用列举法求概率 习题精选

合集下载

用列举法求概率专题训练

用列举法求概率专题训练

奖 1 , 等奖 1 个 一 O个 , 等 奖 10个 . 某 二 0 若 人购 物 刚好 满 1 0元 ,那 么他 中一 等 奖 的 0 概率 是 ( ) .
c三 .

D1

2 设有 1 型号相 同 的杯 子 ,其 中一 等 品 7 . 2只 只 , 等 品 3只 , 等 品 2只 , 二 三 则从 中任 意
概率是 (
A. 2 C.

) .
B. — — 1

个 黄球 。 们 除颜 色 不 同外 , 余 均 相 同. 它 其
若从 中随机 摸 出一个 球 . 到 黄球 的 概率 摸
是 . 凡 则 :

3 D. 5
参考警



' 。

4 百 一 ‘


( 2— ) . ,2

( ) 76
( -) 7,2
C 7 7,)
(( ).2两和于 ). 两 嗣= (( 大 l吾 )数 ÷ )数 o P P =
利用频率估计概 率专题调练( 题在第 4 7页)
用到举法求概率专题溯练
1 随机 掷一 枚均 匀 的硬 币两 次 . 两 次正 面都 . 朝上 的概率 是 (
A. 4
5 某商 店举 办 有 奖销 售活 动 , 物满 1 . 购 0元者
发对 奖 券 一 张. 10 0张奖 券 中 。 特等 在 00 设
) .
B. 2
字. 同时 自由转 动两 个 转 盘 . 盘 停 止 后 , 转
色不 同 的乒乓球 , 匀 后 , 得从 袋 中任 意 搅 使 摸 出一个 乒 乓 球是 黄 色 的概 率 是 , 以 可 怎 样放 球 — — ( 只写 一种) .

用列举法求概率

用列举法求概率
A
B

正正 反正


正反 ቤተ መጻሕፍቲ ባይዱ反
正 反
第一枚
还能用其它方法列举 所有结果吗?

第二枚




共4种可能的结果 此图类似于树的形状,所以称为 “树形图”。
例2:如图,甲转盘的三个等分区域分别写有数字1、2、 3,乙转盘的四个等分区域分别写有数字4、5、6、7。 现分别转动两个转盘,求指针所指数字之和为偶数的 概率。
6
1×6=6
2×6=12
3×6=18
4×6=24
5×6=30
6×6=36
2
3 4 5
1×2=2
1×3=3 1×4=4 1×5=5
2×2=4
2×3=6 2×4=8 2×5=10
3×2=6
3×3=9 3×4=12 3×5=15
4×2=8
4×3=12 4×4=16 4×5=20
5×2=10
5×3=15 5×4=20 5×5=25
6×2=12
6×3=18 6×4=24 6×5=30
1 3
.
A
2、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分;如果点数之积为偶数,那么乙得1分。 连续投10次,谁得分高,谁就获胜。 (1)请你想一想,谁获胜的机会大?并说明理由; (2)你认为游戏公平吗?如果不公平,请你设计一个公平的游戏。
列出所有可能的结果:
1 1 1×1=1 2 2×1=2 3 3×1=3 4 4×1=4 5 5×1=5 6 6×1=6
1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

用列举法求概率(游戏公平性问题)

用列举法求概率(游戏公平性问题)

用列举法求概率——游戏公平性问题课前热身:1、从长度分别为1、4、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.16B.14C.12D.342、一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为__________(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.归纳小结:列举法求概率的步骤:①_________________________(具体方法:)②_________________________③_________________________巩固应用:(游戏公平性问题)思考:(1)在某乒乓球比赛开始前,裁判通过抛掷一枚质地均匀的硬币方式来确定哪个选手先发球,这位裁判的做法是否公平?(填公平或不公平)(2)甲、乙两人玩游戏,把一个质地均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗?.小结:________________________________________例:课间小明和小亮玩“剪刀、石头、布”的游戏,游戏规则是双方每次任意出“剪刀”“石头”“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头;若双方出现相同手势,则算打平;若小亮和小明只比赛一局。

