控制实验报告二典型系统动态性能和稳定性分析
典型系统动态性能和稳定分析

实验报告课程名称:实验项目:实验地点:专业班级:学号:学生姓名:指导教师:年月日典型系统动态性能和稳定性分析一·实验目的1学习和掌握动态性能指标的测试方法。
2研究典型系统参数对系统动态性能和稳定性的影响。
二·实验要求1定性的影响。
2定性的影响。
1 2.1.1和图2.1.2设计U9、U15、U11和U82利34 2.2.1和图2.2.2设计并连接由一个U9、U15、U11、U10和U8连成5并测出其超调量和调节时间。
672、3与5、6参阅“实验一”的实验步骤2实验步骤7“实验一”的实验步骤3这里不再赘述。
1典型二阶系统典型二阶系统的方块结构图如图 2.1.1其开环传递函数为其闭环传递函数为其中取二阶系统的模拟电路如图2.1.2该系统的阶跃响应如图2.1.3Rx接U4单元的220K 电位器改变元件参数Rx 2.1.3a 2.1.3b 2.1.3c分别对应2典型三阶系统的方块结构图如图2.2.1其开环传递函数为其中取三阶系统的模拟电路如图2.2.2所示。
该系统开环传递函数为Rx的单位为K系统特征方程为系统稳定 0<K<12系统临界稳定 K=12系统不稳定 K>12根据K求取Rx。
这里的Rx可利用模拟电路单元的220K Rx即可改变K2而改变K该系统的阶跃响应如图2.2.3 a、2.2.3b 和2.2.3c稳定、临界稳定和稳定的三种情况。
实验数据记录:二阶欠阻尼二阶过阻尼振荡二阶临界阻尼振荡三阶稳定六、实验结果与分析。
典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析系统动态性能和稳定性是指在外部扰动下,系统的响应速度和稳态特性。
这是评估系统质量和优化系统设计的重要指标。
在典型系统设计中,系统通常被建模为一个传递函数,可以用来描述系统的输出响应,其输入是系统输入和一些可能存在的扰动。
传递函数常常是一个复杂的非线性方程,需要使用线性化技术进行分析。
系统动态性能和稳定性可以通过研究系统的极点和零点来评估。
极点是传递函数的根,它们对系统的稳定性和动态响应有很大的影响。
一个系统是稳定的,当且仅当其所有极点的实部都小于零。
如果系统有一个或多个极点实部为正,那么它是不稳定的,并且会发生震荡或失控的行为。
因此,一个良好的系统设计应确保其所有极点都在复平面的左半面。
另一方面,零点是传递函数的根,它们在系统的频率响应和零状态响应中起着重要作用。
零点是传递函数的一个参数,表示在某个频率下传递函数被抵消或消除。
零点分布的位置对于系统的稳定性和响应都有重要的影响。
如果系统有零点,它们会抵消或消除特定频率下的输入信号。
因此,一个良好的系统设计应该尽可能使其零点靠近频率对应的极点,以达到良好的过渡特性和稳态精度。
系统的动态性能和稳定性可以通过研究系统的传递函数和控制策略来优化。
传递函数中的极点和零点分布可以通过调整系统参数或控制器参数来影响。
此外,使用优化方法,如PID控制器优化或系统识别方法,也可以改善系统性能。
这些方法可以帮助设计人员分析和优化系统响应,并提高系统的稳定性和性能。
在实际应用中,为了确保系统响应的快速性和稳定性,设计人员还可以使用高级控制技术,如预测控制、自适应控制和模糊控制。
这些技术可以更精细地控制系统,并通过自适应和智能控制来改善系统性能。
总之,系统的动态性能和稳定性是系统质量的重要指标,设计人员可以通过研究系统的传递函数和控制策略,以及应用高级控制技术来优化系统性能,从而实现快速响应和精确控制。
实验二 二阶系统的动态特性与稳定性分析

实验二二阶系统的动态特性与稳定性分析自动控制原理实验报告实验名称:班级:姓名:学号:二阶系统的动态特性与稳定性分析一、实验目的1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、分析二阶系统特征参量(ωn,ξ)对系统动态性能的影响;3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、学习二阶控制系统及其阶跃响应的Matlab仿真和simulink实现方法。
二、实验内容1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。
2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。
3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量σ%、峰值时间tp以及调节时间ts,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量σ%、峰值时间tp以及调节时间ts,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、将软件仿真结果与模拟电路观测的结果做比较。
三、实验步骤1、二阶系统的模拟电路实现原理将二阶系统:G(s)=可分解为一个比例环节,一个惯性环节和一个积分环节+2ξsωns+ωn2nG(s)=0236(+s+R1R3R6R2R4R5C1R2R4R5C1C2s)3 2n24512==3+s+s2s+2ξωns+ωnR2R4R5C1C2R6C2(s)=Ui(s)2、研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率ωn=12.5保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K时,二阶系统阻尼系数ξ=0.8当R6=100K时,二阶系统阻尼系数ξ=0.4当R6=200K时,二阶系统阻尼系数ξ=0.2(1)用Matlab软件仿真实现二阶系统的阶跃响应,计算超调量σ%、峰值时间tp以及调节时间ts。
自控实验—二三阶系统动态分析

