高中数学选修2-1第章《圆锥曲线与方程》2.3.2.1抛物线的几何性质
选修2-1第二章《抛物线》

如图所示,建立直角坐标系,设 ( ),
那么焦点 的坐标为 ,准线 的方程为 ,
设抛物线上的点 ,则有
化简方程得
方程 叫做抛物线的标准方程
(1)它表示的抛物线的焦点在 轴的正半轴上,焦点坐标是 ,
它的准线方程是
3、四种形式的抛物线
(1) ,焦点: ,准线 :
(2) ,焦点: ,准线 :
16.(12分)[解析]:设抛物线方程为 ,则焦点F( ),由题意可得
,解之得 或 ,
故所求的抛物线方程为 ,
17.(12分)[解析]:设M的坐标为(x,y),A( , ),又B 得
消去 ,得轨迹方程为 ,即
18.(12分)[解析]:如图建立直角坐标系,
设桥拱抛物线方程为 ,由题意可知,
B(4,-5)在抛物线上,所以 ,得 ,
A.y2=-2xB.y2=-4x
C.y2=2xD.y2=-4x或y2=-36x
7.过抛物线y2=4x的焦点作直线,交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=()
A.8B.10C.6D.4
8.把与抛物线y2=4x关于原点对称的曲线按向量a 平移,所得的曲线的方程是()
18.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?(12分)
19.如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|= ,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)
人教B版数学选修2-1目录

第三章空间向量与立体几何
3.1空间向量及其运算
3.1.1空间向量的线性运算
3.1.2空间向量的基本定理
3.1.3两个向量的数量积
3.1.4空间向量的直角坐标运算
3.2空间向量在立体几何中的应用
3.2.1直线的方向向量与直线的向量方程
3.2.2平面的法向量与平面的向量表示
3.2.3直线与平面的夹角
3.2.4二面角及其度量
3.2.5距离(选学)
本章小结
阅读与欣赏
向量的叉积及其性质
2.1.1曲线与方程的概念
2.1.2由曲线求出它的方程、由方程研究曲线的性质
2.2椭圆
2.2.1椭圆的标准方程
2.2.2椭圆的几何性质
2.3双曲线
2.3.1双曲线的标准方程
2.3.2双曲线的几何性质
2.4抛物线
2.4.1抛物线的标准方程
2.4.2抛物线的几何性质
2.5直线与圆锥曲线
本章小结阅读与欣赏选来自2-1第一章常用逻辑用语
1.1命题与量词
1.1.1命题
1.1.2量词
1.2基本逻辑连接词
1.2.1“且”与“或”
1.2.2“非”(否定)
1.3充分条件、必要条件和命题的四种形式
1.3.1推出与充分条件、必要条件
1.3.2命题的四种形式
本章小结
阅读与欣赏
什么是数理逻辑
第二章圆锥曲线与方程
2.1曲线与方程
2021_2022高中数学第二章圆锥曲线与方程3双曲线2双曲线的简单几何性质1课件新人教A版选修2

渐近线方程为
y=±
2 2 x.
典例剖析
一.已知双曲线的方程,研究其几何性质
• 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长 、离心率和渐近线方程,并作出草图.
• [分析] 将双曲线方程化成标准方程,求出a、b、c的值,然后依 据各几何量的定义作答.
[解析] 将 9y2-4x2=-36 变形为x92-y42=1, 即3x22-2y22=1,∴a=3,b=2,c= 13, 因此顶点为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0), 实轴长是 2a=6,虚轴长是 2b=4,
∴双曲线的标准方程为y22-x42=1.
三.双曲线的离心率
已知 F1、F2 是双曲线ax22-by22=1(a>0,b>0)的两个焦点,PQ 是经过 F1 且垂直于 x 轴的双曲线的弦.如果∠PF2Q=90°,求 双曲线的离心率.
• [解析] 设F1(c,0),由|PF2|=|QF2|, ∠PF2Q=90°,
)
B.x42-y52=1 D.x22- y25=1
• [答案] B
[解析] e=32,c=3,∴a=2,∴b2=c2-a2=5, 即双曲线的标准方程为x42-y52=1.
4.已知双曲线ax22-y52=1 的右焦点为(3,0),则该双曲线的
离心率等于( )
A.3 1414
B.3 4 2
C.32
D.43
第二章 圆锥曲线与方程
2.3 双曲线
2.3.2 双曲线的简单几何性质
学习目标
• 1.类比椭圆的性质,能根据双曲线的标准方程,讨论它的几何性质 .
• 2.能运用双曲线的性质解决一些简单的问题.
