泉州市中考试测试卷数学试题

合集下载

泉州中考卷数学试卷真题

泉州中考卷数学试卷真题

泉州中考卷数学试卷真题第一部分:选择题(共40小题,每小题4分,共160分)1. 已知集合A={1,2,3,4,5},B={3,4,5,6,7},则A∪B=()(A) {1,2,3,4,5,6,7} (B) {1,2,3,4,5} (C) {3,4,5} (D){6,7}2. 在平面直角坐标系中,点A(1,3),点B(2,-2),则线段AB的长是()(A) 2 (B) 3 (C) 5 (D) 63. 数列1,-3,9,-27,... 的通项公式是()(A) (-3)^n (B) 3^n (C) (-3)^n-1 (D) (-3)^(n-1)4. 若sin⁡x=-√3/2,且sin⁡(π-x)>0,则x=()(A)π/6 (B)π/3 (C)2π/3 (D)5π/6......第二部分:填空题(共15小题,每小题6分,共90分)1. 已知函数y=3x+2,设函数y=kx+6与该函数有相同的零点,那么k的值是____________。

2. 若点A(a,1)在直线y=(k+1)x+3上,点B(-a,2)在直线y=gx+4上,且两直线垂直,则k+g的值是____________。

3. 若集合A={x∈N │ 1≤x≤12},集合B={2p │ p∈N,p≤6},则A∩B=____________。

......第三部分:解答题(共5小题,共155分)1. 已知AB是一个半径为r的圆,CD是一条与AB相交于点O的弦,AO的长度为2.4 cm,OD的长度为1.6 cm。

求半径r的值。

解:设OC为半径,由弦心距定理可知:OC^2 = AO × OD代入已知值:OC^2 = 2.4 × 1.6......2. 如图所示,正方形ABCD的边长为x cm,E为BC的中点,连接AE。

若AE的长度为8 cm,求x的值。

解:由正方形性质可知,AE的长度等于AB的长度:x = 8......3. 已知等差数列a1,a2,a3,... ,其前3项和为6,前4项和为9,求第n项的值。

福建省泉州市晋江市2024-2025学年九年级上学期期中测试数学试卷[含答案]

福建省泉州市晋江市2024-2025学年九年级上学期期中测试数学试卷[含答案]