(1)请用列表的方法表示出游戏的所有可能结果。

(2)求出双方打平的概率。

(3)游戏对双方公平吗?如果不公平,你认为对谁有利?练习:如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).中考链接:近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.。

用列举法求概率练习题

用列举法求概率练习题

用列举法求概率练习题
1、把一副普通扑克牌中的13张黑桃牌洗匀后正面向下放
在桌子上,从中随机抽取一张,求下列事件的概率:
(1)抽出的牌是黑桃6;
(2)抽出的牌是黑桃10;
(3)抽出的牌带有人像;
(4)抽出的牌.上的数小于5;
(5)抽出的牌的花色是黑桃.
2.有一个质地均匀的正十二面体,十二个面上分别写有1~12

十二个整数。

投掷这个正十二面体一次,求下列事件的概率:
(1) 向上一面的数字是2或3;
(2) 向上一面的数字是2的倍数或3的倍数.
3、不透明袋子中装有红、绿小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随机摸出一个.求下列事件的概率:
(1) 第一次摸到红球,第二次摸到绿球;
(2) 两次都摸到相同颜色的小球;
(3) 两次摸到的球中一个绿球、一个红球.
4、有6张看上去无差别的卡片,上面分别写着1, 2, 3, 4, 5, 6.随机抽取1张后,放回并混在一起,再随机抽取1张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
5.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球。

求下列事件的概率:
(1) 两次取出的小球的标号相同;
(2) 两次取出的小球标号的和等于4.
6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号
为1,2,3,4.随机摸取一个小球不放回,再随机摸出一个小球。

求下列事件的概率:
(1) 两次取出的小球的标号相同;
(2) 两次取出的小球标号的和等于4.。

用列举法求概率 习题精选

用列举法求概率  习题精选

用列举法求概率习题精选一、选择题1.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖卷一张,多购多得,每10000张奖券作为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率应该是()A.1 10000B.50 10000C.100 10000D.151 100002.如图所示为正方形花园,ABGF是正方形,AB为2米,BC为3米,若小鸟任意落下,则落在阴影框中的概率为()A.1 2B.1 3C.12 25D.13 253.甲、乙、丙三人共同完如图所示的两个转盘游戏,设左盘指针所指数字为a,右盘指针所指数字为b,规定a和b之和大于7时甲获胜,a和b之和等于7时乙获胜,a和b 之和小于7时丙获胜,那么在该游戏中,获胜的可能性是()A.甲大B.丙大C.乙大D.一样大4.学校的一排房子被分成三个形状和面积都相等的三个宿舍,从左到右依次称为1号宿舍,2号宿舍,3号宿舍,一只鸽子落在这排房子的房顶上,那么与鸽子落在2号房顶上的概率不相同的是()A.一个口袋装有除颜色外都相同的2个黄球和1个红球,从中摸出1个黄球B.从一幅抽掉大,小王和所有红桃的扑克牌中任意抽取一张牌,这张牌是方块C.从两张足球票和一张篮球票中抽取一张,这张票是篮球票(票的大小、颜色及背面都一样)D.一个学习小组共有6名同学,其中4名男同学,2名女同学,最先到校的是女同学5.某班级举行文艺晚会,如图是他们的头镖用的靶子,图中9个小方格的形状和大小完全一样,中间的一个小方格有被平均分成四个小三角形,规定投中阴影部分可获得钢笔一枝,投中标有“○”的方格可获得铅笔一枝,投中标有“△”的方格可获得圆珠笔一枝,投中为标符号的两个小三角形设么也得不到,小方投镖一次就中靶,那么()A.他获得钢笔的概率是1 36B.他获得铅笔的概率最大C.他获得圆珠笔的概率是1 3D.他一定会获得一种奖品二、填空题1.有一副去掉大、小王的扑克牌,洗匀后,随意抽出一张,则(1)P(抽到一张红心K)=______。