(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

a=13,b=m1 ,
9 m2
取顶点0,13,一条渐近线为 mx-3y=0, 所以15=|-m32×+139|,则 m2+9=25,
∵m>0,∴m=4.
答案: D
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知点(2,3)在双曲线 C:ax22-by22=1(a>0,b>0)上, C 的焦距为 4,则它的离心率为________.
合作探究 课堂互动
高效测评 知能提升
1.双曲线 2x2-y2=8 的实轴长是( )
A.2
B.2 2
C.4
D.4 2
解析: 双曲线方程可化为x42-y82=1,∴a2=4,a=2,
则 2a=4,故选 C. 答案: C
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
c e=__a__
__y_=__±_ba_x_
_y_=__±_ab_x__
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
等轴双曲线
___实__轴__和___虚__轴___等长的双曲线叫做等轴双曲线.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
由①②联立,无解.
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 y=0,解得 x=±3,因此顶点坐标为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0). 实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程 y=±bax=±23x. 作出草图(如图所示).
2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。
高中数学人教B版选修2-1课件 第2章 圆锥曲线与方程 2.1.1

质.曲线 C 用集合的特征性质可描述为 C ={M(x ,y)|F(x ,y) =
0}.
方程x2+xy=x表示的曲线是( A.一个点
)
B.一条直线
C.两条直线
[答案] C [解析]
D.一个点和一条直线
x2+xy=x因式分解得x(x+y)=x,即x(x+y-1)=
0,即x=0或x+y-1=0.
二、两条曲线的交点 求两条曲线 C1: F(x, y)=0 与 C2: G(x, y)=0 的交点坐标,
第二章 2.1 曲线与方程
2.1.1 曲线与方程的概念
1
课前自主预习
2
课堂典例探究
3
课 时 作 业ຫໍສະໝຸດ 课前自主预习我国著名的数学家华罗庚先生对数形结合思想非常重视, 他曾经说过:数缺形来少直观,形缺数则难入微.可见,数形 结合是中学数学非常重要的数学思想.在必修 2 解析几何初步 中我们已经学过了直线和圆的方程,对数形结合思想有了初步 的了解,本节内容我们将进一步学习曲线与方程的概念,了解 曲线与方程的关系,进一步体会数形结合思想的应用.
2.从不同角度理解曲线与方程的概念
(1)从集合角度来看,设A是曲线C上所有点构成的集合,B 是所有以方程 F(x,y)=0的实数解为坐标的点组成的点集,则 由关系(1) 知 A⊆B,由关系 (2) 知B⊆A,同时具备关系 (1) 与(2) , 则有A=B,于是建立了曲线与方程之间的等价关系.
(2)从充要条件的角度来看,由关系(1)可知,曲线C上点的
注意:对于联立的直线方程和曲线方程消元后所得到的一 元二次方程,首先要对二次项系数是否为零进行判断.当二次 项系数为零时,得到唯一解.此时是直线与曲线相交的情况, 而不是相切.当直线与曲线相交时,可借助根与系数的关系求 弦长.“设而不求”是简化运算的常用技巧之一.
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(答案解析)(5)
一、选择题1.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .22.若点)0到双曲线C :22221x y a b-=(0a >,0b >)的离心率为( )A B C D 3.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞4.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定5.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,M 为E 上一点.若126MF F π∠=,21212F F F M F F +=,则E 的离心率为( )A .12 B .12C 1D 16.已知双曲线221(0,0)x y m n m n-=>>和椭圆22174x y +=有相同的焦点,则11m n +的最小值为( )A .12B .32C .43D .97.已知抛物线22y px =(0p >)的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,则点A 到y 轴的距离为( ) A .5B .4C .3D .28.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭10.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( )A .B .C D 11.在平面直角坐标系xOy 中,设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 是双曲线左支上一点,M 是1PF 的中点,且1OM PF ⊥,122PF PF =,则双曲线的离心率为A B .2C D 12.双曲线2214x y -=的离心率为( )A B C D .2二、填空题13.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.14.