2024年秋九年级期中质量监测数学试题满分: 150分 考试时间: 120分钟一、选择题:本题共10小题,每小题4边,共40分.1 )A .3x >-B .3x ³C .3x <D .3x £2.下列各组中的四条线段成比例的是( )A .1234a b c d ====,,, B .2345a b c d ====,,, C .2346a b c d ====,,,D .2468a b c d ====,,,3.下列方程中是关于x 的一元二次方程的是( )A .2120x x-+=B .20ax bx c ++=C .()()23 1x x -+=D .22220x xy y -+=4.在Rt ABC V 中,90512C AC BC Ð=°==,,,则cos A 的值为( )A .513B .512C .1213D .1355.方程2440x x +-=经过配方后的结果是( )A .()228x -=B .()228x +=C .()224x +=D .()224x -=6.如图,已知AB CD EF ∥∥,那么下列结论正确的是( )A .CE ADCB DF=B .DF BCAD CE=C .AD BEAF BC=D .AD BCDF CE=7.如图,已知,AD 是ABC V 的中线, 点G 是ABC V 的重心, 过G 作GE AB P 交BC 于点E ,GF AC ∥交BC 于点F . 若ABC V 面积为36, 则EFG V 的面积为( )A .4B .6C .8D .98.如图,已知12Ð=Ð,那么添加下列一个条件后,仍无法判定ABC ADE △△∽的是()A .B ADE Ð=ÐB .AC BCAE DE=C .AB ACAD AE=D .C EÐ=Ð9.若α、β是一元二次方程2350x x +-=的两个根,则22a a b +-的值是( )A .2B .3C .5D .810.(2016湖南省娄底市)如图,已知在Rt △ABC 中,∠ABC =90°,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE +CF 的值( )A .不变B .增大C .减小D .先变大再变小二、填空题:本题共6小题,每小题4分,共24分.11.已知32a b =,则a ba b +-= .12.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB= .13.如图,CD 是平面镜,光线从点A 出发经CD 上点O 反射后照射到点 B ,若入射角为α,反射角为β (反射角等于入射角),AC CD ^于点C ,BD CD ^于点D , 且3OC =,6OD =,2AC =,则BD =14.已知12,x x 是方程22310x x --=的两根,则1211x x += .15.如图, 在ABC V 中, 点D 、E 为边AB 的三等分点, 点F 、G 在边BC 上,AC DG EF ∥∥,点H 为AF 与DG 的交点.若24AC =,则DH 的长为16.如图,B Ð的平分线BE 与BC 边上的中线AD 互相垂直,并且4BE AD ==,则BC 为三、解答题(共86分)17.计算:32cos45-+°18.解方程:228=0x x --19.如图, 在ABC V 中, 点D 、E 分别在边AC 、AB 上,2AB AD =,2AC AE =.(1)求证:ADE ABC △△∽;(2)若ADE V 的周长是8, 求△ABC 的周长.20.如图,O 为原点,B ,C 两点坐标分别为()()3121-,,,.(1)以O 为位似中心在y 轴左侧将OBC △放大两倍,并画出图形;(2)已知()M a b ,为OBC △内部一点,写出M 的对应点M ¢的坐标.21. 某水果店经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)则每次降价的百分率为 ;(2)经市场调查发现,若水果每千克盈利10元,每天可售出500千克.在进货价不变的情况下,商店决定采取适当的降价措施,若每千克降价1元,日销售量将增加20千克,现商店要保证该水果每天盈利3000元,且要尽快减少库存,那么每千克应降价多少元?22. 如图,在Rt ABC △中,90ACB Ð=°,(1)已知AE 平分BAC Ð,求作菱形ADEF , 使得D F 、分别在边AB AC 、上;(要求:尺规作图, 不写作法,保留作图痕迹)(2)在(1)的条件下, 若2CF =,23AD DB =::,求CE 的长23.课题:《杠杠原理与相似三角形》杠杆原理:也称为“杠杆平衡条件”:杠杆原理是几何学在物理学的体现.相关概念:支点:杠杆绕着转动的固定点;动力:使杠杆转动的力;阻力:阻碍杠杆转动的力;动力臂:从支点到动力作用线的距离;阻力臂:从支点到阻力作用线的距离.基本模型:当一个力通过一个支点施加在杠杆上时,通过作图,可以观察到两个相似的三角形如图,因为90CAO DBO Ð=Ð=°,COA DOB Ð=Ð,所以AOC BOD V V ∽, 则有OAOB= ①又因为12AC F BD F ×=×(消耗的功W F S =×一致),可得 21F AC BD F =,所以21F OA OB F =可得②2F OB ×=______(1F 为阻力的反作用力).即,动力´动力臂=阻力´阻力臂.得出结论:要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等(1)补全①、②所缺的内容,课题证明杠杆原理过程中运用到的几何知识是(2)如图,小明用实心钢管制作了一个自带支点杠杆A -O -B ,O 为支点,90AOB Ð=°,30cm AO =,90cm BO =,30OBC Ð=°,AD 方向上因撑起一物体产生450牛顿(国际单位制中,力的单位)的阻力1F ,BC 方向上施加一个力2F 使杠杆平衡,AD BC ∥.请利用“动力臂”,“阻力臂”与“支点”概念构造相似三角形 ,并运用“杠杆原理”相关知识,求出2F 的大小.24.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如20x x +=是“差1方程”.(1)判断下列方程是不是“差1方程”:①2104x -=;②2560x x --=;(2)已知关于x 的方程()210x m x m +--=(m 是常数)是“差1方程”,求m 的值:(3)若关于x 的方程210ax bx ++=(a ,b 是常数,0a >)是“差1方程”,设 210t a b =-,求t 的最大值.25. AB 与x 轴、y 轴分别交于A 、B 两点,4AO =,cos BAO Ð=(1)求点B 的坐标;(2) D 为第一象限上的一点,射线AD 与线段OB 交于点 C .BD AC ^于点 D ,连接OD .①求证:BAD BOD Ð=Ð;②设DCn CA=,试问:是否存在实数n ,使得满足条件的点C 有且只有一个? 若存在,求实数n 的值; 若不存在,请说明理由.1.D【分析】根据二次根式有意义的条件:二次根式中的被开方数是非负数,可得3-x≥0,再解不等式即可.【详解】解:∵∴3-x≥0,∴x≤3.故选D .【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.2.C【分析】此题考查了成比例线段,若ad bc =,则a ,b ,c ,d 成比例,据此进行计算判断即可.【详解】解:A 、1423´¹´,故此选项中四条线段不成比例,不符合题意;B 、2534´¹´,故此选项中四条线段不成比例,不符合题意;C 、2634´=´,故此选项中四条线段成比例,符合题意;D 、2846´¹´,故此选项中四条线段不成比例,不符合题意,故选:C .3.C【分析】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、是分式方程,故A 错误;B 、0a =时不是一元二次方程,故B 错误;C 、()()23 1x x -+=整理后为270x x +-=,是一元二次方程,故C 正确;D 、是二元二次方程,故D 错误;故选:C .4.A【分析】本题考查的是锐角三角函数的定义,勾股定理,掌握锐角A 的邻边与斜边的比叫做A Ð的余弦是解题的关键.根据勾股定理求出AB ,根据余弦的定义计算即可.【详解】如图所示,∵在Rt ABC V 中,90,5,12C AC BC Ð=°==,∴由勾股定理得,13AB ===,则5cos 13AC A AB ==,故选:A .5.B【分析】先移项,然后利用完全平方公式配方即可.【详解】解:移项,得:244x x +=,两边同时加4,得:24444x x ++=+,配方,得:()228x +=,故选:B .【点睛】本题主要考查了用配方法解一元二次方程,解题的关键是熟练掌握配方的方法和步骤.6.D【分析】根据“两条直线被一组平行线所截,所得的对应线段成比例”进行判断即可.【详解】解:两条直线被一组平行线所截,所得的对应线段成比例,∵BC 和AD 对应,CE 和DF 对应,BE 和AF 对应,∴CE DF CB AD=,AD BCAF BE =,故D 正确.故选:D .【点睛】本题主要考查两条直线被一组平行线所截,所得的对应线段成比例,确定出对应线段是解题的关键.7.A【分析】本题考查三角形重心的性质,三角形的中线的性质,相似三角形的判定和性质.理解和掌握相似三角形的判定和性质是解题的关键.根据重心的性质可得13GD GD AD AG GD ==+,再根据三角形的中线平分三角形的面积可得18ABD ACD S S ==△△,接着证明DEG DBA △∽△,DFG DCA △∽△,然后根据相似三角形的面积之比等于相似比的平方可得219DEG DBA S DG S DA æö==ç÷èø△△,219DFG DCAS DG S DA æö==ç÷èø△△,从而求出129DEG DBA S S ==△△,129DFG DCA S S ==△△,进而可求解.【详解】解:∵点G 是ABC V 的重心,∴2AG GD =,∴13GD GD AD AG GD ==+,∵AD 是ABC V 的中线,∴11361822ABD ACD ABC S S S ===´=V V V ,∵GE AB P ,GF AC ∥,∴DEG DBA △∽△,DFG DCA △∽△,∴219DEG DBA S DG S DA æö==ç÷èø△△,219DFG DCA S DG S DA æö==ç÷èø△△,∴129DEG DBA S S ==△△,129DFG DCA S S ==△△,∴4EFG DEG DFG S S S =+=△△△,故选:A .8.B【分析】本考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.根据相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似,逐项判断即可.【详解】解:12Ð=ÐQ ,12CAD CAD\Ð+Ð=Ð+ÐBAC DAE\Ð=ÐA 、由两个三角形的两个对应角相等可得ABC ADE △△∽,故不符合题意;B 、不符合两个三角形的两条对应边的比相等,且夹角相等,无法判定ABC ADE △△∽,故符合题意;C 、由两个三角形的两条对应边的比相等,且夹角相等可得ABC ADE △△∽,故不符合题意;D 、由两个三角形的两个对应角相等可得ABC ADE △△∽,故不符合题意;故选:B .9.D【分析】本题主要考查一元二次方程的解,以及一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.根据题意得出2350a a +-=,3a b +=-,然后变形代入计算即可.【详解】解:∵α、β是一元二次方程2350x x +-=的两个根,∴2350a a +-=,3a b +=-,即225a a a +=-,∴()2258a a b a b +-=-+=,故选:D .10.C【详解】试题分析:已知BE ⊥AD 于E ,CF ⊥AD 于F ,可得CF ∥BE ,根据平行线的性质得∠DCF=∠DBE ,设CD=a ,DB=b ,∠DCF=∠DBE=α,所以CF=DC•cosα,BE=DB•cosα,即可得BE+CF=(DB+DC )cosα=BC•cosα,因∠ABC=90°,所以O <α<90°,当点D 从B→D 运动时,α是逐渐增大的,cos α的值是逐渐减小的,所以BE+CF=BC•cos α的值是逐渐减小的.故答案选C .