25.2用列举法求概率-使用(共38张)

25.2用列举法求概率-使用(共38张)

第9页,共38页。
复习
例题5
用列举法求概率
思考一 例题6
思考二 课堂小结 中考点击
甲口袋中装有2个相同的小球,它们分别写有字母(zìmǔ)A和B; 乙 口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋 中装有2个相同的小球,它们分别写有字母H和I。
从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) P(A)= 14= 7
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
36 18
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9
(3)至少有一个骰子的点数为2
第6页,共38页。
用列举法求概率
复 习 例题5
思考一 例题6 思考二 课堂小结 中考点击
同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9 (3)至少(zhìshǎo)有一个骰子的点数为2
果较多时,为不重复不遗漏地列出所有可能的
当一次试验涉及3个因素或3个以上的 因素时,列表法就不方便了,为不重复不遗
结果,通常用列表法
漏地列出所有可能的结果,通常用树形图
第12页,共38页。
复习
例题5
用列举法求概率
思考一 例题6 思考二
课堂小结 中考点击
巩固练习:在一个盒子中有质地均匀的3个小球,其中两个小球 都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选 用哪种方法更方便?

用列举法、列表法求概率

用列举法、列表法求概率

25.2.1 用列举法求概率例1.同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上,一枚硬币反面向上.练习:1.如图,随机闭合开关S1,S2,S3中的两个,求能让灯泡发光的概率.2.如图,有一条电路AB由图示的开关控制,任意闭合两个开关.(1)请你列举出所有等可能的结果.(2)请你求出使电路形成通路的概率.3.一口袋中有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:(1)求这三根细木棒能构成三角形的概率;(2)求这三根细木棒能构成直角三角形的概率;(3)求这三根细木成等腰三角形的概率.25.2.2 用列表法求概率例2.同时掷两枚质地均匀的骰子,求下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.例题(放回问题)(2017年省卷19题)在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1) 用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2) 求两次取出的小球上的数字相同的概率P.例题(不放回问题)(2018年省卷19题)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1) 用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2) 求取出的两张卡片上的数字之和为偶数的概率P.练习:1.(2020年省卷19题)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游。

九年级数学上册《用列举法求概率》练习题(附答案解析)

九年级数学上册《用列举法求概率》练习题(附答案解析)

