最新高电压技术基础知识

合集下载

高电压工程基础概念总结(5篇模版)

高电压工程基础概念总结(5篇模版)

高电压工程基础概念总结(5篇模版)第一篇:高电压工程基础概念总结第一章电介质的基本电气特性1、绝缘材料:即在高电压工程中所用的各种电介质,又称绝缘介质。

绝缘的作用:是将不同电位的导体以及导体与地之间分隔开来,从而保持各自的电位。

2、电介质的基本电气特性:极化特性,电导特性,损耗特性,击穿特性。

它们的基本参数分别是相对介电常数ε,电导率γ,介质损耗因数tgδ,击穿电场强度Eb。

3、电介质的极化:在外电场的作用下,电介质中的正、负电荷将沿着电场方向作有限的位移或者转向,从而形成电矩的现象。

4、极化的基本形式:电子式极化,离子式极化,偶极子式极化,空间电荷极化,夹层极化。

5、吸收现象:直流电压U加在固体电介质时,通过电介质中的电流将随着时间而衰减,最终达到某一稳定值的现象。

6、电介质的电导是离子式电导,其电导随着温度的上升而上升;金属的电导是电子式电导,其电导随着温度的上升而下降。

7、电介质的电导在工程实际中的意义:(1)在绝缘预防性试验中,通过测量绝缘电阻和泄露电流来反映绝缘的电导特性,以判断绝缘是否受潮或存在其他劣化现象。

(2)对于串联的多层电介质的绝缘结构,在直流电压下的稳态电压分布与各层介质的电导成反比。

(3)表面电阻对绝缘电阻的影响使人们注意到如何合理地利用表面电阻。

8、电介质的损耗:分电导损耗和极化损耗。

极性液体介质tgδ随温度和频率变化的曲线就从这两个损耗上说。

总趋势:先增大,后减小,最后再增大。

其中电导损耗一直增大,极化损耗先增大,最后一直减小。

第二章气体放电的基本理论1、气体中带电粒子产生和消失的形式:碰撞电离,光电离,热电离,表面电离。

2、气体去电离的基本形式:(1)带电粒子向电极定向运动并进入电极形成回路电流,从而减少了气体中的带电离子。

(2)带电粒子的扩散。

(3)带电粒子的复合。

(4)吸附效应。

将吸附效应也看做是一种去电离的因素是因为:吸附效应能有效地减少气体中的自由电子数目,从而对碰撞电离中最活跃的电子起到强烈的束缚作用,大大抑制了电离因素的发展。

高电压技术重点复习大纲

高电压技术重点复习大纲

高电压技术重点复习大纲一、引言高电压技术作为电气工程中的重要分支,涉及电力系统、电气设备以及电力传输等方面。

本文将针对高电压技术的重点知识进行复习梳理,帮助读者系统化地理解和掌握该领域的核心概念和理论。

二、高电压技术概述1. 高电压技术的定义和应用范围2. 高电压的基本概念和表示方法3. 高电压技术的主要问题和挑战三、高电压绝缘技术1. 绝缘材料的种类和特性2. 绝缘材料的选用和制备3. 绝缘破坏与击穿机理4. 绝缘水平的评定和试验方法四、高电压设备与技术1. 高电压断路器的结构和工作原理2. 高电压变压器的类型和特点3. 高电压绝缘子的种类和应用4. 高电压电缆的敷设和维护五、高电压输电与配电技术1. 高电压输电线路的设计和选型2. 高电压变电站的布置和运行方式3. 高电压配电系统的组成和保护措施4. 高电压输配电中的功率损耗和电压稳定性问题六、高电压安全与环境保护1. 高电压安全工作的重要性和基本原则2. 高电压事故的预防和应急处理3. 高电压对环境的影响及其治理方法七、高电压技术的新发展1. 高电压技术的新理论和方法2. 高电压技术在可再生能源中的应用3. 高电压技术与智能电网的融合八、总结与展望通过对高电压技术的重点知识的复习,我们可以对该领域的核心概念和理论有较为深入的理解。