考点:锐角三角函数的增减性.11.5【分析】根据比例设a =3k ,b =2k ,然后代入比例式进行计算即可得解.【详解】解:∵32a b =,∴设a =3k ,b =2k ,则32532a b k ka b k k++==--,故答案为:5.【点睛】本题考查了比例的性质,利用“设k 法”求解更简便.12.12.【详解】试题分析:过点A 作AD ⊥OB 垂足为D ,如图,在直角△ABD 中,AD=1,OD=2,则tan ∠AOB=AD OD =12.故答案为12.考点:1.锐角三角函数的定义;2.网格型.13.4【分析】本题主要考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.根据a b =,得AOC BOD ÐÐ=,进而证明ACO BDO △∽△,再利用相似三角形的性质即可求解.【详解】解:由题意得,a b =,如图,∵PO CD ^,∴90POC POD Ð=Ð=°,∴POC POD a b Ð-=Ð-,∴AOC BOD ÐÐ=,∵AC CD ^,BD CD ^,∴90ACO BDO Ð=Ð=°,∴ACO BDO △∽△,∴AC CO BD DO=,即236BD =,∴4BD =,故答案为:4.14.-3【分析】根据一元二次方程的根与系数关系得到1232x x +=,1212x x =-,代入12121211x x x x x x ++=即可得到答案.【详解】解:∵12,x x 是方程22310x x --=的两根,∴1232x x +=,1212x x =-,∴1212123112312x x x x x x ++===--,故答案为:﹣3【点睛】此题考查了一元二次方程的根与系数关系,熟练掌握一元二次方程的根与系数关系的内容是解题的关键.15.4【分析】本题考查了相似三角形的判定与性质,三角形的中位线,熟练掌握相似三角形的性质与判定是解题的关键.由三等分点的定义与平行线的性质得出3AB BE =,DH 是AEF △的中位线,证BEF BAC ∽△△,得8EF =,再根据中位线的性质即可求解.【详解】解:∵点D 、E 为边AB 的三等分点,AC DG EF ∥∥,∴BE DE AD ==,BF GF CG ==,AH HF =,∴3AB BE =,DH 是AEF △的中位线,∴12DH EF =,∵AC EF P ,∴BEF BAC ∽△△,∴EF BE AC BA =,∴243EF BE BE=,解得:8EF =,∴142DH EF ==.故答案为:4.16.【分析】先证明()ASA ABG DBG V V ≌,得到122AG DG AD ===,取CE 的中点F ,连接DF ,由三角形中位线定理得到1,22DF BE DF BE ==∥,则ADF AGE △∽△,得12GE AG DF AD ==,求出112GE DF ==,则3BG BE GE =-=,由勾股定理得到BD =,即可得到答案.【详解】解:∵ABC Ð的平分线BE 与BC 边上的中线AD 互相垂直,∴ABG DBG Ð=Ð,90AGB DGB Ð=Ð=°,BD DC =,又∵BG BG =,∴()ASA ABG DBG V V ≌,∴122AG DG AD ===,取CE 的中点F ,连接DF ,∵点D 是BC 的中点,∴1,22DF BE DF BE ==∥,∴ADF AGE △∽△,∴12GE AG DF AD ==,∴112GE DF ==,∴3BG BE GE =-=,∴BD ===,∴2BC BD ==,故答案为:【点睛】此题考查了相似三角形的判定和性质、三角形中位线的性质、全等三角形的判定和性质、勾股定理等知识,构造中位线是解题的关键.17.3【分析】此题主要考查了实数的混合运算,涉及二次根式、绝对值、特殊角的三角函数值等知识点,熟练掌握运算顺序是解题的关键.首先化简二次根式、计算绝对值,特殊角的三角函数值,然后进行合并计算即可.【详解】解:原式32=++3=+-+3=18.1224x x =-=,【分析】本题主要考查了解一元二次方程,利用十字相乘法把方程左边分解因式,然后解方程即可.【详解】解:∵228=0x x --,∴()()420x x -+=,∴20x +=或40x -=,解得1224x x =-=,.19.(1)证明见解析(2)16【分析】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质与判定是解题的关键.(1)首先得到12AD AE AB AC ==,然后结合A A Ð=Ð得到ADE ABC △△∽;(2)根据相似三角形的性质求解即可.【详解】(1)解:∵2AB AD =,2AC AE =,∴12AD AE AB AC ==,又∵A A Ð=Ð,∴ADE ABC △△∽.(2)解:∵ADE ABC △△∽,∴12ADEABC l AD l AB ==△△,∴216ABC ADE l l ==△△.20.(1)见解析(2)()22a b --,【分析】本题主要考查作图-位似变换、坐标规律等知识点,熟练掌握位似的性质是解答本题的关键.(1)先根据位似的性质作出B ,C 两点的对应点B C ¢¢、,然后顺次连接即可;(2)观察点的变化规律,并运用规律即可解答.【详解】(1)解:如图,OB C ¢¢△即为所求.(2)解:由图可得,点()()6242B C ¢¢---,,,,即对应点的是原点横、纵坐标的2-倍.所以点()M a b ,的对应点M ¢的坐标为()22a b --,.21.(1)20%(2)5元【分析】本题主要考查了一元二次方程应用,根据题意找准等量关系、列出方程是解答本题的关键.(1)设每次下降的百分率为a ,再根据题意列一元二次方程求解即可;(2)设每千克应降价x 元,根据题意列出一元二次方程求解即可.【详解】(1)解:设每次下降的百分率为a ,根据题意可得:()250132x -=,解得:1 1.8180x ==%(舍)或20.220x ==%,答:每次下降的百分率为20%.(2)解:设每千克应降价x 元,由题意,得()()10500203000x x -+=,整理,得2151000x x +-=,解得:15x =,120x =-(舍),答:该商场要保证每天盈利3000元,那么每千克应降价5元.22.(1)图见详解(2)CE =【分析】(1)由菱形的对角线互相垂直平分可作AE 的垂直平分线交AB 于点D ,交AC 于点F ,则以A D E F 、、、四点为顶点的四边形就是所求的菱形;(2)设CE x =,则EF AF AD DF EF ====,再根据比例的性质和平行线分线段定理可得32BD AD ==32BE x =,然后再说明90BED Ð=°,最后运用勾股定理即可解答.【详解】(1)解:作AE 的垂直平分线交AB 于点D ,交AC 于点F ,则以A D E F 、、、四点为顶点的四边形就是所求的菱形,如图所示:(2)解:设CE x =,∵90ACB Ð=°,2CF =,∴EF ==∵四边形ADEF 是菱形,∴AF AD DF EF ====,∵∥D E A C ,23AD DB =::,∴32BD AD ==23CE AD BE BD ==,∴32BE x =,∵∥D E A C ,90ACB Ð=°,∴90BED Ð=°,∴222DE BE BD +=,即:22232x æö+=ç÷èø,解得:x =∴CE =【点睛】本题主要考查尺规作图、菱形的判定与性质、线段的垂直平分线的性质,平行线分线段成比例定理,勾股定理等知识点,灵活应用相关知识成为解答本题的关键.23.(1)AC BD;1F OA ×;相似三角形的对应边成比例(2)150牛顿【分析】本题主要考查了相似三角形的性质与判定,作辅助线构造相似三角形是解题的关键.(1)依据相似三角形的对应边成比例进行推导即可;(2)过点O 作OE AD ^,交DA 延长线于点E ,延长BC 交EO 的延长线于点F ,先证得AOE BOF V V ∽,推出301903OE OF ==,再利用“动力´动力臂=阻力´阻力臂”代入进行求解即可.【详解】(1)解:∵AOC BOD V V ∽,∴OA AC OB BD=,∵21P OA OB F =,∴21F OB F OA ×=×,运用到的几何知识是相似三角形对应边成比例,故答案为:AC BD;1F OA ×;相似三角形对应边成比例.(2)解:如图,过点O 作OE AD ^,交DA 延长线于点E ,延长BC 交EO 的延长线于点F ,∵AD BC ∥,∴18090F E Ð=°-Ð=°,∴90F E Ð=Ð=°,∵90AOB Ð=°,∴90AOE BOF Ð+Ð=°,又∵90B BOF Ð+Ð=°,∴AOE B Ð=Ð,∴AOE BOF V V ∽,∴OA OE OB OF=,即301903OE OF ==,∴12F OE F OF ×=×,即245014501503OE F OF ×==´=(牛顿),答:2F 的大小为150牛顿.24.(1)①是“差1方程”,理由见解析;②不是“差1方程”,理由见解析(2)2m =-或0;(3)3a =时,t 的最大值为9【分析】本题考查了一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“差1方程”的定义.(1)根据解一元二次方程的方法解出已知方程的解,再比较两根的差是否为1,从而确定方程是否为“差1方程”;(2)先解方程求得其根,再根据新定义列出m 的方程,注意有两种情况;(3)根据新定义得方程的大根与小根的差为1,列出a 与b 的关系式,再由210t a b =-,得t 与a 的关系,从而得出最后结果.【详解】(1)解:①2104x -=214x =∴112x =,212x =-,∵11122æö--=ç÷èø,∴2104x -=是“差1方程”;②解:∵2560x x --=∴()()610x x -+=∴60x -=或10x +=∴16x =,21x =-∵()617--=∴2560x x --=不是“差1方程”;(2)解:()210x m x m +--=∴()()10x x m -+=,x m \=-或1x =,Q 关于x 的方程()210x m x m +--=(m 是常数)是“差1方程”,∴11m --=或()11m --=,2m \=-或0;(3)解:∵210ax bx ++=由题可得:2240a D -³∴解方程得x =Q 2a ,b 是常数,0a >)是“差1方程”,\1=,224b a a \=+,210t a b =-Q ,()22639t a a a \=-=--+,∵()230a -³∴()230a --£∴()2399a --+£∴当()230a -=时,即3a =时,t 的最大值为9.25.(1)()0,8B (2)①证明见解析;②存在,n【分析】(1)先根据余弦的定义可得AB 的长,再利用勾股定理可得8OB =,即可求解;(2)①先根据相似三角形的判定证出AOC BDC ∽△△,根据相似三角形的性质可得AC OC BC DC=,再根据相似三角形的判定证出ABC ODC V V ∽,然后根据相似三角形的性质即可得证;②设OC x =,则8BC x =-,先根据AC OC BC DC =,得()28x x AC n-=,再利用勾股定理可得()218160n x x n +-+=,然后利用一元二次方程根的判别式求解即可.【详解】(1)解:∵4AO =,cos OA BAO AB Ð==∴AB 在Rt AOB V 中,由勾股定理得,222AB A OB O =-,∴8OB =,∴()0,8B .(2)①证明:∵BD AC ^,∴=90BDC а,∵ACO BCD Ð=Ð,90AOB Ð=°∴AOC BDC ∽△△,∴AC OC BC DC =,∴AC BC OC DC=,∵ACB OCD Ð=Ð,∴ABC ODC V V ∽,∴BAD BOD Ð=Ð②解:存在,n =,理由如下:设OC x =,则8BC x =-,∵DC n CA=,答案第15页,共15页∴DC nCA =,由①知,AC OC BC DC =,∴8AC x x nAC=-,∴()28x x AC n-=,在Rt AOC V 中,由勾股定理得,222AC AO OC =+,∴()2816x x x n-=+,整理,得()218160n x x n +-+=,∵要使满足条件的点C 有且只有一个,∴该方程有两个相等的实数根,∴()Δ646410n n =-+=,解得1n =2n =,∴n 【点睛】本题考查了解直角三角形、勾股定理、相似三角形的判定与性质、一元二次方程根与判别式的关系,解一元二次方程,熟练掌握相似三角形的性质与判定和一元二次方程根与判别式的关系是解题关键.。