九年级数学上册《用列举法求概率》练习题(附答案解析)学校:___________姓名:___________班级:______________一、单选题1.现有3包同一品牌的饼干,其中2包已过期,随机抽取2包,2包都过期的概率是()A.12B.23C.34D.132.为了疫情防控,某小区需要从甲、乙、丙、丁4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是()A.12B.14C.34D.5123.甲、乙、丙、丁四位同学参加校田径运动会接力比赛,如果任意安排四位同学的跑步顺序,那么,其中恰好由甲将接力棒交给乙的概率是()A.14B.16C.18D.1124.如图①为三等分的圆形转盘,图①为装有小球(小球除颜色不同外,其他均相同)的不透明口袋,随机转动转盘一次,然后再从不透明的口袋中随机摸出一个球,则指针指向区域的颜色和摸出的球的颜色均为蓝色的概率是()A.19B.29C.13D.125.转动如图的转盘两次,两次所指数字之积为奇数,则A胜,偶数则B胜,则A胜的概率为()A.12B.13C.14D.346.《田忌赛马》原文:忌数与齐诸公子驰逐重射.孙子见其马足不甚相远,马有上、中、下辈.于是孙子谓田忌曰:“君弟重射,臣能令君胜.”田忌信然之,与王及诸公子逐射千金.及临质,孙子曰:“今以君之下驷与彼上驷,取君上驷与彼中驷,取君中驷与彼下驷.”既驰三辈毕,而田忌一不胜而再胜,卒得王千金.小建同学用数学模型来分析:齐王与田忌的上中下三个等级的三匹马的战斗力分别用数字标记如下表.每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.若齐王的三匹马和田忌的三匹马都随机出场,则田忌能赢得比赛的概率为()A.12B.13C.14D.167.现有五张卡片依次写有“一”“起”“向”“未”“来”五个字(五张卡片除字不同外,其他均相同),把五张卡片背面向上洗匀后,从中抽取两张,则抽到汉字恰好是“未”和“来“的概率是()A.110B.320C.620D.158.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在①号座位,四位同学随机坐在①①①①四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.239.当点A(x﹣1,3)到点B(﹣2,2y+5)的距离最短时,点P(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限10.一个盒子里有完全相同的三个小球,球上分别标有数“-1”“1”“2”.随机摸出一个小球(不放回),其数记为p,再随机摸出另一个小球,其数记为q,则满足关于x的方程x2-px+q=0有实数根的概率是()A.12B.13C.23D.56二、填空题11.有两枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,同时投掷两枚骰子,它们点数之和大于5的概率是___.12.如图,小凌同学在玩“走迷宫”游戏,从入口处进入迷宫,每遇到一个岔路口便会随机选择其中一条路径行走.游戏规定一进入迷官只许前进不许后退,可90 转弯,则小凌不回头便能走出迷宫的概率是___________.13.从﹣1,2,3这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(﹣4,0),则在平面直角坐标系内直线MN经过第一象限的概率为___.三、解答题14.学完《概率初步》后,小诚和小明两个好朋友利用课外活动时间自制A、B两组卡片共5张,A组三张分别写有数字2,4,6,B组两张分别写有3,5.它们除了数字外没有任何区别.他俩提出了如下两个问题请你解答:(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果;(3)如果他俩还制定这样一个游戏规则:若选出的两数之积为3的倍数,则小诚获胜;否则小明获胜.请问这样的游戏规则对小诚、小明双方公平吗?请说明理由.15.琳琳有4盒外包装完全相同的糖果,其中有2盒巧克力味的,1盒牛奶味的,1盒水果味的,她准备和好朋友分享糖果.(1)若琳琳随机打开1盒糖果,恰巧是牛奶味的概率是______;(2)若琳琳从这4盒中随机挑选两盒打开,请用列表或画树状图法打开的两盒都是巧克力味的概率.16.按国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》要求,各中小学校积极行动,取得了良好的成绩.某中学随机抽取了部分学生对他们一周的课外阅读时间(A:10h以上,B:8h~10h,C:6h~8h,D:6h以下)进行问卷调查,将所得数据进行分类,统计了绘制了如下不完整的统计图.请根据图中的信息,解答下列问题:(1)本次调查的学生共_______名;a________,b=________;(2)=(3)补全条形统计图.参考答案与解析:1.D【分析】画树状图,共有6种等可能的结果,2包都过期的结果有2种,再由概率公式求解即可.