面对未来高电压技术的发展,我们应不断学习创新,以推动电气工程的进步和发展。

以上为高电压技术重点复习大纲,通过对各个知识点的梳理和总结,旨在帮助读者更好地掌握和理解高电压技术的核心内容。

有关详细内容和具体的公式推导等细节,建议读者参考相关教材和资料进行进一步学习。

祝愿读者在高电压技术的学习中取得优异的成绩!。

高电压技术速记版专题1-6

高电压技术速记版专题1-6

高电压技术速记版专题1-6专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。

具有绝缘作用的材料称为电介质或绝缘材料。

2、电介质的分类:按状态分为气体、液体和固体三类。

3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。

4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。

(前三种极化均是在单一电介质中发生的。

但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。

特点:时间短,弹性极化,无能量损耗。

[注]:存在于一切材料中。

6、离子式极化:离子式极化发生于离子结构的电介质中。

固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。

特点:时间短,弹性极化,无能量损耗。

[注]:存在于离子结构物质中。

7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。

特点:时间较长,非弹性极化,有能量损耗。

[注]:存在于极性材料中。

8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。

[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。

9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望些好。

大些好。

用作其它设备的绝缘介质时,希望小11、电介质电导:电介质内部带点质点在电场作用下形成电流。

金属导体:温度升高,电阻增大,电导减小。

绝缘介质:温度升高,电阻减小,电导增大。

12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。

(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。

高电压技术复习资料

高电压技术复习资料

高电压技术复习资料
高电压技术是电力工程中的一个重要组成部分,具有广泛应用领域。

因此,对于高电压技术的学习和掌握是非常重要的。

本文将从几个方面对高电压技术的相关知识进行复习。

一、高电压的定义
高电压是指大于常见电压的电压等级,一般情况下指高于1000伏的电压。

高电压技术是指针对高电压的控制和运用所采用的一系列技术和方法。

二、高电压的产生和测量
高电压的产生可以采用变压器和电容器等方式,其中变压器的应用最为广泛。

在高电压测量中,主要采用的是电压表、电位差计和介质损耗测试仪等设备。

三、高电压的应用
高电压技术在电力工程中有许多应用,例如高压输电、变电站的建设以及工业生产中的电源、除尘器等方面。

此外,高电压在科学研究中也有很多用途,如核聚变实验、高温等离子体研究等领域。

四、高电压的危害和防护
高电压如不加控制和保护,可能会带来很大的危害。

高电压会导致电击和火灾等危险,需要采取相应的防护措施。

防护方法包括使用绝缘材料和可靠的接地装置等。

五、高电压技术的发展趋势
随着科技的不断发展和电力工程的不断改进,高电压技术也在不断发展。

未来,高电压技术将更加注重环保和节能,同时也会注重智能化和自动化的应用。

综上所述,高电压技术是电力工程中不可或缺的一部分,具有广泛的应用前景。

通过对高电压技术的复习,可以更好地理解和掌握该项技术,并在实际应用中起到更好的作用。

高电压技术基本原理

高电压技术基本原理

高电压技术基本原理高电压技术是一门研究如何产生、传输和应用高电压的学科,广泛应用于电力系统、电子设备、医学、科学研究等领域。

本文将介绍高电压技术的基本原理,包括高电压的定义、产生方式、传输和应用。

一、高电压的定义高电压是指电压高于常规电力系统工作电压的电压。

常见的低压、中压和高压分别指电压在1000伏以下、1000伏至35千伏和35千伏以上的范围。

超过1MV的电压称为超高压。

在高电压条件下,电场强度较大,电荷运动速度快,因此需要特殊的设备来处理和利用高电压。

二、高电压的产生方式高电压可以通过以下几种方式产生:1. 直流高电压发生器:直流高电压发生器可以产生稳定的直流高压。

常用的直流高电压发生器包括独立电源、充电式电源和瞬态电源等。

2. 交流高电压发生器:交流高电压发生器可以产生稳定的交流高压。

常用的交流高电压发生器包括变压器、谐振变压器和驱动发生器等。

3. 瞬态高电压发生器:瞬态高电压发生器可以产生短暂但较高幅值的高压脉冲。

常用的瞬态高电压发生器包括电容器放电系统、脉冲发生器和雷电仿真系统等。

三、高电压的传输高电压的传输需要采取一系列的防护和绝缘措施来保证安全和可靠性。

常见的高电压传输方式包括:1. 电线传输:使用绝缘电线或电缆进行高电压的传输。

绝缘材料能够有效地隔离电荷之间的电势差,避免电击和设备损坏。

2. 输电线路:输电线路采用特殊的绝缘塔、隔离子、绝缘子和绝缘线路来传输高电压。

这些设备能够有效地隔离电力系统和周围环境,保证电力系统的安全运行。

3. 隔离器件:隔离器件用于将高电压电路与低电压电路之间进行电气隔离。

常用的隔离器件包括变压器、继电器和隔离放大器等。

四、高电压的应用高电压技术在多个领域都有广泛的应用,包括:1. 电力系统:高电压技术被广泛应用于电力输配电、电力转换和电力传输等方面。

它能够提高输电效率、减少能量损耗,保证电力系统的稳定和安全运行。

2. 电子设备:高电压被用于电子设备的激发、测量和测试等方面。

高电压技术的应用基础知识讲解

高电压技术的应用基础知识讲解
