课时本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一.教学目标:1.理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2.使学生提高辨别概念能力,能正确地使用这些概念解决问题。
3.能正确比较两个有理数的大小。
二.教学重点:对有理数的五个概念:有理数、数轴、相反数、绝对值、倒数的理解与运用。
三.教学难点:对绝对值概念的理解与应用。
四.教学程序设计:一知识梳理:1.正数与负数:(给出4个问题,让学生了解负数产生的必要性和负数在生产、生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的"服务出口额比上一年增长了-7.3%"是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过2个问题让学生掌握有理数的两种分类方法,理解有理数的意义。
《有理数》复习—1公开课教案

登记好个人的分数,备案。
三.小组交流,展示成果;
各组派代表上台讲解所学到的知识,由师生质疑,补充,完善知识体系。
四.评价,总结。
教
学
后
记
给学生在课堂上交流,讨论的时间太少,老师讲得太多。
⑵.在数轴上与-3的距离等于4的点表示的数是();
⑶. 的倒数是,相反数是,绝对值是;
⑷.相反数是它本身的数是_________;倒数是它本身的数是_________;绝对值是它本身的数是_________;互为相反数的两个数的和是;互为倒数的两个数的乘积是。
⑸.比较大小(填入“<”、“>”或“=”):
-3.140,07,- .
⑹ 是最大的负整数, 是最小的正整数, 是绝对值最小的有理数。则 。
4.有理数加法、减法、乘法和除法法则分别是什么?
5.练习:计算:
⑴ ;⑵ ;⑶ ;⑷ ;
⑸ ;⑹ ;⑺ ;⑻ ;
⑼ ;⑽. ;
⑾. 。
6.说说自己这节课的收获和存在的问题。
教
学
过
程
一.布置前置研究任务;
给学生自学、探讨、归纳出有理数的知识体系。
教学
重
难
点
绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
前
置
性
作
业
设
计
《有理数》复习-1前置小研究
1.说说在《有理数》这一章里学到了哪些知识。
2.什么叫有理数?什么叫数轴?什么叫相反数?什么叫绝对值?什么叫互为倒数?举例说明。
3.练习:填空:
⑴.如果水位下降3米记作-3米,那么水位上升4米,记作()米;
第1章 有理数小结与复习 教案 人教版数学七年级上册
第1章有理数小结与复习一、教学目标1.复习有理数的意义及其有关概念,其内容包括正负数、有理数、数轴、有理数大小的比 较、相反数与绝对值等,通过复习使学生系统掌握有理数这一章的有关基本概念;2.会运用有理数的运算法则、运算律,熟练进行有理数的运算;3.用四舍五入法,按要求(精确度)确定运算结果;4.会利用计算器进行有理数的简单计算和探索数的规律.二、教学重点、难点重点:1.掌握有理数的概念;2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算;3.学会借助数轴来理解绝对值、有理数比较大小等相关知识;4.理解科学记数法,近似数.难点:准确地掌握有理数的运算顺序和运算中的符号问题.三、教学过程知识梳理一、正数和负数1.小学学过的除0以外的数都是正数.在正数前面加上符号“-”(负)的数叫做负数.2.用正、负数表示具有相反意义的量.二、有理数1.有理数的概念整数和分数统称为有理数.2.有理数的分类(1)按定义分类 (2)按符号分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 3.数轴(1)规定了原点、正方向、单位长度的直线叫做数轴.(2)任何一个有理数都可以用数轴上的一个点来表示.4.相反数(1)只有符号不同的两个数叫做互为相反数.(2)互为相反数的两个数到原点的距离相等.5.绝对值(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值.(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.有理数大小的比较(1)数轴上表示的两个数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.⎩⎨⎧++=+++=+)()(c b a c b a a b b a 加法的结合律加法的交换律加法的运算律 2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0.⎪⎩⎪⎨⎧+=+==ac ab c b a bc a c ab ba ab )(:)()(::结合律结合律交换律乘法的运算律 4.有理数的除法除法法则:除以一个不等于0的数,等于乘以这个数的倒数.5.有理数的乘方求几个相同因数的积的运算,叫做乘方.6.有理数的混合运算(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.四、科学记数法把大于10的数记成a×10n的形式,其中1.1≤a<102.n为原数的整数位减去1五、近似数1.按照要求取近似数四舍五入到某一位,就说这个近似数精确到那一位.2.由近似数判断精确度考点讲练考点一正、负数的意义例1 如果+4米表示向东走4米,那么向西走2米记作_____.针对训练1.下列语句中,含有相反意义的两个量是( )A.盈利2千元和收入2千元B.上升8米和前进8米C.