如图,将桌面上装有液体的圆柱形杯子倾斜α角(母线与竖直方向所成角)后,液面呈椭圆形,当30α=︒时,该椭圆的离心率为____________.15.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b 取最大值时,双曲线C 的方程为________.16.动点P 在曲线221y x =+上运动,则点P 与定点(0,1)M -连线的中点N 的轨迹方程为_______.17.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.18.已知抛物线()220x py p =>的焦点为F ,其准线与双曲线2212x y -=相交于A ,B 两点.若ABF ∆为直角三角形,则抛物线的准线方程为________.19.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.在平面直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点与椭圆:2212x y +=的右焦点重合. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)记(4,0)P ,若抛物线C 上存在两点B ,D ,使PBD △为以P 为顶点的等腰三角形,求直线BD 的斜率的取值范围.22.椭圆2212x y +=的左、右焦点为1F 、2F ,经过1F 作倾斜角为60的直线l 与椭圆相交于A B ,两点. 求(1)线段AB 的长; (2)2ABF 的面积.23.如图所示,已知椭圆()2222:10x y C a b a b+=>>,222:O x y b +=,点A 是椭圆C的左顶点,直线AB 与O 相切于点()1,1B -.(1)求椭圆C 的方程;(2)若O 的切线l 与椭圆C 交于M ,N 两点,求OMN 面积的取值范围.24.已知椭圆222:1(1)x C y m m+=>,点P 是C 上的动点,M 是右顶点,定点A 的坐标为(2,0).(1)若3m =,求PA 的最大值与最小值;(2)已知直线:5l y x =-,如果P 到直线l 的最小值为2,求m 的值. 25.已知抛物线2:2(0)C y px p =>的准线方程为1x =-. (1)求抛物线C 的方程;(2)设点(1,2)P 关于原点O 的对称点为点Q ,过点Q 作不经过点O 的直线与C 交于两点A ,B ,直线PA ,PB 分别交x 轴于M ,N 两点,求MF NF ⋅的值.26.如图,在平面直角坐标系xOy 中,A ,B 是椭圆22221(0)x ya b a b+=>>的左、右顶点,22AB =,离心率22e =.F 是右焦点,过F 点任作直线l 交椭圆于M ,N 两点.(1)求椭圆的方程;(2)试探究直线AM 与直线BN 的交点P 是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.2.A解析:A 【分析】先求得双曲线C 的其中一条渐近线方程0bx ay -=,根据点)0到双曲线C 的渐近线223c a =,即可求得双曲线的离心率. 【详解】由题意,双曲线C :22221x y a b-=的其中一条渐近线方程为b y x a =,即0bx ay -=,因为点)0到双曲线C==2232b c =,即222332c a c -=,即223c a =,所以==ce a故选:A. 【点睛】本题考查了双曲线的标准方程及几何性质,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).3.D解析:D 【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22bc a<,即可由此求出离心率.【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2by a=±,∴以AB 为直径的圆的半径为2b AF a=,双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->,两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞. 故选:D. 【点睛】本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a <.4.B解析:B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠=,即可判断. 【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠=,故PFN 的形状是直角三角形. 故选:B.【点睛】本题考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠=.5.B解析:B 【分析】先取线段1F M 中点P ,连接2PF ,得到2c P F =,结合正弦定理证明12F PF ∠是直角,求出12,F M MF ,再根据定义122FM MF a +=得到,a c 之间关系,即求得离心率. 【详解】如图椭圆中,取线段1F M 中点P ,连接2PF ,则21222F F F M F P+=,因为21212F F F M F F +=,所以21222F F F P c ==,则2c P F =,12F F P 中,1212122sin sin F F M P F F F P F F =∠∠,即122sin sin6c P F F c π=∠,解得12in 1s P F F =∠,又()120,F PF π∠∈,12F PF ∠=2π,故13F P c =,2PF 是线段1F M 的中垂线,故121223,2FM c MF F F c ===,结合椭圆定义122FM MF a +=,故22c a +=,即)1c a =,故离心率12c e a ===. 故选:B. 