• 1000kV晋东南~南阳~荆门输电线路工程
3.高压输电的发展
电网发展的历史表明 :
• 相邻两个电压等级的级差,在一倍以上是经济 合理的。
• 新的更高电压等级的出现时间一般为15—20年。 • 前苏联1150kV输电线路的运行表明:
特高压输电技术和设备,经过20年的研究 和开发,到20世纪80年代中期,已达到用于实 际的特高压输电工程的要求。
高电压技术的应用基础知识讲解
第1讲 绪论
一、高压输电的发展历史 二、发展高压输电的必要性 三、中国电力工业的发展与现状 四、高电压技术的主要研究内容 五、高电压技术的应用 六、高电压技术面临的主要问题
一、高压输电的发展
1.电网发展历史
*1875年,法国巴黎北火车站建成世界上第一座火力直流发电 厂,标志着世界电力时代的到来。
* 100多年来,输电电压由最初的13.8kV逐步发展到20,35, 66,110,134,220,330,345,400,500,735,750, 765,1000kV。
1.(续)
❖ 1908年,美国建成了世界第一条110kV输电线路;经 过15年,于1923年,第一条230kV线路投入运行; 1954年建成第一条345kV线路。从230kV电压等级到 345kV电压等级经历了31年。在345kV投运15年后, 1969年建成了765kV线路。
* 1891年,在德国劳芬电厂安装了世界第一台三相交流发电 机:它发出的三相交流电通过第一条13.8kV输电线将电力输 送到远方用电地区,使电力既用于照明,又用于动力,从而 开始了高压输电的时代。
* 1879年,中国上海公共租界点亮了第一盏电灯。1882年, 第一家电业公司—上海电气公司成立(1台12kW直流) 。

公共基础知识高电压与绝缘技术基础知识概述

公共基础知识高电压与绝缘技术基础知识概述

《高电压与绝缘技术基础知识概述》一、引言高电压与绝缘技术是电气工程领域中的一个重要分支,它主要研究高电压下的电气绝缘和放电现象,以及如何设计、制造和维护高电压设备,以确保电力系统的安全可靠运行。

随着电力工业的不断发展和对电能质量要求的提高,高电压与绝缘技术的重要性日益凸显。

本文将对高电压与绝缘技术的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践和未来趋势。

二、基本概念1. 高电压高电压是指电压等级较高的电气量,通常在数千伏以上。

高电压的产生主要有以下几种方式:- 电力变压器升压:通过变压器将低电压升高到高电压,以满足远距离输电的需要。

- 静电感应:利用静电感应原理产生高电压,如静电起电机。

- 电磁感应:通过电磁感应原理产生高电压,如高压互感器。

2. 绝缘绝缘是指阻止电流通过的材料或结构。

在高电压环境下,绝缘材料的性能至关重要,它必须能够承受高电压的作用而不发生击穿或漏电现象。

绝缘材料主要分为以下几类:- 气体绝缘:如空气、六氟化硫等。

气体绝缘具有良好的绝缘性能和散热性能,但需要密封容器来保持其绝缘性能。

- 液体绝缘:如变压器油、电容器油等。

液体绝缘具有较好的绝缘性能和散热性能,但需要注意防火和防爆。

- 固体绝缘:如绝缘纸、绝缘橡胶、绝缘塑料等。

固体绝缘具有较高的机械强度和耐热性能,但绝缘性能相对较差。

3. 击穿击穿是指绝缘材料在高电压作用下失去绝缘性能,电流通过绝缘材料的现象。

击穿分为以下几种类型:- 电击穿:在强电场作用下,绝缘材料中的自由电子被加速,与分子发生碰撞,产生电离,导致绝缘材料失去绝缘性能。

- 热击穿:在高电压作用下,绝缘材料中的电流会产生热量,使绝缘材料温度升高。

如果热量不能及时散发,绝缘材料的温度会不断升高,最终导致绝缘材料失去绝缘性能。

- 电化学击穿:在高电压作用下,绝缘材料中的杂质会发生电离,产生电化学腐蚀,导致绝缘材料失去绝缘性能。

三、核心理论1. 电场理论电场理论是高电压与绝缘技术的基础理论之一。

高电压技术复习资料要点

高电压技术复习资料要点

第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。

2.气体放电是对气体中流通电流的各种形式统称。

3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。

4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。

5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。

6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。

7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。

8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。

(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。

因此,在气隙的电极间施加电压时,可检测到微小的电流。

由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。

当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。

(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。

电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。

此时气隙转入良好的导电状态,即气体发生了击穿。

(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、35KV及以下的输电线路为什么一般不采用全线架设避雷线的措施?
答:35kv及以下电压等级的输电系统一般都为中性点不接地系统,当发生由雷电引起的冲击闪络后,随后出现的工频闪络电流很小,不能形成稳定的工频电弧,因此,不会引起线路跳闸,所以,当一相由于雷击而引起闪络后,仍能正常工作,这样虽不装设避雷线,雷击引起的闪络概率增大,但这种闪络不会导致线路跳闸而影响正常供电。