2022-2023学年福建省泉州市高一下学期期中考试数学试题【含答案】

2022-2023学年福建省泉州市高一下学期期中考试数学试题【含答案】

2022-2023学年福建省泉州市高一下学期期中考试数学试题一、单选题1.已知a 为实数,若复数2(1)(1)z a a i =-++为纯虚数,则复数z 的虚部为()A .1B .2iC .1±D .2【答案】D【分析】根据复数z 为纯虚数,列方程求出a 的值,进而可得复数z 的虚部.【详解】由已知21010a a ⎧-=⎨+≠⎩,解得1a =,故2z i =,其虚部为2,故选:D.【点睛】本题考查复数的概念,注意纯虚数为实部为0,虚部不为0,是基础题.2.tan15= ()A .23-+B .23--C .23-D .23+【答案】C【分析】利用二倍角的正切公式即可求解.【详解】31tan 45tan 303tan15tan(4530)231tan 45tan 30313-︒-︒=︒-︒===-+︒⋅︒+,故选:C.3.已知向量()()22cos ,3,1,sin2m x n x == ,设函数()f x m n =⋅ ,则下列关于函数()y f x =的性质的描述正确的是()A .关于直线π12x =对称B .关于点5π,012⎛⎫⎪⎝⎭对称C .周期为2πD .()y f x =在π,03⎛⎫- ⎪⎝⎭上是增函数【答案】D【分析】先利用向量的数量积表示函数,再利用公式化简,根据三角函数图像和性质判断.【详解】因为向量()()22cos ,3,1,sin2m x n x == ,()21cos 22cos 3sin 223sin 22x f x m n x x x+=⋅=+=⨯+π3sin 2cos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭.所以()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.对于A ,把π12x =代入()f x 得()31f x =+,没有取得最值,所以不成立.对于B ,把5π12x =代入()f x 得()1f x =,所以不成立.对于C ,由于周期2ππ2T ==,所以不成立.对于D ,因为ππππ,0,2,3626x x ⎛⎫⎛⎫∈-+∈- ⎪ ⎪⎝⎭⎝⎭,又ππππ,,2622⎛⎫⎛⎫-⊆- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在π,03⎛⎫- ⎪⎝⎭上是增函数.故选:D.4.函数()21sin 1e xf x x ⎛⎫=- ⎪+⎝⎭的图象大致是()A .B .C .D .【答案】A【分析】根据奇偶性和()2f 的符号,使用排除法可得.【详解】()f x 的定义域为R ,因为()e 12122e e 1sin()1sin sin 11e e x x xx x f x x x x -⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪++++⎭⎝-⎝⎝⎭⎭1sin 1sin ()e e 2211x xx x f x ⎛⎫⎛⎫=--=-= ⎪ ⎪++⎝⎭⎝⎭,所以()f x 为偶函数,故CD 错误;又因为()2221sin 21e f ⎛⎫=- ⎪+⎝⎭,2210,sin 201e -<>+,所以()20f <,故B 错误.故选:A5.在平行四边形ABCD 中,AE EB = ,2CF FB =,连接CE 、DF 交于点M ,若AM AB AD λμ=+,则实数λ与μ的乘积为()A .14B .38C .34D .43【答案】B【分析】由已知可得()2AM AE AC λμμ=-+,由,,E M C 三点共线可得()21λμμ-+=,同理可知3AM AF AD λλμ⎛⎫=+- ⎪⎝⎭ ,由,,F M D 三点共线可知13λλμ+-=,两式联立即可求解.【详解】由已知条件得E 为AB 的中点,F 为BC 的三等分点,连接,,AM AF AC,AM AB AD AB BCλμλμ=++=()AB AC AB λμ+=- ()AB AC λμμ=-+ ()2AE AC λμμ=-+,∵,,E M C 三点共线,∴存在唯一实数m 使EM mMC =,∴()AM AE m AC AM -=- ,整理得111m AM AE AC m m=+++,即1111m m m +=++,故可知()21λμμ-+=①,同理()AF FB AD AM AB AD λλμμ=+=++ ()AF BF ADλμ=-+133AF AD AD AF ADλλμλμ⎛⎫⎛⎫=-+=+- ⎪ ⎪⎝⎭⎝⎭∵,,F M D 三点共线,∴13λλμ+-=②,将①②联立解得31,42λμ==,即38μλ⋅=,故选:B .6.塔是一种在亚洲常见的,有着特定的形式和风格的中国传统建筑.最初是供奉或收藏佛骨、佛像、佛经、僧人遗体等的高耸型点式建筑,称“佛塔”.如图,为测量某塔的总高度AB ,选取与塔底B 在同一水平面内的两个测量基点C 与D ,现测得30BCD ∠=︒,45BDC ∠=︒,30CD =米,在C 点测得塔顶A 的仰角为60°,则塔的总高度约为()(参考数据:2 1.4≈,3 1.7≈)A .13米B .24米C .39米D .45米【答案】C【分析】在Rt △ABC 根据∠ACB 的正切得AB 与BC 的关系,在△BCD 中利用正弦定理列式即可求解.【详解】设AB m =,则tan 603m mBC ==︒,在BCD △中,105CBD ∠=︒,由正弦定理得sin105sin 45CD BC=︒︒,因为()sin105sin 4560︒=︒+︒sin 45cos60cos 45sin 60=︒︒+︒︒264+=,代入数据,解得90303m =-9030 1.739≈-⨯=(米),故选:C .7.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若3sin cos 62A A π⎛⎫++=⎪⎝⎭,4b c +=,则ABC ∆周长的取值范围是()A .[)6,8B .[]6,8C .[)4,6D .[]4,6【答案】A【分析】利用三角函数恒等变换的应用化简已知可得332sin A π+=(),结合A 的范围可求A ,再由余弦定理求得2163a bc =-,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围.【详解】∵3 sin 62A cos A π⎛⎫++= ⎪⎝⎭,313222sinA cosA sinA ∴+-=,可得:332sin A π+=(),40333A A ππππ∈+∈ (,),(,),2 33A ππ∴+=,解得3A π=,∵4b c +=,∴由余弦定理可得222222163a b c bccosA b c bc bc bc =+-=+--=-(),∵由4b c +=,2b c bc +≥,得04bc ≤<,∴2416a ≤<,即24a ≤<.∴ABC 周长4[68L a b c a =++=+∈,).故选:A .8.已知()sin(2)(0)6f x x πωφω=+->同时满足下列三个条件:①T π=;②()6y f x π=+是奇函数;③(0)()3f f π<.若()f x 在[0,)a 上没有最小值,则实数a 的取值范围是A .511(,]612ππB .5(0,]12πC .11(0,]12πD .511(,]1212ππ【答案】A【分析】因为函数的周期T π=,计算ω的值,根据函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数,求得,6k k Z πφπ=-+∈,又因为()03f f π⎛⎫< ⎪⎝⎭,可求2,6k k Z πφπ=-+∈,所以()sin 23πf x x ⎛⎫=- ⎪⎝⎭,再根据函数图像判断a 的取值范围.【详解】()f x 的周期T π=,22ππω∴=,1ω∴=,()sin 26f x x πφ⎛⎫∴=+- ⎪⎝⎭,6f x π⎛⎫+ ⎪⎝⎭ 是奇函数,()f x \关于,06π⎛⎫⎪⎝⎭对称,2,66k k Z ππφπ∴⨯+-=∈,解得:,6k k Z πφπ=-+∈,()03f f π⎛⎫< ⎪⎝⎭,33sin sin sin cos 6222ππφφφφ⎛⎫⎛⎫∴-<+⇒< ⎪ ⎪⎝⎭⎝⎭,即sin 3cos φφ<,,6k k Z πφπ=-+∈,2,6k k Z πφπ∴=-+∈,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭,当[)0,x a ∈时,2,2333x a πππ⎡⎫-∈--⎪⎢⎣⎭,由图象可知若满足条件,432332a πππ<-≤,解得:511612a ππ<≤.故选:A【点睛】本题考查根据函数性质判断参数的取值范围,意在考查函数性质的熟练掌握,以及数形结合分析问题和解决问题的能力,本题的关键是正确求函数的解析式.二、多选题9.下列说法正确的是()A .向量a 在向量b上的投影向量可表示为a b b b b ⋅⋅B .若0a b ⋅< ,则a 与b 的夹角θ的范围是π,π2⎛⎤ ⎥⎝⎦C .若ABC 是等边三角形,则AB、BC 的夹角为60 D .若a b ⊥ ,则0a b ⋅= 【答案】ABD【分析】利用投影向量的定义可判断A 选项;利用平面向量数量积的定义结合向量夹角的取值范围可判断B 选项;利用平面向量夹角的定义可判断C 选项;利用平面向量垂直的数量积表示可判断D 选项.【详解】对于A 选项,向量a 在向量b上的投影向量为cos ,b a b b a b b a a b a b a b b bb⋅⋅⋅=⋅⋅=⋅⋅,A 对;对于B 选项,因为0a b ⋅< ,则a 与b均为非零向量,所以,cos 0a b a bθ⋅=<⋅ ,又因为0πθ≤≤,故ππ2θ<≤,B 对;对于C 选项,若ABC 是等边三角形,则,180********AB BC ABC =-∠=-= ,即AB、BC 的夹角为120 ,C 错;对于D 选项,若a b ⊥ ,则0a b ⋅=,D 对.故选:ABD.10.已知函数()()02πsin ,f x x ωϕϕω⎛⎫=+> ⎪⎝⎭<,其图像相邻两条对称轴之间的距离为π4,且直线π12x =-是其中一条对称轴,则下列结论正确的是()A .函数()f x 的最小正周期为π2B .函数()f x 在区间ππ,612⎡⎤-⎢⎥⎣⎦上单调递增C .点5π,024⎛⎫- ⎪⎝⎭是函数()f x 图像的一个对称中心D .将函数()f x 图像上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图像向左平移π6个单位长度,可得到()sin2g x x =的图像【答案】AC【分析】先求出()46πsin f x x ⎛⎫=- ⎪⎝⎭,对四个选项一一验证:对于A :利用周期公式验证;对于B :直接代入法判断单调性验证;对于C :代入法验证;对于D :利用图像变换验证.【详解】因为图像相邻两条对称轴之间的距离为π4,所以函数()f x 的最小正周期为π2π24T ==⨯,所以2π4T ω==,所以()()sin 4f x x ϕ=+,因为直线π12x =-是其中一条对称轴,所以()ππ4πZ 122k k ϕ⎛⎫⨯-+=+∈ ⎪⎝⎭,所以()5ππZ 6k k ϕ=+∈,因为2πϕ<,所以1k =-,5πππ66ϕ=-+=-,所以()46πsin f x x ⎛⎫=- ⎪⎝⎭;对于A ,由上可知,函数()f x 的最小正周期为π2,故A 正确;对于B ,若ππ612x -≤≤,则5πππ6466x -≤-≤,所以()f x 不单调,故B 错误;对于C ,当5π=24x -时,()5π5ππsin 4=sin π=024246f ⎡⎤⎛⎫⎛⎫-=⨯--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以点5π,024⎛⎫- ⎪⎝⎭是函数()f x 图像的一个对称中心,故C 正确;对于D :将函数()f x 图像上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到πsin 26y x ⎛⎫=- ⎪⎝⎭的图像,再向左平移π6个单位长度,得到ππsin 2sin 2666y x x ⎡⎤π⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 错误.故选:AC11.ABC 中,角A 、B 、C 所对的边为,,a b c ,下列叙述正确的是()A .若sin sin AB >,则A B>B .若45,14,16A a b ===o ,则ABC 有两个解C .若cos cos a A b B =,则ABC 是等腰三角形D .若2cos 2b C a c ≤-,则π0,3B ⎛⎤∈ ⎥⎝⎦【答案】ABD【分析】由正弦定理进行边角转化判断A ,由正弦定理求出sin B ,再根据,a b 大小关系确定B 角的解判断B ,正弦定理化边为角,进行三角恒等变换后判断C ,利用余弦定理变形后得出B 角范围判断D .【详解】ABC 中,由正弦定理sin sin A B a b A B >⇔>⇔>,A 正确;若45,14,16A a b ===o ,由sin sin a b A B =得sin 16sin 4542sin 1147b A B a ︒===<,又a b <,所以A B <,因此B 角可以为锐角也可以为钝角,有两解,B 正确;若cos cos a A b B =,则sin cos sin cos A A B B =,sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,所以ABC 是等腰三角形或直角三角形,C 错误;若2cos 2b C a c ≤-,则222222222a b c a b c b a c ab a+-+-⋅=≤-,整理得222a c b ac ≥+-,所以2221cos 22a c b B ac +-=≥,所以π03B <≤,D 正确.故选:ABD .12.已知点O 为ABC 所在平面内一点,且230AO OB OC ++=uuu r uuu r uuu r r ,则下列选项正确的是()A .1324AO AB AC=+uuu r uuu r uuu r B .直线AO 必过BC 边的中点C .:3:2AOB AOC S S =△△D .若1OB OC ==uuu r uuu r ,且OB OC ⊥u u u r u u u r ,则13OA =uur 【答案】ACD【分析】根据题设条件,化简得到423AO AB AC =++uuu r uuu r uuu r,可判定A 是正确的;根据向量的线性运算法则,化简得到2()4OB OC AC OD +=-=- ,可判定B 不正确;根据4AC OD =- ,得到32BE EC =,结合三角形的面积公式,可判定C 正确;根据向量的数量积和模的运算公式,可判定D 是正确的.