【点睛】求椭圆离心率(或取值范围)的常见方法: (1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和椭圆的几何关系构建关于a ,b ,c 的方程和不等式,利用222b a c =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.6.C解析:C 【分析】本题首先可根据双曲线和椭圆有相同的焦点得出3m n +=,然后将11m n+转化为123m n n m ⎛⎫++ ⎪⎝⎭,最后利用基本不等式即可求出最小值. 【详解】因为双曲线221x y m n-=和椭圆22174x y +=有相同的焦点,所以743m n ,则()111111233m n m n m n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 142233m n n m,当且仅当m n =时取等号, 故11m n+的最小值为43,故选:C. 【点睛】关键点点睛:本题考查双曲线与椭圆焦点的相关性质的应用,双曲线有222+=a b c ,椭圆有222a b c =+,考查利用基本不等式求最值,是中档题.7.C解析:C 【分析】可设出直线方程与抛物线方程联立,得出12x x ,再由焦半径公式表示出3AF FB =,得到1232x x =+,结合这两个关系式可求解13x =【详解】已知焦点F 到准线的距离为2,得2p =, 可得24y x =设()()1122,,,A x y B x y ,:1AB x my =+ 与抛物线方程24y x =联立可得:2440y my --=124y y ∴=-,()21212116y y x x ∴==①又3AF FB =,()12131x x ∴+=+,1232x x ∴=+② 根据①②解得13x = 点A 到y 轴的距离为3 故选:C 【点睛】抛物线中焦半径公式如下:抛物线()220y px p =>的焦点为F ,()11,A x y 为抛物线上的一点,则12pAF x =+,解题时可灵活运用,减少计算难度.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A B M,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+,所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.10.B解析:B 【分析】令2MA MC =,则12MA MC=,所以12MAMC==,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n,则12MAMC==,整理得:22222421333m n m n x y x y ++-+++=,比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -, 当点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小,最小为210.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.11.C解析:C 【分析】运用双曲线的定义和△PF 1F 2为直角三角形,则|PF 2|2+|PF 1|2 =|F 1F 2|2,由离心率公式,计算即可得到离心率的范围. 【详解】因为M 是1PF 的中点,O 为12F F 的中点,所以OM 为三角形F 1PF 2的中位线. 因为1OM PF ⊥,所以21PF PF ⊥.又因为212PF PF a -=,122PF PF =,122F F c =, 所以122,4PF a PF a ==.在△F 1PF 2中,21PF PF ⊥,所以2221212PF PF F F +=,代入得()()()222242a a c +=,所以225c a =,即5e =故选C. 【点睛】本题考查了平面几何知识在圆锥曲线中的基本应用,根据边长关系求得离心率,属于基础题.根据各个边长关系,判断出21PF PF ⊥,再根据勾股定理求出离心率.12.C解析:C【解析】双曲线2214x y -=中,222224,1,5,a b c a b e ==∴=+=∴== 本题选择C 选项.二、填空题13.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=, ∴24tan tan 21()b b ba a BOA BOFb a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即e =.【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.14.【分析】由图知椭圆的短轴长为圆柱的直径椭圆的长半轴与底面半径构成夹角为的直角三角形由此可求得椭圆离心率【详解】设圆柱形杯子的底面半径为画示意图如图所示:则是椭圆的长半轴长是椭圆的短半轴长则又则故答案 解析:12【分析】由图知椭圆的短轴长为圆柱的直径,椭圆的长半轴与底面半径构成夹角为30的直角三角形,由此可求得椭圆离心率. 【详解】设圆柱形杯子的底面半径为b ,画示意图如图所示:则OC 是椭圆的长半轴长,OB 是椭圆的短半轴长,则22BC a b c =-=,又30COB α∠==︒,则1sin 2c e a α===. 故答案为:12【点睛】本题考查了圆柱的截面为椭圆的问题,根据椭圆的性质求出椭圆的离心率,考查了学生的分析能力,空间想象能力,属于中档题.15.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得3a b 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M 处的切线与直线3y x =-垂直,则(0312x ⨯=-, 解得023x =,则200143x y ==,所以,点M 的坐标为2313⎫⎪⎪⎝⎭,抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==,因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.16.