故35kv及以下输电线路一般不架设避雷线,一相闪络后,再出现第二相闪络,形成相间短路,出现打的短路电流,才能引起线路跳闸,只有雷电流很大时才会出现这种情况。

2、说明变电所进线保护段的作用及对它的要求?
答:变电所进线保护段的作用有两个:其一是限制雷电侵入波电压作用下流过避雷器的电流;其二是降低最终进入变电所雷电侵入波的波头陡度。

对进线保护段的要求:其应具有比线路更高的耐雷水平,这段线路的避雷线应具有更小的对导线的保护角,而全线无避雷线线路则当然在这段线路上架设避雷线。

3、避雷针的保护原理:当雷云放电时,使地面电场畸变,在避雷针的顶端形成局部场强集中的空间以影响雷云闪光先导放电的发展方向,使雷闪对避雷针的放电,再经过接地装置将雷电引入大地,从而使被保护物体免遭雷击。

4、输电线路的防雷措施:架设避雷线、降低塔杆接地电阻、架设耦合地线、采用不平衡绝缘方式、装设自动重合闸、采用消弧线圈接地方式、装设避雷器、加大绝缘。

5、为什么在低压侧装设避雷器?
答:为了防止正、反变换过程出现的过电压,应在变压器的低压侧加装一组避雷器,完善变压器的防雷保护。

如果只在高压侧装设避雷器,当雷击高压侧线路时,避雷器动作,雷击电流流过接地电阻,并在接地电阻上产生电压降,低压侧此时没有避雷器,这一电压值低于低压侧中性点,而低压侧出现相当于经线路波阻抗接地,这一电压降绝大部分降作用于变压器低压绕组产生电流,通过电磁耦合作用,在高压侧感应出电动势的过程叫做反变换;
如果变压器低压侧落雷,作用于低压侧的冲击电压按照变比关系感应到高压侧,使高压绕组上出现过电压,而高压侧的绝缘裕度较低压侧小,可能引起高压侧首先击穿,这个过程叫正变换;
6、简述绝缘污闪:户外绝缘子在污秽状态下发射管的沿面放电闪络成为绝缘子的污闪。

误会绝缘子的闪络往往发生在大气湿度很高等不利的气候条件下,此时闪络电压大大降低,可能在工作电压下发生闪络,从而加剧了事故的严重性。

措施:清除污秽层、提高绝缘子的表面耐潮性和憎水性、采用半导体釉绝缘子。

7、什么是介质损耗?为什么能用tanδ代替介质损耗?
答:在交流电压下,介质的有功功率损耗为介质损耗。

当外加电压和频率一定时,P与戒指的物理电容C 成正比,对一定结构的试品而言,电容C 是定值,P与tanδ成正比,故对同类试品绝缘的优劣,可直接用tanδ代替介质损耗。

8、累积效应:随着施加冲击或工频试验电压次数增多,固体介质的击穿电压降下降的现象,称为累积效应。

9、非破坏性试验:是指在较低电压下,用不损伤设备绝缘的办法来判断绝缘缺陷的试验;(这类试验对发现缺陷有一定的作用和有效性,但是由于试验电压较低,发现缺陷的灵敏性不高)
破坏性试验:是用较高的电压来考验设备的绝缘水平。

易于发现设备的集中性缺陷,考验设备绝缘水平,但由于电压较高,可能给被试品造成损伤。

10、接地装置:是包括引线在内的埋设在地中的一个或一组金属体,或由金属导体组成的金属网,其功能是用来泄放故障电流。

雷电或其它冲击电流,稳定电位。

10.气体放电形式:辉光放电、电晕放电、火花放电、刷状放电和电弧放电。

11、电介质的极化形势:电子式位移极化、离子式位移极化、偶极子极化、空间电荷极化。

12气体的放电现象包括:击穿和闪络
13绝缘油的气相色谱分析方法:特征气体法、依据气体含量的注意值和产气率、三比值法。

14、输电线路感应过电压的形式分为:放电起始阶段和主放电。

15.建弧率:将冲击闪络转化为稳定的工频电弧的概率。

1、35KV及以下的输电线路为什么一般不采用全线架设避雷线的措施?
答:35kv及以下电压等级的输电系统一般都为中性点不接地系统,当发生由雷电引起的冲击闪络后,随后出现的工频闪络电流很小,不能形成稳定的工频电弧,因此,不会引起线路跳闸,所以,当一相由于雷击而引起闪络后,仍能正常工作,这样虽不装设避雷线,雷击引起的闪络概率增大,但这种闪络不会导致线路跳闸而影响正常供电。