【详解】解:把1包不过期的饼干记为A,2包已过期的饼干记为B、C,画树状图如图:共有6种等可能的结果,两包都过期的结果有2种,①两包都不过期的概率为21=,63故选:D.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2.A【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:画树状图得:①一共有12种情况,抽取到甲的有6种,①P(抽到甲)= 61 122.故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.3.A【分析】列举出所有情况,让恰好由甲将接力棒交给乙的情况数除以总情况数即为所求的概率.【详解】解:根据题意,画树状图得:所以一共有24种跑步顺序,而恰好由甲将接力棒交给乙的有6种,所以恰好由甲将接力棒交给乙的概率是:61= 244.故选:A.【点睛】本题主要考查了树状图法求概率.树状图法可以不重不漏的列举出所有可能发生的情况,适合于两步或两步以上完成的事件.还要注意题目是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.B【分析】这是一个两步概率问题,根据列表得出全部等可能的结果,再根据概率公式求解即可. 【详解】解:根据题意,列表如下:由表可知,共有9种等可能的结果,其中指针指向区域的颜色和摸出的球的颜色均为蓝色的结果有2种,P ∴(指针指向区域的颜色和摸出的球的颜色均为蓝色)29=, 故选:B .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 5.C 【解析】略 6.D【分析】通过列表法或树状图把所有可能的情况列出来,然后利用概率公式求出事件发生的概率进行判断即可.【详解】解:画树状图如图所示,从图中可以看出,齐王与田忌赛马,共有18种等可能的情况,其中田忌能赢有3种情况, 31189P ==田忌赢. 故选:D .【点睛】本题考查了用列表法与树状图求概率,列表法适应于两步完成的事件概率的求法,树状图法适应于两步或两步以上完成的事件概率的求法.7.A【分析】根据题意画出树状图求解.【详解】解:画树状图如下:共有20种等可能的结果,其中抽到汉字恰好是“未”和“来“的结果有2种,①抽到汉字恰好是“未”和“来”的概率为21 2010=.故选:A.【点睛】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.C【分析】采用树状图法,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A,B两位同学座位相邻的概率是61 122=.故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.9.C【分析】先根据两点间的距离公式得到AB再利用非负数的性质得到当x+1=0,2y+2=0时,AB最小,求出x、y得到点P的坐标为(-1,-1),然后对各选项计算判断.【详解】根据题意得AB,①(x+1)2≥0,(2y+2)2≥0,①当x+1=0,2y+2=0时,AB最小,解得x=-1,y=-1,①点P的坐标为(-1,-1),①P点在第三象限.故选:C.【点睛】本题考查两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=10.A【分析】首先画树状图,然后求得所有等可能的结果与满足关于x的方程x2-px+q=0有实数根的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:①x2+px+q=0有实数根,①Δ=b2-4ac=p2-4q≥0,①共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,-1),(2,-1),(2,1)共3种情况,①满足关于x的方程x2+px+q=0有实数根的概率是:31 =62.故选:A.【点睛】本题考查了列表法或树状图求概率的运用,根的判别式的运用,解答时运用列表求出所有可能的情况是关键.11.1318【分析】用列表法列举出所有的可能性,根据概率公式即可得出所有符合“点数之和大于5”的概率.【详解】解:由题意得:同时投掷两枚骰子,两次点数之和所有可能的结果如下:共36种结果,符合“点数之和大于5”的共26种,①点数之和不大于5的概率为2613 3618=,故答案为:13 18.【点睛】此题考查了概率公式的应用,用到的知识点为概率等于所求情况数与总情况数之比,熟悉概率公式是解题的关键.12.1 4【分析】先根据题意画出树状图,然后再根据概率公式进行计算.【详解】解:在各个道路上标上相应的字母,根据标出的字母画出树状图,如图所示:①共有等可能的8条道路可走,其中能够走出迷宫的只有2条道路,①小凌不回头便能走出迷宫的概率为21 84 =.故答案为:14.【点睛】本题主要考查了画树状图法求概率,根据题意画出树状图,是解题的关键. 13.23【分析】先求出点M 的所有可能的坐标,再找出当直线MN 经过第一象限时,点M 的所有符合条件的坐标,然后利用概率公式计算即可得.