【分析】设得到代入曲线整理得到答案【详解】设则即代入曲线得到即故答案为:【点睛】本题考查了轨迹方程意在考查学生的计算能力和转化能力确定坐标的关系是解题的关键 解析:24y x =【分析】设(),N x y ,()00,P x y ,得到00221x xy y =⎧⎨=+⎩,代入曲线整理得到答案.【详解】设(),N x y ,()00,P x y ,则00212x x y y ⎧=⎪⎪⎨-⎪=⎪⎩,即00221x x y y =⎧⎨=+⎩,代入曲线得到()221221y x +=⋅+,即24y x =.故答案为:24y x =. 【点睛】本题考查了轨迹方程,意在考查学生的计算能力和转化能力,确定,N P 坐标的关系是解题的关键.17.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.18.【分析】先求出准线方程为代入双曲线方程可得AB 的坐标再由为直角三角形设中点为则即进而求解【详解】由题可知准线方程为因为与双曲线相交于AB 则为为因为为直角三角形由双曲线的对称性可得设中点为则即解得即所 解析:1y =-【分析】先求出准线方程为2py =-,代入双曲线方程可得A ,B 的坐标,再由ABF ∆为直角三角形,设AB 中点为C ,则CE AC =,即p =进而求解.【详解】由题可知准线方程为2p y =-, 因为与双曲线2212x y -=相交于A ,B ,则A为2p ⎛⎫- ⎪ ⎪⎝⎭,B为2p ⎫-⎪⎪⎭, 因为ABF ∆为直角三角形,由双曲线的对称性可得90AFB ∠=︒,设AB 中点为C ,则CE AC =,即p =解得24p =,即2p =, 所以准线方程为1y =-, 故答案为:1y =- 【点睛】本题考查抛物线的几何性质,考查双曲线的方程的应用,考查运算能力.19.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=.故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了1【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=, ∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.(Ⅰ)方程为24y x =,准线为1x =-;(Ⅱ)2,,22⎛⎛⎫-∞-+∞ ⎪⎝⎭⎝⎭【分析】(Ⅰ)由椭圆方程可得其右焦点为()1,0,即可求出p ,得出抛物线方程和准线; (Ⅱ)设直线BD 的方程为y kx m =+,联立直线与抛物线方程,可得1km <,表示出BD 中点M ,由题可得PM BD ⊥,由1PM k k=-建立关系可求. 【详解】(Ⅰ)由椭圆方程可得其右焦点为()1,0, 抛物线与椭圆右焦点重合,12p∴=,即2p =, 故抛物线C 的方程为24y x =,准线为1x =-; (Ⅱ)设直线BD 的方程为y kx m =+, 联立直线与抛物线方程24y kx m y x=+⎧⎨=⎩,可得()222240k x km x m +-+=, 则()2222440km k m ∆=-->,可得1km <,设()()1122,,,B x y D x y ,212122242,km m x x x x k k-∴+==, 设BD 中点为()00,M x y ,则120222x x km x k +-==,002y kx m k=+=,PBD △为以P 为顶点的等腰三角形,则PM BD ⊥,则222212244PMk k k km km k k k -===-----,整理可得222km k =-, 1km <,则2221k -<,解得k <或k >,故直线BD的斜率的取值范围为2,,22⎛⎛⎫-∞-+∞ ⎪⎝⎭⎝⎭. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)7;(2)7. 【分析】(1)求出椭圆的左焦点1(1,0)F -,根据点斜率式可得AB 的方程,直线方程与椭圆方程消去y ,利用根与系数的关系,根据弦长公式即可算出弦AB 的长;(2)利用点到直线的距离公式求出三角形的高,结合(1)的结论,再利用三角形面积公式可得答案. 【详解】椭圆方程为2212x y +=,∴焦点分别为1(1,0)F -,2(1,0)F ,直线AB 过左焦点1F 倾斜角为60︒,∴直线AB 的方程为1)y x =+,将AB 方程与椭圆方程消去y ,得271240x x ++= 设1(A x ,1)y ,2(B x ,2)y ,可得12127x x +=-,1247x x =12||x x ∴-=因此,12||||AB x x =-=. (2)2F (1,0)到直线AB 的距离为:d ==212ABF SAB d == 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.23.(1)22142x y +=;(2)(OMN S ∈△. 【分析】(1)由点()1,1B -在O 上可得22b =,然后由OB AB ⊥可求出a ;(2)分切线斜率存在和不存在两种情况讨论,斜率不存在时利用弦长公式表示出MN 并求出其范围即可. 【详解】(1)由直线AB 与O 相切于点()1,1B -,可知点()1,1B -在O 上,则22b =, 又点(),0A a -,且OB AB ⊥,则10101101a--⨯=----+,解得2a =,故所求椭圆方程为22142x y +=.(2)若切线斜率存在,设切线为0kx y m -+=,其中0k ≠,切线l 与椭圆C 交点()11,M x y ,()22,N x y ,则圆心到直线l的距离d ==()2221m k ∴=+,联立方程220142kx y m x y -+=⎧⎪⎨+=⎪⎩,消去y 得()222214240k x kmx m +++-=,则122421km x x k -+=+,21222421-=+m x x k()0,2MN ====,当切线斜率不存在时,此时2MN =,故O 的切线l 与椭圆C 相交弦长取值范围为(]0,2,又12OMN S d MN =⋅⋅=△,可得(OMN S ∈△. 