【详解】如图所示,点O 为ABC 所在平面内一点,且230AO OB OC ++=uuu r uuu r uuu r r,可得223350AO OB OA OC OA OA +-+-+=uuu r uuu r uur uuu r uur uur r,即()()23AO OB OA OC OA =-+- ,即423AO AB AC =+,所以1324AO AB AC =+uuu r uuu r uuu r ,所以A 是正确的;在ABC 中,设D 为BC 的中点,由230AO OB OC ++=uuu r uuu r uuu r r,可得()2()0AO OC OB OC +++=uuu r uuu r uuu r uuu r r ,所以2()4OB OC AC OD +=-=-,所以直线AO 不过BC 边的中点,所以B 不正确;由4AC OD =-,可得4AC OD = 且//AC OD ,所以14DE OD EC AC ==,所以14DE EC =,可得25EC BC =,所以32BE EC =所以1sin 3212sin 2AOBAOCAD BE AEBS BE S EC AD EC OEC ⨯∠===⨯∠△△,所以C 正确;由230AO OB OC ++=uuu r uuu r uuu r r ,可得23OA OB OC=+uur uuu r uuu r 因为1OB OC ==uuu r uuu r ,且OB OC ⊥u u u r u u u r ,可得222223412913OA OB OC OB OB OC OC =+=+⋅+=uur uuu r uuu r uuu r uuu r uuu r uuu r ,所以13OA =uur ,所以D 是正确的.故选:ACD.【点睛】本题主要考查了平面向量的基本概念,向量的线性运算,以及向量的数量积和向量的模的运算及应用,其中解答中熟记向量的线性运算法则,以及平面向量的数量积和模的计算公式是解答的关键,着重考查推理与运算能力.三、填空题13.i 是虚数单位,则复数7i34i+=+.【答案】1i-【分析】化简分式的复数,乘以分母的共轭复数化简即可.【详解】()()()(7i)34i 7i 5(1i)1i 34i 34i 34i 5+-+-===-++-.故答案为:1i-14.设向量,a b 满足π,3a b = ,1a = ,1b = ,则3a b += .【答案】13【分析】将3a b +r r写为()23a b+ ,展开后将模和夹角代入计算结果即可.【详解】解:因为π,3a b = ,1a = ,1b = ,所以()22233323a b a b a b a b+=+=++⋅ 2236cos ,a b a b a b=++⋅ 1196132=++⨯=.故答案为:13.15.计算:sin 50sin 20cos30cos 20︒︒︒-︒=.【答案】12/0.5【分析】利用两角和的正弦化简三角函数式后可得其值.【详解】原式()sin 2030sin 20cos30cos 20︒︒︒︒+-=︒=sin 20cos 30cos 20sin 30sin 20cos 30cos 20︒︒︒︒︒︒+-︒=cos 20sin 301sin 30cos 202︒︒︒==︒.故答案为:12.16.已知定义在R 上的函数()f x 满足:()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =.若对任意的(],x m ∈-∞,都有()2f x ≤,则实数m 的取值范围是.【答案】13,6π⎛⎤-∞ ⎥⎝⎦【分析】根据()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =,类比周期函数的性质,求出函数的解析式,然后作出图象,利用数形结合法求解.【详解】当[]0,x π∈时,()sin f x x =;当(],2x ππ∈时,(]0,x ππ-∈,()()()2si 22n sin ππ--=-==f x x f x x ,当(]2,3x ππ∈时,(],2x πππ-∈,()()()2sin 44sin ππ--===-f x x f x x ,当(],0x π∈-时,(]0,x ππ+∈,()()()1sin 1122sin 2ππ=++==-f x x f x x ,则函数()f x 的图象如图所示:当(]2,3x ππ∈时,()si 24n ==f x x ,解得136x π=,若对任意的(],x m ∈-∞,都有()2f x ≤,则136π≤m ,故答案为:13,6π⎛⎤-∞ ⎥⎝⎦.【点睛】本题主要考查三角函数解析式的求法,三角函数的图象和性质的应用,还考查了数形结合的思想好推理求解问题的能力,属于中档题.四、解答题17.已知i 为虚数单位,复数3i()z b b =+∈R ,且(1)3i z +⋅为纯虚数.(1)求复数z 及z ;(2)若2iz ω=+,求复数ω的模.【答案】(1)3i +,3i -;(2)2.【分析】(1)先求出(1)3i z +⋅,结合(1)3i z +⋅为纯虚数可得复数z ,然后可求z ;(2)把复数z 代入,结合模长公式可求.【详解】(1)由题可得13i 13i (3i)339()()()()i z b b b +⋅=++=-++,因为(1)3i z +⋅为纯虚数,所以330b -=且90b +≠,解得1b =,所以3i z =+,3i z =-.(2)由(1)可得3i (3i)(2i)7i 71i 2i 2i (2i)(2i)555z ω++--=====-+++-,所以227171i |()()2555|5||ω-=+-==.【点睛】本题主要考查复数的运算和模长的求解,熟记求解公式是解题关键,侧重考查数学运算的核心素养.18.已知向量()()()1,2,,4,4,a b x c x ===- ,且向量a 与b 共线.(1)证明:a c ⊥ ;(2)求a 与c b - 夹角的余弦值;(3)若10a tc += ,求t 的值.【答案】(1)证明见解析(2)22-(3)12t =±【分析】(1)根据向量共线得a b λ= ,列方程组解出x ,再利用向量垂直的坐标表示证明即可;(2)利用()cos ,a c b a c b a c b ⋅--=- 及向量数量积和模长的坐标表示求解即可;(3)利用向量数量积的运算律求解即可.【详解】(1)因为向量a 与b 共线,所以a b λ= ()0λ≠,则124x λλ=⎧⎨=⎩,解得122x λ⎧=⎪⎨⎪=⎩,所以()2,4b = ,()4,2c =- ,因为()14220a c ⋅=⨯+⨯-= ,所以a c ⊥ .(2)由(1)得()2,6c b -=- ,所以()()()222212262cos ,21226a c b a c b a c b ⋅-⨯+⨯--===--+⨯+- ,即a 与c b - 夹角的余弦值为22-.(3)因为2222125a a ==+= ,()22224220c c ==+-= ,0a c ⋅= ,所以22222252010a tc a ta c t c t +=+⋅+=+= ,解得12t =±.19.已知向量()2cos ,1m x ω=- ,()sin cos ,2n x x ωω=- ,其中0ω>,函数()3f x m n =⋅+ ,若函数()f x 图象的两个相邻对称中心的距离为π2.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图象先向左平移π4个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数()g x 的图象,当ππ,62x ⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.【答案】(1)3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z);(2)1,2⎡⎤⎣⎦.【分析】(1)根据题意,代入数量积公式表示出()f x ,然后化简得()2sin(2)4f x x πω=-,利用周期计算得1ω=,利用整体法计算单调增区间;(2)利用平移变换得函数()g x 的解析式,利用整体法计算值域.【详解】(1)由题意可得,()32cos (sin cos )23ωωω=⋅+=--+ f x m n x x x ,22sin cos 2cos 1sin 2cos 22sin(2)4πωωωωωω=-+=-=-x x x x x x .由题意知,22T ππω==,得1ω=,则()2sin(2)4f x x π=-,由222,242k x k k Z πππππ-≤-≤+∈,解得3,88k x k k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为3,()88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将()f x 的图象向左平移4π个单位长度,得到2sin(2)4y x π=+的图象,纵坐标不变,横坐标伸长为原来的2倍,得到()2sin()4π=+g x x 的图象.∵,62x ππ⎡⎤∈⎢⎥⎣⎦,∴2sin()124π≤+≤x ,故函数()g x 的值域为1,2⎡⎤⎣⎦.【点睛】关于三角函数解析式的化简问题,首先需要利用和差公式或者诱导公式展开化为同角,其次利用降幂公式进行降次,最后利用辅助角公式进行合一变换,最终得到()()sin f x A x =+ωϕ的形式.20.在ABC 中,,,A B C 的对边分别为,,a b c ,已知向量2(cos ,2cos 1)2C m B =- ,(,2)n c b a =- ,且0m n ⋅= .(1)求C ∠的大小;(2)若点D 为边AB 上一点,且满足,7,23AD DB CD c === ,求ABC 的面积.【答案】(1)3π;(2)23.【分析】(1)由向量的数量积的运算公式,求得cos (2)cos 0m n c B b a C ⋅=+-= ,再结合正弦定理和三角恒等变换的公式,化简得到1cos 2C =,即可求解;(2)由AD DB = ,求得2CD CA CB =+ ,两边平方化简得2228b a ab ++=,再由余弦定理,得到2212a b ab +-=,联立方程组,求得8ab =,结合三角形的面积公式,即可求解.【详解】(1)由题意,因为2(cos ,2cos 1)(cos ,cos )2C m B B C =-= ,(,2)n c b a =- ,可得cos (2)cos 0m n c B b a C ⋅=+-= ,在ABC 中,由正弦定理得sin cos (sin 2sin )cos 0C B B A C +-=,化简得sin 2sin cos A A C =,又因为(0,)A π∈,可得sin 0A >,所以1cos 2C =,因为(0,)C π∈,所以3C π=.(2)由AD DB = ,可得CD CA CB CD -=- ,所以2CD CA CB =+ ,两边平方得2222242cos 28CD b a ab ACB b a ab =++∠=++= ①又因为2222cos c a b ab ACB =+-∠,所以2212a b ab +-=.②由①②得8ab =,所以1sin 232ABC S ab ACB =∠= .【点睛】本题主要考查了向量的数量积的坐标运算,以及正弦定理和余弦定理的应用,其中解答中熟记向量的数量积的运算公式,以及合理利用正弦定理的边角互化和三角的面积公式求解是解答的关键,着重考查推理与运算能力.21.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)323+.【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:23AC AB +≤(当且仅当AC AB =时取等号),ABC ∴ 周长323L AC AB BC =++≤+,ABC ∴ 周长的最大值为323+.[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b c A B C ===,所以23(sin sin )b c B C +=+23sin sin 66ππαα⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦23cos 23α=≤,当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为323+.[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223cos b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3cos b c θθ+=+=23sin 236πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()23b c +=,所以ABC 周长的最大值为323+.【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.22.为响应国家“乡村振兴”号召,农民王大伯拟将自家一块直角三角形地按如图规划成3个功能区:△BNC 区域为荔枝林和放养走地鸡,△CMA 区域规划为“民宿”供游客住宿及餐饮,△MNC 区域规划为小型鱼塘养鱼供休闲垂钓.为安全起见,在鱼塘△MNC 周围筑起护栏.已知40m AC =,403m BC =,AC BC ⊥,30MCN ∠=︒.(1)若20m AM =时,求护栏的长度(△MNC 的周长);(2)当ACM ∠为何值时,鱼塘△MNC 的面积最小,最小面积是多少?【答案】(1)60203+;(2)15ACM ∠=︒,最小值为()2120023km -.【分析】(1)由已知可得30B =︒则有80AB =,在△ACM 中应用余弦定理求得203CM =,再分别求出,CN MN ,即可求护栏的长度.(2)设()060ACM θθ∠=︒<<︒,应用正弦定理及三角形面积公式可得()300sin 60cos CMN S θθ=+︒ ,再应用和角正弦公式、二倍角正余弦及辅助角公式化简分母,最后由正弦型函数的性质求最值.【详解】(1)由40m AC =,403m BC =,AC BC ⊥,则3tan 3AC B BC ==,所以30B =︒,60A =︒,则280AB AC ==,在△ACM 中,由余弦定理得22212cos 16004002402012002CM AC AM AC AM A =+-⋅⋅=+-⨯⨯⨯=,则203CM =,所以222AC AM CM =+,即CM AB ⊥,又30MCN ∠=︒,所以tan 3020MN CM =︒=,则240CN MN ==,综上,护栏的长度(△MNC 的周长)为204020360203++=+.(2)设()060ACM θθ∠=︒<<︒,在△BCN 中,由()sin 30sin 90CN BC θ=︒︒+,得203cos CN θ=,在△ACM 中,由()sin 60sin 60CM CA θ=︒︒+,得()203sin 60CM θ=+︒,所以()1300sin 302sin 60cos CMN S CM CN θθ=⋅︒=+︒ ,而()213sin 60cos sin cos cos 22θθθθθ+︒=+()()13113313sin 21cos 2sin 2cos 2sin 26044222424θθθθθ⎛⎫=+⨯+=++=+︒+ ⎪ ⎪⎝⎭,所以()12002sin 2603CMN S θ=+︒+ ,仅当26090θ+︒=︒,即15θ=︒时,()2sin 2603θ+︒+有最大值为23+,此时△CMN 的面积取最小值为()2120023km -.。