存入2千元和取出2千元D.超过2厘米和上涨2厘米2.水位下降9cm记作-9cm,那么水位上升8cm记作_______.考点二正、负数的概念例2 判断:①不带“-”号的数都是正数……………………( )②如果a是正数,那么-a一定是负数…………( )③不存在既不是正数,也不是负数的数…………( )④一个有理数不是正数就是负数…………………( )⑤0℃表示没有温度…………………………………( )方法总结0既不是正数也不是负数,0的相反数是它本身.0不仅能表示没有,而且表示正、负之间的分界值.考点三有理数的分类例3 将下列各数分别填入相应的圈内:3.5,-3.5,0,|-2|,-2,531-,31-,0.5●针对训练3.在2.3,0,+3,-6,23-,-0.9中,负分数有____个. 考点四 相反数、倒数、绝对值例4 填表:考点五 数轴、有理数比较大小例5 请将下面的数在数轴上表示出来,并将它们用“>”连接起来.3.5,-3.5,0,-2,53. 解:表示如下3.5>53>0>-2>-3.5 针对训练4.在数轴上,点A 所表示的数为-2,那么到点A 的距离等于5个单位长度的点所表示的数是_______.5.某日零点,北京、上海、重庆、宁夏的气温分别是-4℃、5℃、6℃、-8℃,当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏考点六 科学记数法例6 将数2 560 000 000km 用科学记数法表示____________m.针对训练6.某城市常住人口总数为563.8万人,用科学记数法表示为____________人.考点七 近似数例7 2017年我国全年出境旅游人数达1.27亿人次.这里的1.27亿精确到______位. 针对训练7.由四舍五入法得到的近似数2.96×105精确到____位,如果精确到万位可写成_________. 考点八 有理数的运算例8 计算 (1) 25.03211813413125.0-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++ 解:原式=81+341-381+1132-41=(81-381)+(341-41)+1132=(-3)+3+1132=1132 (2) ()361856543127-⨯⎪⎭⎫ ⎝⎛+-+- 解:原式=-127×(-36)+43×(-36)-65×(-36)+185×(-36) =21+(-27)-(-30)+(-10)=21-27+30-10=14(3) ()⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷-1211212 解:原式=-2÷121÷121=-2×12×12=288 (4) ()()2245.0612153222--⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛÷- 解:原式=-16÷(38)2+211×(-61)-(-21)2 =-16×649+(-1211)-41 =-49-1211-41=-1227-1211-123=-1241针对训练8.计算(1) -3+8-7-15 (2) 23-6×(-3)+2×(-4)(3)75.04.34353.075.053.1⨯-⨯+⨯- (4)()512423⨯-÷-参考答案:(1) -17 (2) 33 (3) -3.3 (4) -516。
初中《有理数》教案
初中《有理数》教案教学目标:1. 理解有理数的定义及其分类;2. 掌握有理数的加法、减法、乘法、除法运算规则;3. 能够运用有理数解决实际问题。
教学重点:1. 有理数的定义及其分类;2. 有理数的运算规则。
教学难点:1. 有理数的乘除法运算;2. 运用有理数解决实际问题。
教学准备:1. 教材或教学PPT;2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的整数和小数知识,询问学生是否了解整数和小数的局限性;2. 提问:有没有比小数更精确的数呢?引出有理数的概念。
二、新课讲解(15分钟)1. 讲解有理数的定义:有理数是可以表示为两个整数比的数,包括整数、分数、小数等;2. 讲解有理数的分类:正有理数、负有理数和零;3. 讲解有理数的加法、减法、乘法、除法运算规则;4. 通过例题演示和讲解,让学生熟练掌握有理数的运算规则。
三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 选取部分学生的作业进行讲解和点评;3. 针对学生的错误,进行针对性的讲解和辅导。
四、应用拓展(10分钟)1. 让学生举例说明有理数在实际生活中的应用;2. 引导学生思考有理数在科学研究和工程技术中的应用;3. 鼓励学生发挥想象,创造自己的有理数应用实例。
五、总结(5分钟)1. 回顾本节课所学内容,让学生复述有理数的定义、分类和运算规则;2. 强调有理数在实际生活中的重要性;3. 提醒学生要注意有理数运算的细节。
六、作业布置(5分钟)1. 布置课后作业,要求学生巩固本节课所学内容;2. 鼓励学生进行有理数应用题的练习。
教学反思:本节课通过讲解和练习,让学生掌握了有理数的定义、分类和运算规则,了解了有理数在实际生活中的应用。
在教学过程中,要注意引导学生积极参与课堂活动,发挥学生的主动性,提高学生的学习兴趣。
同时,要关注学生的学习情况,及时发现和纠正学生的错误,提高学生的学习效果。
有理数 复习课 优秀教学设计(教案)
1. 知识梳理:
括到括号内的各项都要变号。
⑴有理数的加法法则:
⑻乘方:求 n 个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对
2. 例题选讲:
值减去较小的绝对值;
例 1 下列说法是否正确,请就错误的改正过来。
⑹有理数的运算顺序:
先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:
①加法的交换律;
②加法的结合律;
③乘法的交换律;
④乘法的结合律;
⑤乘法对加法的分配律;
注:除法没有分配律。
2. 例题选讲:
例 1 下列说法是否正确,请就错误的改正过来。
⑴0 除以任何数都得零;
(
)
⑵若 a、b 为有理数,且 ac,b≠0,则 a+b≠0;(
四、教学目标:
⑺去括号与添括号:
1. 使学生系统掌握有理数这一章的有关运算法则;
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不
2. 使学生提高有理数的计算能力。
变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
五、教学设计:
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,
4
2
15
⑶ 22 (2)2 (6 1 ) 4 | (4) (2) |; 2 13
⑷ (3 1 ) (3 1
7
1 )
7
21
苏科版数学七年级上册第二章《有理数》复习课教教学设计
苏科版数学七年级上册第二章《有理数》复习课教教学设计一. 教材分析《苏科版数学七年级上册第二章《有理数》复习课》是学生在学习了有理数的运算、大小比较、相反数和绝对值等知识后进行的一次复习。
本节课的主要内容是有理数的运算,包括加法、减法、乘法和除法。
复习课旨在帮助学生巩固和掌握有理数的基本运算规则,提高学生的运算能力,并为后续的学习打下坚实的基础。
二. 学情分析学生在之前的学习中已经接触过有理数的基本概念和运算规则,对有理数的加法、减法、乘法和除法有了一定的了解。
但部分学生在运算过程中仍存在一些问题,如运算速度慢、错误率高、对运算规律掌握不牢固等。
因此,在复习课中,需要针对这些学生存在的问题进行针对性的教学,帮助学生提高运算能力。
三. 教学目标1.知识与技能目标:通过复习,使学生掌握有理数的加法、减法、乘法和除法的运算规则,提高学生的运算速度和正确率。
2.过程与方法目标:通过自主学习、合作交流等学习方式,培养学生探究问题和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:有理数的加法、减法、乘法和除法的运算规则。
2.难点:运算过程中的巧算和运算规律的应用。
五. 教学方法1.自主学习法:引导学生自主探究有理数的运算规则,提高学生的自主学习能力。
2.合作交流法:学生进行小组讨论,培养学生合作交流的能力。
3.案例分析法:通过分析典型例题,使学生掌握运算规律。
4.巩固练习法:布置有针对性的练习题,帮助学生巩固所学知识。
六. 教学准备1.教师准备:备好复习课的相关教学材料,如PPT、练习题等。
2.学生准备:提前预习相关知识,准备好笔记本和笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的基本概念和运算规则,激发学生的学习兴趣。
2.呈现(10分钟)教师利用PPT展示有理数的加法、减法、乘法和除法的运算规则,引导学生进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学《有理数》知识点与复习教案xx文有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数。
不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
下面就是小编给大家带来的数学《有理数》知识点与复习教案范文,希望能帮助到大家!一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
而确定重难点是根据新课标的要求,结合学生的学情而确定的。
二、教学方法和手段:根据本节课的内容特点及学生的学情,我选择的教学方法是引导探索、小组合作、效果反馈的教学方法。
为了提高课堂的教学容量,增加实际问题的直观性,我选用多媒体辅助教学手段。
关于学法:本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,我想这样更能有效的培养学生学习数学的能力,更好的培养学生数学地思考问题。
三、教学过程分析:本课共6课时,重点是有理数乘除法法则的教学,下面我重点说有理数乘法法则的教学。
整体的教学程序包括:情景创设、提出问题;引导探索、归纳结论;知识运用、加深理解;变式练习、形成能力;回顾与反思、纳入知识系统;布置作业;板书设计七部分1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+,+5.2;零既不是正数,也不是负数。
2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3.相反数知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4.绝对值知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a 的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0.若a<0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。