【点睛】关键点睛:在解决圆锥曲线中的面积问题时,要善于观察图形的特点,怎么表示出面积是解题的关键.24.(1)min ||2PA =;max ||5PA =;(2)m =. 【分析】(1)设(,)P x y ,利用两点间的距离公式,将问题转化为二次函数求最值.(2)根据图形可知,当直线l 平移与椭圆第一次相切时,切点P 到直线l 的距离最小,则问题转化为椭圆的切线问题,设与l 平行的直线方程为y x t =+,将直线与椭圆方程联立,则0∆=,可得t =,根据图形观察可知,当t =时,直线l 与其平行线距离最小,根据最小值即可求解. 【详解】解:(1)3m =,椭圆方程为2219x y +=,设(,)P x y ,则22222||(2)(2)19x PA x y x =-+=-+-2891(33)942x x ⎛⎫=-+-≤≤ ⎪⎝⎭, ∴94x =时min 22PA =; 3x =-时max 5PA =.(2)根据图形可知,当直线l 平移与椭圆第一次相切时, 切点P 到直线l 的距离最小,则问题转化为椭圆的切线问题. 设与l 平行的直线方程为y x t =+,显然5t ≥-. 联立方程y x t =+和22220x m y m +-= 得:()222222120mxm tx m t m +++-=,由()()4222224410m t mm tm ∆=-+-=,得:22222210m t t m t m -+-+=, 即221t m =+,所以21t m =±+. 根据图形观察可知,当21t m =-+时,直线l 与其平行线距离最小.25122m -++=5t ≥-. 215m +≤,所以2512m +=, 213m +=,因此28m =, 故22m =±22m =. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是求出21t m =±+5t ≥-,考查了计算求解能力.25.(1)24y x =;(2)2. 【分析】(1)根据抛物线的准线求出p ,即可得出抛物线方程;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --,由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,与抛物线联立可得24480ky y k -+-=,利用韦达定理以及弦长公式,转化求解MF NF ⋅的值.【详解】(1)因为抛物线2:2(0)C y px p =>的准线方程为1x =-,所以12p=,则2p =, 因此抛物线C 的方程为24y x =;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --, 由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,由()2412y x y k x ⎧=⎪⎨=+-⎪⎩得24480ky y k -+-=, 则124y y k+=,1284y y k =-.因为点A ,B 在抛物线C 上,所以2114y x =,2224y x =,则1121112241214PA y y k y x y --===-+-,2222412PBy k x y -==-+. 因为PF x ⊥轴, 所以()()122244PAPBPA PB y y PF PF MF NF k k k k ++⋅=⋅==⋅()1212884424244y y y y k k-+++++===, 所以MF NF ⋅的值为2. 【点睛】 思路点睛:求解抛物线中的定值问题时,一般需要联立直线与抛物线方程,结合题中条件,以及韦达定理来求解;求解时,一般用韦达定理设而不求来处理.26.(1)2212x y +=;(2)直线AM 与直线BN 的交点P 落在定直线2x =上.【分析】(1)根据题中条件,求出,a b ,即可得出椭圆方程;(2)设直线MN 方程为1x my =+,设()11,M x y ,()22,N x y ,联立直线与椭圆方程,由韦达定理,得到12y y +,12y y ,表示出直线AM 和BN 的方程,联立两直线方程,计算为定值,即可得出结果. 【详解】 (1)2AB =2a ∴=a =设焦距为2c ,离心率e =2c a ∴=,1c ∴=, 2221b a c ∴=-=因此所求的椭圆方程为2212x y +=(2)设直线MN 方程为1x my =+,设()11,M x y ,()22,N x y ,由22121x y x my ⎧+=⎪⎨⎪=+⎩得()222210m y my ++-=, 12222m y y m ∴+=-+,12212y y m =-+, 直线AM方程是y x =+,直线BN方程是y x =,由y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,212112211y x y my my y y ++++===212211212(1122221(12m m y m m m y m m m y m ⎛⎫⎛⎫-+--⎡⎤ ⎪ ⎪-++--+++⎝⎭⎝⎭==⎛⎫-+- ⎪+⎝⎭21312mm y -+-++=((()(()()()21213121121m m y m m y ⎡⎤-+-+++⎣⎦=⎡⎤-+++⎣⎦((()(213121m m y ⎡⎤-+-+++=()221121m m y⎡⎤--++=(213==+3=+2x = 此直线AM 与直线BN 的交点P 落在定直线2x =上.【点睛】 关键点点睛:求解本题第二问的关键在于根据点P 为两直线交点,联立两直线方程,结合直线MN 与椭P 横坐标为定值,即可求解.。
高中数学全程复习方略2.3.2.1 抛物线的简单几何性质(共50张PPT)
(2)抛物线的焦半径公式
抛物线y2=2px(p>0), PF x p p x ; 0 0
2 2
抛物线y2=-2px(p>0),PF x p p x ; 0 0
2 2
抛物线x2=2py(p>0), PF y0 p p y0 ;
2 2
抛物线x2=-2py(p>0),PF y0 p p y 0 .