【详解】解:由题意得:点M 的坐标共有6种:(1,2)-,(1,3)-,(2,1)-,(2,3),(3,1)-,(3,2), 由一次函数的图象可知,当点M 的坐标为(1,2)-,(1,3)-,(2,3),(3,2)时,直线MN 经过第一象限, 则在平面直角坐标系内,直线MN 经过第一象限的概率为4263P ==, 故答案为:23.【点睛】本题考查了求概率、一次函数的图象,正确找出当直线MN 经过第一象限时,点M 的所有符合条件的坐标是解题关键. 14.(1)13(2)见详解(3)因为小诚获胜的概率大于小明获胜的概率,所以不公平【分析】(1)用抽取张数除以A 组总数即可求出概率; (2)通过树状图将每种情况列出来即可;(3)根据(2)所列出来所有情况,分别用乘积为3的倍数的总数与乘积不为3的倍数的总数除以所有情况,若概率不相等则不公平,反之则公平. (1)①抽取1张,且A 组共有3张 ①213P =抽到数字故抽到数字2的概率为13.(2)由题意画出树状图如下:①共有(2,3)(2,5)(4,3)(4,5)(6,3)(6,5)6种等可能的结果.(3)① 乘积为3的倍数有(2,3)、(6,3)、(4,3)、(6,5)四种情况①342 63P==乘积为的倍数① 乘积不为3的倍数(2,5)、(4,5)两种情况①321 63P==乘积不为的倍数①21 33>①小诚获胜概率大于小明获胜概率故这样的游戏规则不公平.【点睛】本题考查了概率的基本运算及比较,以及画树状图列出每一个事件,概率的计算公式是本题的关键.15.(1)1 4(2)1 6【分析】(1)4盒外包装完全相同的糖果中有1盒牛奶味的,随机打开1盒糖果恰巧是牛奶味的概率,用1除以4,即得;(2)从4盒外包装完全相同的糖果中随机挑选两盒打开,列表写出共12种等可能结果,其中两盒都是巧克力味的结果有2种,随机挑选两盒糖果都是巧克力味的概率,用2除以12,即得.(1)()1 =1?4=4P牛奶味;故答案为:14;(2)用Q1 、Q2表示巧克力味的,N表示牛奶味的,S表示水果味的,列表如下:共12种等可能结果,其中两盒都是巧克力味的结果有2种,随机挑选两盒都是巧克力味的概率为:()21 == 126P两盒巧克力味.【点睛】本题主要考查了求概率,解决问题的关键是熟练掌握概率的定义,简单概率的计算,用列表法或树状图法求概率.16.(1)200(2)30,50(3)画图见解析【分析】(1)由D组有10人,占比5%,从而可得总人数;(2)由A,B组各自的人数除以总人数即可;(3)先求解C组的人数,再补全图形即可.(1)解:105%=200(人),所以本次调查的学生共200人,故答案为:200(2)60100%=30%,200100100%=50%,200所以30,50,a b故答案为:30,50(3)C组有200601001030(人),所以补全图形如下:【点睛】本题考查的是从条形图与扇形图中获取信息,求解扇形图中某部分所占的百分比,补全条形图,掌握以上基础统计知识是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用列举法求概率习题精选
一、选择题
1.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖卷一张,多购多得,每10000张奖券作为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率应该是()
A.
1 10000
B.
50 10000
C.
100 10000
D.
151 10000
2.如图所示为正方形花园,ABGF是正方形,AB为2米,BC为3米,若小鸟任意落下,则落在阴影框中的概率为()
A.1 2
B.1 3
C.12 25
D.13 25
3.甲、乙、丙三人共同完如图所示的两个转盘游戏,设左盘指针所指数字为a,右盘指针所指数字为b,规定a和b之和大于7时甲获胜,a和b之和等于7时乙获胜,a和b 之和小于7时丙获胜,那么在该游戏中,获胜的可能性是()
A.甲大
B.丙大
C.乙大
D.一样大
4.学校的一排房子被分成三个形状和面积都相等的三个宿舍,从左到右依次称为1号宿舍,2号宿舍,3号宿舍,一只鸽子落在这排房子的房顶上,那么与鸽子落在2号房顶上的概率不相同的是()
A.一个口袋装有除颜色外都相同的2个黄球和1个红球,从中摸出1个黄球
B.从一幅抽掉大,小王和所有红桃的扑克牌中任意抽取一张牌,这张牌是方块
C.从两张足球票和一张篮球票中抽取一张,这张票是篮球票(票的大小、颜色及背面都一样)
D.一个学习小组共有6名同学,其中4名男同学,2名女同学,最先到校的是女同学
5.某班级举行文艺晚会,如图是他们的头镖用的靶子,图中9个小方格的形状和大小完全一样,中间的一个小方格有被平均分成四个小三角形,规定投中阴影部分可获得钢笔一枝,投中标有“○”的方格可获得铅笔一枝,投中标有“△”的方格可获得圆珠笔一枝,投中为标符号的两个小三角形设么也得不到,小方投镖一次就中靶,那么()
A.他获得钢笔的概率是1 36
B.他获得铅笔的概率最大
C.他获得圆珠笔的概率是1 3
D.他一定会获得一种奖品
二、填空题
1.有一副去掉大、小王的扑克牌,洗匀后,随意抽出一张,则
(1)P(抽到一张红心K)=______。