故35kv及以下输电线路一般不架设避雷线,一相闪络后,再出现第二相闪络,形成相间短路,出现打的短路电流,才能引起线路跳闸,只有雷电流很大时才会出现这种情况。

10、说明变电所进线保护段的作用及对它的要求?
答:变电所进线保护段的作用有两个:其一是限制雷电侵入波电压作用下流过避雷器的电流;其二是降低最终进入变电所雷电侵入波的波头陡度。

对进线保护段的要求:其应具有比线路更高的耐雷水平,这段线路的避雷线应具有更小的对导线的保护角,而全线无避雷线线路则当然
在这段线路上架设避雷线。

11、避雷针的保护原理:当雷云放电时,使地面电场畸变,在避雷针的顶端形成局部场强集中的空间以影响雷云闪光先导放电的发展方向,使雷闪对避雷针的放电,再经过接地装置将雷电引入大地,从而使被保护物体免遭雷击。

12、输电线路的防雷措施:架设避雷线、降低塔杆接地电阻、架设耦合地线、采用不平衡绝缘方式、装设自动重合闸、采用消弧线圈接地方式、装设避雷器、加大绝缘。

13、为什么在低压侧装设避雷器?
答:为了防止正、反变换过程出现的过电压,应在变压器的低压侧加装一组避雷器,完善变压器的防雷保护。

如果只在高压侧装设避雷器,当雷击高压侧线路时,避雷器动作,雷击电流流过接地电阻,并在接地电阻上产生电压降,低压侧此时没有避雷器,这一电压值低于低压侧中性点,而低压侧出现相当于经线路波阻抗接地,这一电压降绝大部分降作用于变压器低压绕组产生电流,通过电磁耦合作用,在高压侧感应出电动势的过程叫做反变换;
如果变压器低压侧落雷,作用于低压侧的冲击电压按照变比关系感应到高压侧,使高压绕组上出现过电压,而高压侧的绝缘裕度较低压侧小,可能引起高压侧首先击穿,这个过程叫正变换;
14、简述绝缘污闪:户外绝缘子在污秽状态下发射管的沿面放电闪络成为绝缘子的污闪。

误会绝缘子的闪络往往发生在大气湿度很高等不利的气候条件下,此时闪络电压大大降低,可能在工作电压下发生闪络,从而加剧了事故的严重性。

措施:清除污秽层、提高绝缘子的表面耐潮性和憎水性、采用半导体釉绝缘子。

15、
16、什么是介质损耗?为什么能用tanδ代替介质损耗?
答:在交流电压下,介质的有功功率损耗为介质损耗。

当外加电压和频率一定时,P与戒指的物理电容C 成正比,对一定结构的试品而言,电容C 是定值,P与tanδ成正比,故对同类试品绝缘的优劣,可直接用tanδ代替介质损耗。

17、累积效应:随着施加冲击或工频试验电压次数增多,固体介质的击穿电压降下降的现象,称为累积效应。

18、非破坏性试验:是指在较低电压下,用不损伤设备绝缘的办法来判断绝缘缺陷的试验;(这类试验对发现缺陷有一定的作用和有效性,但是由于试验电压较低,发现缺陷的灵敏性不高)
破坏性试验:是用较高的电压来考验设备的绝缘水平。

易于发现设备的集中性缺陷,考验设备绝缘水平,但由于电压较高,可能给被试品造成损伤。

10、接地装置:是包括引线在内的埋设在地中的一个或一组金属体,或由金属导体组成的金属网,其功能是用来泄放故障电流。

雷电或其它冲击电流,稳定电位。

11.气体放电形式:辉光放电、电晕放电、火花放电、刷状放电和电弧放电。

电介质的极化形势:电子式位移极化、离子式位移极化、偶极子极化、空间电荷极化。

12气体的放电现象包括:击穿和闪络
13绝缘油的气相色谱分析方法:特征气体法、依据气体含量的注意值和产气率、三比值法。

14、输电线路感应过电压的形式分为:放电起始阶段和主放电。

15.建弧率:将冲击闪络转化为稳定的工频电弧的概率。

相关文档
最新文档