1.有理数的加法知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。
2.有理数的减法知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。
3.有理数的加减混合运算知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。
4.有理数的乘法知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
几个数相乘,有一个因数为0,积就为0。
乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc5.有理数的除法知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b= =a• (b≠0即0不能做除数)。
除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
倒数:乘积是1的两数互为倒数,即a• =1(a≠0),0没有倒数。
注意:倒数与相反数的区别6.有理数的乘方知识点:乘方:求n个相同因数的积的运算。
乘方的结果叫幂,an中,a 叫做底数,n叫做指数。
乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。
7.有理数的混合运算知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。
技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。
【巩固练习1】一.选择题1.关于数“0”,以下各种说法中,错误的是( )A. 0是整数B. 0是偶数C. 0是自然数D. 0既不是正数也不是负数2.–3.782:( )A.是负数,不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数二、将下列各数填入相应的集合中。
,-1,12,0,-3.01,0.62,-15,-,180,-42,-45%,π,1。
整数:______________________自然数:___________________________正数:______________________负数:___________________________偶数:______________________奇数:___________________________分数:______________________非负数:___________________________非负整数:_________________非正分数:_________________________非负有理数:________________有理数:__________________________三、填空题1、一个数的绝对值是6,这个数是。
2、绝对值小于3的整数有个。
3、的相反数的倒数是。
4、计算:。
5、如果,那么a=。
6、如果规定上升8米记作8米,那么-7米表示______________。
7、最小的正整数是____,的负整数是_____,绝对值最小的有理数是_______8、河道中的水位比正常水位低0.2m记作-0.2m,那么比正常水位高0.1m记作________。
9、一潜艇所在深度是-80米,一条鲨鱼在艇上30m处,鲨鱼所在的深度是________。
【巩固练习2】一.填空题1.数轴上与表示﹣2点相距3个单位的点所表示的数是________。
2.数轴表示+3和﹣3的点离开原点的距离是______个单位,这两个点的位置分别在_______点右边和左边。
3.在有理数中的负整数是________,最小的正整数是________,的非正数是________,最小的非负数是________.4.用“>”或“<”号填空:1)3.5 ____ 0 ; 2)﹣2.8 ____ 0 ; 3)﹣1.95 ____ 1.59 ; 4) ____ ;5) ____﹣0.3 ; 6)﹣0.67 ____ ; 7) ____ ;8)﹣π____﹣3.14 ; 9)﹣1.6 ____﹣1.6 ; 10)﹣( ) ____﹣(﹣∣∣) .【巩固练习3】一.填空题1.如果一个数的相反数是它本身,则这个数是________.2.如果一个数的相反数是最小的正整数,则这个数是________.3.若,则a与b________;若,则a与b________;若a+b=0,则a与b________.4.在数轴上与-3距离4个单位的点表示的数是5.写出大于-4且小于3的所有整数为______________;二、求下列各数的相反数0.26 ; ;π-3 ;﹣a ;﹣x+1 ; m+1 ;2xy ;a-b。
三、在数轴上表示出下列各数的相反数的点,并比较大小。
,4,﹣1.5,,0,1,8,﹣2,﹣(﹣4.5),∣∣【巩固练习4】一.选择题1.﹣∣﹣3∣是( ) A.正数B.负数C.正数或0 D.负数或02.绝对值最小的整数是( ) A. 0 B. 1 C.–1 D. 1和-1二、填空题1.若a= ,则∣a∣=________;若∣a∣=3,则a=________.2.﹣∣﹣∣=______; ∣﹣∣-∣﹣∣=______; ∣﹣0.77∣÷∣+ ∣=_______;3.绝对值小于4的负整数有个,正整数有个,整数有个三、解答题1.已知∣x+y+3∣=0,求∣x+y∣的值。