(2)P(抽到一张3)=_______。

(3)P(抽到一张主)=_______。

(4)P(抽到一张黑桃K)=________。

2.若一只蚂蚁在如图所示的图案上爬来爬去,两圆的半径分别为1和2,则停留在阴影内的概率是______。

3.一个房间里镶有形状和大小都完全相同的红色和黄色的两种地砖若干块,已知红色地砖的总面积是黄色地砖总面积的2倍,一只小猫在房间里自由走动,那么小猫停留在红色地砖上的概率是_______。

4.任选一个两位数,这个两位数恰好是10的倍数的概率是_____。

5.下图表示的是某班21名同学一副口袋的数目,若任选一名同学,则其衣服上口袋的数目为5的概率是_____。

三、解答题
1.小刚设计了一个由甲、乙两人玩的摸球游戏,在一个不透明的袋子中装入15个球,其中白球x个,红球2x个,其余的是黄球,每种颜色的球都不少于1个,游戏规定:一次从袋子中摸出1个球,若摸出的球市红球,则甲获胜;若摸出的球市黄球,则乙获胜,当x 为何值时,游戏对甲、乙双方公平?
2.一个袋子只能给装有4个红球、8个黄球和5个白球。

现在要调整袋中各种颜色的球德个数,使摸出一个红球的概率是1
5,摸出一个白球的
概率也是1
5,应如何调整才能达到要求?试给出两种调整方案。

(袋外有足够的三种颜色的
球可供选用)
3.小婧和小萌玩寻宝的游戏,他们要通过布满不同图案的寻宝图找到宝藏。

已知宝藏在同一图案的区域里,那么宝藏藏在哪种图案区域的概率最大?宝藏藏在哪几种图案区域的概率一样大?它们的概率分别是多少?
4.大勇想设计一个供两人玩得转盘游戏,使两人得分的概率都是2
3,按照他的想法,
游戏能设计成功吗?若能设计成功,请你帮他设计一下转盘盘面;若不能设计成功,说说你的理由。

5.小明有三双颜色不同的鞋,分别为红色、黄色和白色,随便穿一只在左脚,在随便找一只穿在右脚,正好是一双的可能性为多少?
6.如图所示,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就可获得一次转动转盘的机会,如果转盘停止后,指针这个好对准红、黄和绿色区域,顾客就可以分别获得100元、50元、20元的购物券。

(1)甲顾客购物80元,他获得转动转盘的机会的概率是多少?
(2)以顾客购物180元,他获得转动转盘的机会的概率是多少?他得到100元、50元、20元的购物券的机会的概率分别是多少?
答案
一、1.D 解析:每10000张奖券作为一个开奖单位,那么就有10000个可能出现的
结果,而中奖的结果共有1+50+100=151(个),所以P (中奖)= 151
10000。