自控实验—二三阶系统动态分析在自控实验中,二、三阶系统动态分析是非常重要的一部分。
通过对系统的动态性能进行分析,可以评估系统的稳定性、响应速度和稳态误差等方面的性能。
本次实验将使用PID控制器对二、三阶系统进行实时控制,并通过实验数据对系统进行动态分析。
首先,我们先了解什么是二、三阶系统。
在控制系统中,系统的阶数表示系统传递函数的阶数,也可以理解为系统动态特性的复杂程度。
二阶系统由两个极点和一个零点组成,三阶系统由三个极点和一个零点组成。
二、三阶系统的动态响应特性与极点位置有关,不同的极点位置对系统的稳定性、响应速度和稳态误差等性能有着不同的影响。
在实验中,我们将使用PID控制器对二、三阶系统进行控制。
PID控制器是一种经典的比例-积分-微分控制器,可以根据误差信号进行调节,通过调整比例系数、积分时间和微分时间来控制系统的响应特性。
实验中,我们将根据二、三阶系统的实时数据进行PID参数调整,以达到控制系统的稳定和快速响应的目的。
在进行实验前,我们首先需要对二、三阶系统进行建模。
二、三阶系统的传递函数通常表示为:二阶系统:G(s) = K / (s^2 + 2ξω_ns + ω_n^2)三阶系统:G(s) = K / (s^3 + 3ξω_ns^2 + 3ω_n^2s + ω_n^3)其中,K表示系统的增益,ξ表示系统的阻尼比,ω_n表示系统的自然频率。
通过实验数据的统计和分析,我们可以估计出系统的K、ξ和ω_n的值,并据此进行PID参数的调整。
接下来,我们进行实验。
我们首先将PID控制器的参数设为初始值,然后对系统进行实时控制,并记录系统输出的数据。
通过对这些数据进行分析,我们可以得到系统的稳态误差、响应时间和超调量等性能指标。
对于二阶系统,我们将分析以下几个方面的性能:1.稳态误差:通过比较实际输出值与目标值之间的差异,可以得到系统的稳态误差。
常见的稳态误差有零稳态误差、常数稳态误差和比例稳态误差等。
控制系统的稳定性分析实验报告范文

控制系统的稳定性分析实验报告范文下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!控制系统的稳定性分析实验报告1. 引言控制系统的稳定性分析是控制工程领域的重要研究方向之一。
实验二 典型系统动态性能和稳定性分析

实验二典型系统动态性能和稳定性分析一.实验目的1.学习和掌握动态性能指标的测试方法。
2.研究典型系统参数对系统动态性能和稳定性的影响。
二.实验内容1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三.实验步骤1.熟悉实验装置,利用实验装置上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。
注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)。
信号输出采用U3单元的O1、信号检测采用U3单元的I1、运放的锁零接U3单元的G1。
2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。
3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。
4.利用实验装置上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。
5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。
6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。
7.分析实验结果,完成实验报告。
软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。
②硬件接线完毕后,检查USB口通讯连线和实验装置电源后,运行上位机软件程序,如果有问题请求指导教师帮助。
③进入实验模式后,先对显示模式进行设置:选择“X-t模式”;选择“T/DIV”为1s/1HZ。
控制系统的稳定性分析实验报告

控制系统的稳定性分析实验报告引言控制系统的稳定性是指系统在扰动作用下,能否保持稳定运行的能力。
在实际应用中,对于控制系统的稳定性分析具有重要的意义。
本实验旨在通过实际实验,分析控制系统的稳定性,并对结果进行报告。
实验设备和方法设备本实验使用的设备如下:1.一台控制系统稳定性分析实验设备2.一台电脑方法1.将实验设备接通电源,等待设备启动完毕。
2.打开电脑,运行实验软件。
3.在实验软件中设置实验参数,包括控制系统的传递函数、采样时间等。
4.开始实验,并记录实验过程中的数据。
5.分析实验结果,得出控制系统的稳定性结论。
6.撰写实验报告。
实验结果与分析在本次实验中,我们选择了一个二阶惯性系统作为被控对象,传递函数为$G(s)=\\frac{1}{(s+1)(s+2)}$。
我们使用了PID控制器进行控制,并设置了合适的参数。
实验过程中,我们输入了一个单位阶跃信号,观察系统的响应。
通过记录实验数据并进行分析,我们得到了以下实验结果:1.系统的超调量为5%;2.系统的稳态误差为0.1;3.系统的调节时间为2秒。
根据实验结果,我们可以得出以下结论:1.系统的超调量很小,说明系统具有较好的动态性能;2.系统的稳态误差较小,说明系统具有较好的稳定性;3.系统的调节时间较短,说明系统的响应速度较快。
综上所述,实验结果表明控制系统具有较好的稳定性。
结论通过本次实验,我们通过实际实验和数据分析,得出了控制系统的稳定性结论。
实验结果表明控制系统具有较好的稳定性。
控制系统的稳定性是保证系统正常运行的重要指标,对于工程应用具有重要的意义。
参考文献无。
稳定性、静态性能和动态性能的分析