2023-2024学年福建省泉州市泉州科技中学高一下学期期中考试数学试题

2023-2024学年福建省泉州市泉州科技中学高一下学期期中考试数学试题

2023-2024学年福建省泉州市泉州科技中学高一下学期期中考试数学试题1.已知向量,,则()A.4B.5C.6D.72.在中,已知,设,则()A.B.C.D.3.已知a,b均为实数,复数:,其中i为虚数单位,若,则a的取值范围为()A.B.C.D.4.如图为水平放置的的直观图,则原三角形的面积为()A.3B.C.6D.125.已知向量满足,且,则在上的投影向量为()A.B.C.D.6.在中,角的对边分别为,若的平分线的长为,则边上的高线的长等于()A.B.C.2D.7.在三棱柱中,点在棱上,且所在的平面将三棱柱分割成体积相等的两部分,点在棱上,且,点在直线上,若平面,则()A.2B.3C.4D.68.在锐角中,角A,B,C的对边分别为a,b,c,且满足.若恒成立,则实数的取值范围为()A.B.C.D.9.已知i为虚数单位,以下四个说法中正确的是()A.,则B.C.若,则复数z对应的点位于第四象限D.已知复数z满足,则z在复平面内对应的点的轨迹为圆10.在中,角,,所对的边分别为,,,则下列说法中正确的是()A.若,则B.若,且,则的最大值为C.若,,,则符合条件的有两个D.若,则是锐角三角形11.如图,在棱长为2的正方体中,M,N,P分别是,,的中点,Q是线段上的动点,则()A.存在点Q,使B,N,P,Q四点共面B.存在点Q,使平面MBNC.过Q,M,N三点的平面截正方体所得截面面积的取值范围为D.经过C,M,B,N四点的球的表面积为12.在复平面内,复数对应的点的坐标为,则___________.13.在正六边形中,已知,则______.14.已知正六棱锥的高是底面边长的倍,侧棱长为,正六棱柱内接于正六棱锥,即正六棱柱的所有顶点均在正六棱锥的侧棱或底面上,则该正六棱柱的外接球表面积的最小值为______.15.某广场内设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样的四面体得到的,如图所示,若被截正方体的棱长是60cm.(1)求石凳的体积;(2)为了美观工人准备将石凳的表面进行粉刷,已知每平方米造价50元,请问粉刷一个石凳需要多少钱?16.已知,.(1)若,求;(2)若与的夹角为,求;(3)若与垂直,求与的夹角.17.在中,内角的对边分别是,且,.(1)求角B;(2)若,求边上的角平分线长;(3)若为锐角三角形,求边上的中线的取值范围.18.如图所示,在四棱锥中,平面,,E是PD的中点.(1)求证:;(2)求证:平面;(3)若M是线段上一动点,则线段上是否存在点N,使平面?说明理由.19.在中,角,,的对边分别为,,,点,,分别位于,,所在直线上,满足,,(,,).(1)如图1,若三角形是边长为3的正三角形,且,求;(2)如图2,若,,交于一点,①求证:②若,,,,求.。