2.C 解析:由题意得
S长方形BCHG=3×2=6(平方米),
S长方形EFGI=3×2=6(平方米),
S正方形ACDE
=(2+3)2=25(平方米),
所以P(小鸟落在阴影框中)=6+6
25=
12
25,
3.D 解析:关于a,b,a+b的表格如下:
从表中看,P(a和b之和大于7)=3
9=
1
3,
P(a和b之和等于7)=3
9=
1
3,
P(a和b之和小于7)=3
9=
1
3.
故甲、乙、丙获胜的可能一样大.4.A 解析:由题意得
P(鸽子落在2号宿舍)=1 3.
A中,P(摸出黄球=2 3;
B中,P(抽到方块)=
13131 54213393
==
--;
C中,P(抽取蓝球票)=1 3;
D中,P(女同学最先到校)=21 63 =

5.B 解析:由题意,设一个小方格的面积为l,
则P(获得钢笔)=1
1
2
918 =

P(获得铅笔)=62 93 =

P(获得圆珠笔)=2 9.
当小方投中未标符号的两个三角形时,他不获奖,故应选B.
二、1.解析:(1)P(抽到一张红心K)=1 52;
(2)P(抽到一张3)=41 5213
=

(3)P(抽到一张王)=0;
(4)P(抽到—张黑桃K)=1 52.
答案:(1)1
52(2)
1
13(3)0 (4)
1
52
2.解析:P(蚂蚁停留在阴影内)
2
2
11
244ππ
ππ

===
⋅.
答案:1 4
3.答案:2 3
4.解析:因-为共有90个两位数,而这些两位数中是10的倍数的有9个,所以P(两
位数是10的倍数)=91 9010
=

答案
1 10
提示:最小的两位整数是10,最大的两位整数是99,所以两位整数共有99-10+l=90(个).在这90个两位数中,恰好是10的倍数的有10,20,30,40,50,60,70,80,90.
5.解析:从图中可以看出,衣服上口袋的数目为5的同学有4名,所统计的是21名同
学衣服上口袋的数目,所以P(衣服上口袋数目为5)=4 21.
答案:4 21
三、1.解析:由题意得15—3x =2x ,解得x =3, 即当x =3时,游戏对甲、乙双方公平.
提示:游戏对甲、乙双方公平,就要使袋中黄球的个数与红球的个数相等. 2.解析:方案一:从袋中拿出1个白球,放入4个黄球;
方案二:在袋中放人1个红球,7个黄球.提示:由设计方案可知,摸出一个红球的概率和摸出一个白球的概率相等,所以红球与白球的个数应该一样多,它们的概率之和是
112555+=,所以摸出一个黄球的概率是231-55=
设计方案只要使袋中红球、白球和黄球的
比是1∶1∶3即可.
3.解析:宝藏藏在“”区域的概率最大,P (“”藏宝)= 5
16,宝藏藏在“

和“”区域的概率一样大.P ( ”藏宝)=P (“ ”藏宝)
41164==. 提示:本题共有四种不同的图案,事件发生的概率等于此事件所有可能结果组成的图形
面积除以总面积.
4.解析:这个游戏能设计成功.
把这个转盘面平均分成3的整数倍个小扇形,如平均分成6个小扇形,把其中小扇形个
数的 13涂上红色,13涂上黄色,1
3涂上白色.
游戏规则:当指针指向红色区域时,甲得分;当指针指向黄色区域时,乙得分;当指针指向白色区域时,甲、乙两人都得分.
如图所示即为设计的盘面的一个图形.
5.解析;小明穿鞋的可能性共有下列几种情况:
穿同一双鞋的可能性有三种,所以穿同一双鞋的可能性为3
9,即
1
3.
6.解析:(1)因为80<100,所以甲获得转动转盘的机会的概率是0;
(2)因为100<180<200,所以乙获得转动转盘的机会的概率是1,即得到一次转动转盘的机会.
P(获得100元购物券)=1 20,
P(获得50元购物券=3 20,
P(获得20元购物券)=4
20=
1
5.。

相关文档
最新文档