【解析】1.如图 由OA⊥OB,可知AB过定点N(4p,0).于 是设M(x,y),当AB与x轴不垂直时,
由KOM²KAB=-1可知
y y 1 即 , x x 4p
(x-2p)2+y2=4p2,当AB⊥x轴时,点M与点N重合,也满足方程
∴点M的轨迹方程是(x-2p)2+y2=4p2(x≠0),它表示以点
2
y 2 2px p2 2 0,又 AB (1 12 ) p , x 3px 4 y x 2
8 p 2.
p2 3p 4 4
2
答案: 2
2.过A、B作准线的垂线,垂足分别为A′、B′, 设A(x1,y1), B(x2,y2),则根据抛物线定义知 AA AF=2px(p>0),焦点坐标是 ( p ,0)
把 x p 代入抛物线标准方程得y=〒p,则|AB|=2p.
2
2
答案:2p
抛物线与椭圆及双曲线的几何性质的区别
(1)抛物线的性质和椭圆、双曲线的性质比较起来,差别较
大.它的离心率为1,是一个定值,有一个焦点,一个顶点,
一条准线,一条对称轴,没有中心,学习中要注意区分、比较 记忆.对于抛物线的四种形式的标准方程,应准确把握、熟练 应用,能作出图形,会利用图形分析性质.
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
最新人教版高中数学选修2-1第二章《圆锥曲线与方程》本章概览
第二章 圆锥曲线与方程本章概览 内容提要本章主要学习三种圆锥曲线及方程,它们分别是椭圆、双曲线和抛物线,需掌握它们的定义、标准方程、几何图形及简单性质具体内容如下: 一、椭圆 1.椭圆定义平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 2.椭圆的方程(1)焦点在x 轴上的椭圆的标准方程:2222b y a x +=1(a >b >0).(2)焦点在y 轴上的椭圆的标准方程:2222bx a y +=1(a >b >0).(3)一般表示:Ax 2+By 2=1(A >0,B >0且A≠B ).椭圆的简单几何性质(a 222)1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.两个定点F 1,F 2叫做双曲线的焦点,两焦点的距离|F 1F 2|叫做双曲线的焦距. 2.双曲线的标准方程若焦点F 1(-c ,0)、F 2(c ,0),则双曲线的标准方程为2222by a x -=1(a >0,b >0,c 2=a 2+b 2)若焦点F 1(0,-c )、F 2(0,c ),则双曲线方程为2222bx a y -=1(a >0,b >0),c 2=a 2+b 2)222)1.抛物线的定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点F 不在定直线l 上.四、圆锥曲线的统一性1.它们都是平面截圆锥得到的截口曲线.2.它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,此值的取值范围不同形成了不同的曲线.3.它们的方程都是关于x,y的二次方程.学法指导圆锥曲线在数学上是一个非常重要的几何模型,有很多非常好的几何性质,这些重要的几何性质在日常生活、社会生产及其他科学中都有着重要而广泛的应用,所以学习这部分内容对于提高自身的素质是非常重要的.高中阶段对圆锥曲线的学习,主要是结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想.同时,在本模块中,在必修阶段学习平面解析几何初步的基础上,将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.圆锥曲线本身有一些很深奥的性质(如光学性质、行星运行轨道的性质等),其中有一些是圆锥曲线最基本的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
302=2p×40,解得p=
45 4
所以所求抛物线的标准方程为y2=
45 焦点坐标为( ,0) 8
45 2
x,
四、课堂练习 1 已知抛物线的顶点在原点,对称轴为x轴,焦 点在直线3x-4y-12=0上,那么抛物线通径长 16 是 . 2已知点A(-2,3)与抛物线 y 2 px( p 0) 4 的焦点的距离是5,则p=————
2
3.抛物线
的弦AB垂直x轴,若 y 4x
2
|AB|= 4 3 ,则焦点到AB的距离————
2
五、归纳总结
1、知识小结:抛物线的性质和椭圆与双曲 线比较起来,差别较大:它的离心率等于1;它 只有一个焦点、一个顶点、一条对称轴、一条 准线;没有对称中心;没有渐近线。抛物线的 通径为2P, 2p越大,抛物线的张口越大.
2
例3 探照灯反射镜的轴截面是抛物线的一部分(如 图),光源位于抛物线的焦点处.已知灯口圆的直 径为60cm,灯深40cm,求抛物线的标准方程和焦点 位置.
解:如图,在探照灯的轴截面所在平面内建立直角 坐标系,使反光镜的顶点(抛物线的顶点)与原点 重合,x轴垂直于灯口直径。 设抛物线的标准方程为y2=2px(p>0).由已知可得 点A的坐标为(40,30),代入方程得
一、温故知新
问题1:抛物线的定义是?