福建省泉州市中考数学试题

福建省泉州市中考数学试题

福建省泉州市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共21分.每小题又四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.1.﹣3的绝对值是()A.3 B.﹣3 C.﹣D.【解析】﹣3的绝对值是3.故选:A.2.(x2y)3的结果是()A.x5y3 B.x6y C.3x2y D.x6y3【解析】(x2y)3=x6y3.故选:D.3.不等式组的解集是()A.x≤2 B.x>1 C.1<x≤2 D.无解【解析】解不等式x﹣1>0,得:x>1,∴不等式组的解集为:1<x≤2,故选:C.4.如图,AB和⊙O相切于点B,∠AOB=60°,则∠A的大小为()A.15°B.30°C.45°D.60°【解析】∵AB和⊙O相切于点B,∴∠ABO=90°,∴∠A=90°﹣∠AOB=90°﹣60°=30°;故选:B.5.一组数据:2,5,4,3,2的中位数是()A.4 B.3.2 C.3 D.2【解析】将数据由小到大排列2,2,3,4,5,中位数是3,故选:C.6.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.6 C.3πD.6π【解析】∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=×2π×10,解得r=6.故选B.7.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.4【解析】如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),②当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),③若∠C为直角则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心的圆与直线y=﹣的交点上.过点E作垂线与直线的交点为F(﹣3,),则EF=∵直线y=﹣与x轴的交点M为(,0),∴EM=,EF==∵E到直线y=﹣的距离d==5∴以线段AB为直径、E(﹣3,0)为圆心的圆与直线y=﹣恰好有一个交点.所以直线y=﹣上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选:C.二、填空题:每小题4分,共40分,在答题卡上相应题目的答题区域内作答.8.27的立方根为3.【解析】∵33=27,∴27的立方根是3,故答案为:3.9.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为9.6×106.【解析】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.10.因式分解:1﹣x2=(1﹣x)(1+x).【解析】∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).11.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=4.【解析】∵D、E分别是边AB、AC的中点,BC=8,∴DE=BC=4.故答案为:4.12.十边形的外角和是360°.【解析】十边形的外角和是360°.故答案为:360.13.计算:=3.【解析】原式===3,故答案为:314.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=5.【解析】由直角三角形的性质,得CE=AB=5,故答案为:5.15.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=2:3.【解析】∵⊙O的弦AB、CD相交于点E,∴AE•BE=CE•DE,∴AE:DE=CE:BE=2:3,故答案为:2:3.16.找出下列各图形中数的规律,依此,a的值为226.【解析】根据题意得出规律:14+a=15×16,解得:a=226;故答案为:226.17.如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S=15;(2)若AB>DC,则此时四边形ABCD的面积S′=S(用“>”或“=”或“<”填空).【解析】(1)∵AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴四边形ABCD的面积S=5×3=15,故答案为:15.(2)如图,连接EC,延长CD、BE交于点P,∵E是AD中点,∴AE=DE,又∵AB∥CD,∴∠ABE=∠P,∠A=∠PDE,在△ABE和△DPE中,∵,∴△ABE≌△DPE(AAS),∴S△ABE=S△DPE,BE=PE,∴S△BCE=S△PCE,=S△ABE+S△CDE+S△BCE=S△PDE+S△CDE+S△BCE=S△PCE+S△BCE=2S△BCE=2××BC×EF=15,则S四边形ABCD∴当AB>DC,则此时四边形ABCD的面积S′=S,故答案为:=.三、解答题:共89分,在答题卡相应题目的答题区域内作答.18.计算:(π﹣3)0+|﹣2|﹣÷+(﹣1)﹣1.【解】原式=1+2﹣2﹣1=0.19.先化简,再求值:(x+2)2﹣4x(x+1),其中x=.【解】原式=x2+4x+4﹣4x2﹣4x=﹣3x2+4,当x=时,原式=﹣6+4=﹣2.20.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.【解答】证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,∴△CDA≌△CEB.21.A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【解】(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P==,乙获胜的情况有2种,P==,所以,这样的游戏规则对甲乙双方不公平.22.近期,我市中小学广泛开展了“传承中华文化,共筑精神家园”爱国主义读书教育活动,某中学为了解学生最喜爱的活动形式,以“我最喜爱的一种活动”为主题,进行随机抽样调查,收集数据整理后,绘制出以下两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:最喜爱的一种活动统计表活动形式征文讲故事演讲网上竞答其他人数60 30 39 a b(1)在这次抽样调查中,一共调查了多少名学生?扇形统计图中“讲故事”部分的圆心角是多少度?(2)如果这所中学共有学生3800名,那么请你估计最喜爱征文活动的学生人数.【解】(1)根据题意得:39÷13%=300(名),则“讲故事”所占的比例为30÷300×100%=10%,所以扇形统计图中“讲故事”部分的圆心角是10%×360°=36°,则在这次抽样调查中,一共调查了300名学生,扇形统计图中“讲故事”部分的圆心角是36°;(2)根据题意得:3800×20%=760(名),则最喜爱征文活动的学生人数为760名.23.已知反比例函数的图象经过点P(2,﹣3).(1)求该函数的解析式;(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.【解】(1)设反比例函数的解析式为y=,∵图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函数的解析式为y=﹣;(2)∵点P沿x轴负方向平移3个单位,∴点P′的横坐标为2﹣3=﹣1,∴当x=﹣1时,y=﹣=6,∴∴n=6﹣(﹣3)=9,∴沿着y轴平移的方向为正方向.24.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?【解】(1)设y与x之间的一个函数关系式为y=kx+b,则,解得.故函数关系式为y=﹣2x+112;(2)依题意有w=(x﹣20)(﹣2x+112)=﹣2(x﹣38)2+324,故每千克售价为38元时,每天可以获得最大的销售利润;(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m千克,则≤30﹣5,解得:m≤1300.故一次进货最多只能是1300千克.25.我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:如图,点P在以MN(南北方向)为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,弦PC、PD分别交MN于点E、F,且PE=PF.(1)比较与的大小;(2)若OH=2,求证:OP∥CD;(3)设直线MN、CD相交所成的锐角为α,试确定cosα=时,点P的位置.【解答】(1)解:∵PE=PF,PH⊥EF,∴PH平分∠FPE,∴∠DPQ=∠CPQ,∴=;(2)证明:连结CD、OP、OQ,OQ交CD于B,如图,∵OH=2,OP=4,∴PH==2,∴△OPH为等腰直角三角形,∴∠OPQ=45°,而OP=OQ,∴△OPQ为等腰直角三角形,∴∠POQ=90°,∴OP⊥OQ,∵=,∴OQ⊥CD,∴OP∥CD;(3)解:直线CD交MN于A,如图,∵cosα=,∴∠α=30°,即直线MN、CD相交所成的锐角为30°,而OB⊥CD,∴∠AOB=60°,∵OH⊥PQ,∴∠POH=60°,在Rt△POH中,∵sin∠POH=,∴PH=4sin60°=2,即点P到MN的距离为2.26.如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.(1)判断四边形ABCD的形状并加以证明;(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);②如果∠C=60°,那么为何值时,B′P⊥AB.【解】(1)四边形ABCD是平行四边形证明:∵在四边形ABCD中,AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(2)①作图如下:②当AB=AD时,平行四边形ABCD是菱形,由折叠可得,BP=B′P,CQ=C′Q,BC=B′C′,∠C=∠C′=60°=∠A,当B′P⊥AB时,由B′P∥C′Q,可得C′Q⊥CD,∴∠PEA=30°=∠DEB′,∠QDC′=30°=∠B′DE,∴B′D=B′E,设AP=a,BP=b,则直角三角形APE中,PE=a,且B′P=b,BC=B′C′=CD=a+b,∴B′E=b﹣a=B′D,∴C′D=a+b﹣(b﹣a)=a+a,∴直角三角形C′QD中,C′Q=a=CQ,DQ=C′Q=a,∵CD=DQ+CQ=a+b,∴a+a=a+b,整理得(+1)a=b,∴==,即=.。