朱利稳定判据--——避免直接解根,由D(z)判定系统稳定性。 设闭环系统特征根为:
列朱利矩阵:
行 数 1 2 3 4 5 6 M 2n − 5 2n − 4 2n − 3 2n − 2
D(z) = a0 + a1z + a2 z2 +L+ an zn
z0 a0 an b0 b n −1 c0 cn−2 M p0 p3 q0 q2 z1 a1 a n −1 b1 bn−2 c1 cn−3 M p1 p2 q1 q1 z2 a2 an−2 b2 bn−3 c2 cn−4 M p2 p1 q2 q0 p3 p0 L L L L L L L z
检验稳定性的方法
• 3.1.2 修正的劳斯判据(w变换与劳斯稳定判据的 结合)检验方法:
• 修正的劳斯判据,其基本思想!! • • • 在Z平面内,劳斯判据是不能直接应用到判定系统的 稳定性中,如果将Z平面再复原到S平面,则系统方程中又 将出现超越函数。 所以我们想法再寻找一种新的变换,使Z平面的单位 圆内映射到一个新的平面的虚轴之左。此新的平面我们称 为W平面,在此平面上,我们就可直接应用劳斯稳定判据 了。
− 792 624
− 39 119 = −792 45 - 117
− 504
系统不稳定
离散系统的稳定性判据 (4)
例3 已知离散系统特征方程 ,判定系统稳定性。
D( z ) = 0.002 + 0.08 z + 0.4 z 2 − 1.368 z 3 + z 4 = 0 D(1) = 0.002 + 0.08 + 0.4 − 1.368 + 1 = 0.114 > 0 D( −1) = 0.002 − 0.08 + 0.4 + 1.368 + 1 = 2.69 > 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制实验报告二典型系统动态性能和稳定性分
析
实验报告2
报告名称:典型系统动态性能和稳定性分析
一、实验目的
1、学习和掌握动态性能指标的测试方法。
2、研究典型系统参数对系统动态性能和稳定性的影响。
二、实验内容
1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三、实验过程及分析
1、典型二阶系统
结构图以及电路连接图如下所示:
对电路连接图分析可以得到相关参数的表达式:
;;;
根据所连接的电路图的元件参数可以得到其闭环传递函数为
;其中;
因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。
当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。
当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。
对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。
同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。
当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。
2、典型三阶系统
结构图以及电路连接图如下所示:
根据所连接的电路图可以知道其开环传递函数为:
其中,R x的单位为kΩ。
系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为0<K<12,系统临界稳定的条件为
K=12,系统不稳定的条件为K>12,调节R x可以调节K,从而调节系统的性能。
具体实验图像如下:
四、软件仿真
1、典型2阶系统
取,程序为:G=tf(50,[1,50*sqrt(2),50]);
step(G)
调节时间为5s左右。
取,程序为:G=tf(50,[1,10*sqrt(2),50]);
step(G)
调节时间为0.6s左右。
取,程序为:G=tf(50,[1,2*sqrt(2),50]);
step(G)
可以看出系统有明显的超调,超调量达到了50%以上,响应速度十分快。
2、典型3阶系统
当取K=12时,程序为G=tf(12,[0.05,0.6,1,0]);
sys=feedback(G,1);
step(sys)
系统为临界稳定,输出震荡但不发散。
当取K=13时,程序为G=tf(13,[0.05,0.6,1,0]);
sys=feedback(G,1);
step(sys)
注意到纵轴坐标很大,横轴时间很长,初期的震荡发散因此看不出来,但能够从最后的系统输出走向判断出系统是不稳定的。
当取K=11时,程序为G=tf(11,[0.05,0.6,1,0]);
sys=feedback(G,1);
step(sys)
可以看出系统最终区域稳定,由于取K比较接近临界稳定,因此系统擦除器震荡频率较快,系统超调大。
五、实验心得
通过这次的实验,我们小组对典型的二阶和三阶的系统有了更深更直观的了解。
由其是对于二阶系统对阶跃信号和斜坡信号的相应印象深刻。
因为一开始不太明白临界阻尼情况下系统的性能有何特点,因此调节参数时不知道调节到实验图像是什么样子时时合适的。
因此我们小组通过自己对自动控制一些原理的理解,通过对比系统在不同参数情况下对阶跃信号和斜坡信号的不同表现最终明白并理解了临界阻尼时的系统特点。