平面内与一个定点F和一 条定直线l的距离相等的点的 轨迹叫做抛物线 .定点F叫 做抛物线的焦点;定直线l 叫 做抛物线准线.
l
y
P
o
F(
p ,0 ) 2
x
问题2:抛物线的标准方程有哪几种形式?
l
图 y
O
形
标准方程
焦点坐标
准线方程
F
l
O
x
y2=2px (p>0) y2=-2px (p>0) x2=2py (p>0) x2=-2py (p>0)
解: 因为抛物线关于x轴对称,它的顶点在坐标原
点,并且经过点M(2, 2 2 ),
2
所以设方程为: y 2 px 又因为点M在抛物线上: 所以:2 (
2
( p 0)
2) 2 p 2 p 2 因此所求抛物线标准方程为:2 4 x y
当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m ≠0) (x2=2my (m≠0)),可避免讨论.
o
p F ( ,0 ) 2
x
下面请大家得出其余三种标准方程抛 物线的几何性质。
归纳:抛物线的几何性质
图形 y 标准 方程 x y 焦点 坐标 准线 方程 范围 对称 轴
x≥0
顶点 离心 坐标 率
o
o
y
x轴 (0,0) e=1x来自x≤0x轴 (0,0) e=1
y≥0
o o
y
x x
y≤0
y轴 (0,0) e=1
x
3、
顶点
y
定义:抛物线与 它的对轴的交点叫做 抛物线的顶点。
o
y2
= 2px (p>0)中,
p F ( ,0 ) 2
x
令y=0,则x=0. 即:抛物线y2 = 2px (p>0)的顶点(0,0).
注:这与椭圆有四个顶点,双曲线有两个顶点不同。
4、
离心率
y
P(x,y)
抛物线上的点与 焦点的距离和它到准 线的距离之比,叫做 抛物线的离心率。 由定义知, 抛物线y2 = 2px (p>0)的离心率为e=1.
p ( , 0) 2
p ( ,0) 2 p (0 ,) 2 p (0 ) , 2
p x 2
p x 2 p y 2 p y 2
y
F
x
y
F
O
l
x
y
l
O F
x
二、探索新知:抛物线的几何性质
y
1、
范围
由抛物线y2 =2px(p>0) 有 2 px y 0
2
所以抛物线的范围为 x 0
例2 已知抛物线的顶点在原点,对称轴是x轴, 抛物线上一点 -5,y 0 到焦点的距离是6,求 抛物线的方程.
解:依题意可设抛物线的方程为y 2 px,
2
p p 焦点F - , 0 , 准线方程为x= 2 2 p 则5+ =6 2 所以p=2 所以抛物线的方程为y 4x
x
一个焦点、一条准线;
-5
4.抛物线的离心率是确定的,为1; 思考:抛物线标准方程中的p对抛物线开口的影响. P越大,开口越开阔
补充(1)通径: (标准方程中2p的几何意义)
y
通过焦点且垂直对称轴的直线, 与抛物线相交于两点,连接这 两点的线段叫做抛物线的通径。
O
P ( x 0 , y0 )
F
x
通径的长度:2P
抛物线在y轴的右侧,当x的值增大时,︱y︱也增 大,这说明抛物线向右上方和右下方无限延伸。
0 x
p0
o
p F ( ,0 ) 2
x
2、
对称性
关于x轴
y
( x, y )
对称
( x, y)
2
若点(x,y)在抛物线上, 即满足y2 = 2px, o F ( p ,0) 则 (-y)2 = 2px 即点(x,-y) 也在抛物线上, 故 抛物线y2 = 2px(p>0)关于x轴对称.
y轴 (0,0) e=1
特点:
4 3
y2=4x
y2=2x 1.抛物线只位于半个坐标平面内,虽然它可以无 y2=x 1 y 限延伸,但它没有渐近线; y2= x
2 1
2.抛物线只有一条对称轴,没有
-2 2 4 -1
2
6
8
10
P(x,y)
对称中心;
-2
3.抛物线只有一个顶点、
-3 -4
o
p F ( ,0 ) 2
P越大,开口越开阔
利用抛物线的顶点、通径的两个端点可较准确画出 反映抛物线基本特征的草图。 (2)焦半径: 连接抛物线任意一点与焦点的线段叫
做抛物线的焦半径。
焦半径公式:|PF|=x0+p/2
三、典例精析
坐标轴
例1:已知抛物线关于x轴对称,它的顶点在坐标 原点,并且经过点M(2, 2 2),求它的标准方程.
2、方法小结:利用类比的方法学习了抛 物线的几何性质;注意数形结合的应用。
六、作业布置
书67页第6题,第8题
练习册36-38页