福建泉州培元中学2024年八年级上学期11月期中考试数学试题

福建泉州培元中学2024年八年级上学期11月期中考试数学试题

第9题2024年秋季泉州市培元中学八年级期中考试数学科试题(考试时间:120分钟;满分:150分)一、单选题(每题4分,共40分)1.下列各组图形中,属于全等图形的是A.B.C .D.2.下列各式中,正确的是A2=±B.2=C4=D4=-3.若使代数式1x +有意义,则x 的取值范围是A .1x ≥-B .1x ≤-C .1x >-D .1x <-4.已知非零实数a ,下列各式计算正确的是A .24a a a ⋅=B .()22224⋅=a b a b C .523a a a -=D .()2324a a a ÷=5.在3.14,π,3.212212221,3,227-,25,2.1212212221⋅⋅⋅⋅⋅⋅(在相邻两个2之间1的个数逐次加1)中,无理数的个数为A .2B .3C .4D .56.下列命题的逆命题是真命题的是A .对顶角相等B .等边三角形也是锐角三角形C .若a=b ,则22=b a D .同位角相等,两直线平行7.下列尺规作图中,能判断线段AD 是ABC V 中BC 边上的中线的是A .B .C .D .8.若25,23a b ==,则2a b -的值为A .53B .2C .4D .159.如图,ABC ADE △≌△,90CAE ∠=︒,2AB =,则图中阴影部分的面积为A .2B .3C .4D .无法确定10.如图,在长方形ABCD 中,8AD cm =,6AB cm =,E 为AD 的中点,若点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点C 向点B 均速运动,当AEP △与BPQ V 全等时,则点Q 的运动速度是A .83B .6或83C .23或6D .23二、填空题(每题4分,共24分)11的值为.12.化简:()23xy -=.13.若一等腰三角形的周长是18cm ,其中一边长为4cm ,则此三角形的腰长为cm .14.如图,在ABC △中,AD 是BC 边上的中线,E 为AD 的中点,若BDE △的面积为4cm 2,则ABC △的面积为cm 2.15.如果表示2xyz -,表示b d a c ,那么⨯=.(用含有m,n 的代数式表示)16.如图,在Rt ABC △中,90C ∠=︒,两锐角的角平分线交于点P ,点E 和点F 分别在边BC 、AC 上,并且都不与点C 重合,若45EPF ∠=︒,连接EF ,当6AC =,8BC =,10AB =时,则CEF △的周长为.三、解答题(共9大题,共计86分)17.(8()420211+--+-.18.(8分)先化简,再求值:()()()2122121a a a a -++-,其中5a =.19.(8分)已知某个正数的平方根是6a +和215a -,求这个正数的值.20.(8分)如图,已知点E ,B 在线段AF 上,AE BF =,A F ∠=∠,AC DF =.求证:C D ∠=∠.第10题第14题第16题21.(8分)已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“幸福数对”,例如436834862924⨯=⨯=,所以43和68与34和86都是“幸福数对”.(1)请判断32与69是否是“幸福数对”,并说明理由;(2)为探究“幸福数对”的本质,可设“幸福数对”中一个数的十位数字为a ,个位数字为b ,且a b ≠;另一个数的十位数字为c ,个位数字为d ,且c d ≠,请问a ,b ,c ,d 应满足怎样的数量关系,并说明理由;22.(10分)如图,AD 为ABC V 的边BC 上的中线,过点B 作AD 的垂线,垂足为点E .(1)在线段AD 上求作一点F ,使得CF BE ∥(不写作法,保留作图痕迹);(2)在(1)的条件下,若ACF △的面积为8,ABE △的面积为20,求CFD △的面积.23.(10分)我们知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能用小数的形式全部表示出来.但是由于2的整数部分是1,于是我们可以用21-来的小数部分.又例如:<<,即23<<,的整数部分是22-.根据上述材料,回答下列问题:的整数部分是,小数部分是;(2)若a,b 为相邻的两个整数,且有6a b <+<成立,求a b +的值;(3)已知10x y +=+,其中x 是整数,且01y <<,求3x y -的值.24.(12分)如图1,有足够多的A 类、B 类和C 类卡片,其中A 类卡片为边长为a 的小正方形卡片;B 类卡片为长为b 、宽为a 的长方形卡片;C 类卡片为边长为b 的大正方形卡片.利用图1中的三种卡片各若干可以拼出一些图形来解释某些等式.例如图2可以解释的等式为()()22232a b a b a ab b ++=++.(1)类似的,图3可以解释的等式为;(2)请你算一算,若要拼成一个长为()9a b +,宽为()5a b +的长方形,则需用A 类卡片张,B 类卡片张,C 类卡片张;(3)用5张B 类卡片按图4的方式不重叠地放在长方形内,未被遮盖的部分(两个长方形)用阴影表示,设右下角与左上角的阴影部分的面积之差为S ,EH x =,若S 的值与x 无关,试探究a 与b 的数量关系,并说明理由.25.(14分)在Rt ABC △中,90,CAB AB AC ∠=︒=,点O 是BC 的中点,点P 为射线OB 上的一动点(点P 不与点O 、B 重合),过点C 作CE AP ⊥于点E ,过点B 作BF AP ⊥于点F ,连接EO 并延长,交直线BF 于点G .(1)如图1,当点P 在线段OB 上运动时.①求证:AEC BFA △≌△;②在点P 的运动过程中,G ∠的大小是否随着点P 的运动而变化?若不变,求出G ∠的度数;若变化,请说明理由;(2)当点P 在射线OB 上运动时,连接OF ,若2,5,AE CE ==请求出OEF △的面积.图1备用图2024年秋季泉州市培元中学八年级期中考试数学科参考答案与评分标准题号12345678910答案BCADCDBAAB1.B【分析】此题主要考查了全等图形的概念,解题的关键是掌握形状和大小都相同的两个图形是全等图形.根据全等图形的定义,逐项判断即可求解.【详解】解:A .不是全等图形,故本选项不符合题意;B .是全等图形,故本选项符合题意;C .不是全等图形,故本选项不符合题意;D .不是全等图形,故本选项不符合题意;故选:B .2.C【分析】本题考查了利用平方根和算术平方根的定义运算.根据“a (0a ≥)的平方根为a ±术平方根为α”求解即可.【详解】解:A 、422=≠±,故本选项不符合题意;B 、422=±≠,故本选项不符合题意;C 244=,故本选项符合题意;D ()2444-=≠-,故本选项不符合题意;故选:C .3.A【分析】本题考查的是二次根式有意义的条件,即二次根式中的被开方数是非负数.根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解: 10x ∴+≥,解得1x ≥-.故选:A .4.D【分析】本题考查了整式的合并同类项、积的乘方、同底数幂相乘、同底数幂相除以及单项式乘单项式,熟悉各种运算法则是解题的关键.根据合并同类项法则、积的乘方运算法则、同底数幂乘法法则、同底数幂除法法则以及单项式乘单项式运算法则进行运算即可得解.【详解】解:A .23a a a ⋅=,故本选项错误;B .()2224a b ab ⋅=,故本选项错误;C .523a a a -≠,故本选项错误;D .()2324a a a ÷=,故本选项正确.故选:D .5.C【分析】本题主要考查了无理数的识别.无理数就是无限不循环小数,常见的无理数的形式有:π,2π等;开方开不尽的数;像0.1010010001…(每两个1之间0的个数依次加1)这样有规律的数.【详解】解:在3.14,π,3.212212221227-,,2.1212212221⋅⋅⋅⋅⋅⋅(在相邻两个2之间1的个数逐次加1)中,其中π,3,25,2.1212212221⋅⋅⋅⋅⋅⋅…为无理数,共计4个.故选:C .6.D【分析】分别写出各个选项的逆命题后再判断其正确或错误,即确定它是真命题还是假命题.【详解】解:A 、“对顶角相等”的逆命题是“相等的角是对顶角”,相等的角不一定是对顶角,所以逆命题错误,故是假命题;B 、“等边三角形也是锐角三角形”的逆命题是“锐角三角形是等边三角形”是假命题,故本选项错误.C 、“若a=b ,则a 2=b 2”的逆命题是“若a 2=b 2,则a=b”,因为a 2=b 2,则a=±b ,所以逆命题错误,故是假命题;D 、“同位角相等,两直线平行”的逆命题是“两直线平行同位角相等”正确,故是真命题;故选D .【点睛】主要考查了逆命题和真假命题的定义.对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.举出反例能有效的说明该命题是假命题.7.B【分析】本题考查作图-基本作图,三角形的中线,线段的垂直平分线等知识,解题的关键是读懂图形信息,灵活运用所学知识解决问题.根据三角形的中线的定义判断即可.【详解】解:观察图形可知,选项A 中,BD CD =,故线段AD 是ABC V 的中线,故选:B.8.A【分析】本题主要考查了同底数幂除法的逆运算,利用同底数幂除法的逆运算将原式变形后代入数值计算即可,将原式进行正确的变形是解题的关键.【详解】∵25,23a b ==,∴3252253a b a b -=÷=÷=,故选:A .9.A【分析】本题考查了全等三角形的性质,解题关键是掌握全等三角形面积相等、对应边相等和对应角相等,本题应将阴影面积进行转化,利用等量代换得到阴影面积等于ABD 的面积,再利用面积公式即可求解.【详解】解:∵ABC ADE ≌,∴ABC ADE S S = ,2AB AD ==,BAC DAE ∠=∠∵90CAE ∠=︒,∴90BAD BAC DAC DAE DAC CAE ∠=∠-∠=∠-∠=∠=︒,∴阴影面积11·22222ABD S AB AD ===⨯⨯= ,故选:A .10.B【分析】本题考查了二元一次方程组的应用,全等三角形的性质等知识,掌握相关知识是解题的关键.根据四边形ABCD 是长方形可得90A B ∠=∠=︒,设运动的时间为t 秒,点Q 的运动速度是cm /s x ,根据题意分别表示出()()()2cm 62cm 8cm AP t PB AB AP t BQ tx ==-=-=-,,,再根据全等三角形的对应边相等分两种情况讨论,当AEP BQP ≌V △时,当AEP BPQ △△≌时,分别建立方程组求解即可.【详解】解:由题可知:908cm 6cm A B BC AD AB ∠=∠=︒===,,,E 为AD 的中点,∴4cm AE =,设运动的时间为t 秒,点Q 的运动速度是cm /s x ,依题有:()()()2cm 62cm 8cm AP t PB AB AP t BQ BC CQ tx ==-=-=-=-,,,当AEP BQP ≌V △时,48262txt t=-⎧⎨=-⎩,解得:3283t x ⎧=⎪⎪⎨⎪=⎪⎩,即点Q 的运动速度为8cm/s 3时,AEP △与BPQ V 全等,当AEP BPQ △△≌时,46228tt tx=-⎧⎨=-⎩,解得:16t x =⎧⎨=⎩,即点Q 的运动速度为6cm/s 时,AEP △与BPQ V 全等,综上可得,点Q 的运动速度为8cm/s 3或6cm/s 时,AEP △与BPQ V 全等,故选:B .11.2【分析】本题考查了立方根的运算法则,掌握立方根的运算法则是解答本题的关键.根据立方根的求解法则进行计算即可.【详解】解:382=,故答案为:2.12.229x y /229y x 【分析】根据积的乘方运算法则进行计算即可求解.【详解】解:原式=229x y .故答案为:229x y .【点睛】本题考查了积的乘方运算法则,掌握运算法则是解题的关键.13.7【分析】本题主要等腰三角形的性质、三角形的三边关系等知识点,当等腰三角形的给定边长不固定时要分情况讨论是解题的关键.分当腰长为4cm 和底边长为4cm 两种情况,分别运用三角形的三边关系分出腰的长即可.【详解】解:由题意知,应分两种情况:①当腰长为4cm 时,则另一腰也为4cm ,则底边为182410cm -⨯=,∵4410+<,∴边长分别为4cm ,4cm ,10cm ,无法构成三角形;②当底边长为4cm 时,腰的长()18427cm =-÷=,∵77477-<<+,∴边长为4cm ,7cm ,7cm ,能构成三角形.∴该等腰三角形的腰长为7cm ;综上,该等腰三角形的腰长为7cm .故答案为:7cm .14.16.【详解】试题分析:根据△ABE 的面积=△BDE 的面积,△ABD 的面积=△ADC 的面积计算出各部分三角形的面积,最后再计算△ABC 的面积.解:∵AD 是BC 边上的中线,E 为AD 的中点,根据等底同高可知,△ABE 的面积=△BDE 的面积=4,∴△ABD 的面积=△ADC 的面积=2△BDE 的面积=8,△ABC 的面积=2△ABD 的面积=16.考点:三角形的面积.15.434m n -/344n m -【分析】本题主要考查单项式乘以单项式,新定义,理解题目给出运算规定是解题的关键.先根据定义列出代数式,然后再利用单项式乘法法则计算即可.根据新定义列出整式是解答本题的关键.【详解】解:根据题意:⨯()2322mn n m =-⨯⨯434m n =-故答案为:434m n -.16.4【分析】根据题意过点P 作PM BC ⊥于M ,PN AC ⊥于N ,PK AB ⊥于K ,在EB 上取一点J ,使得MJ FN =,连接PJ ,PC ,进而利用全等三角形的性质证明EF EM EN =+,即可得出结论.【详解】解:如图,过点P 作PM BC ⊥于M ,PN AC ⊥于N ,PK AB ⊥于K ,在EB 上取一点J ,使得MJ FN =,连接PJ ,PC .BP 平分BC ∠,PA 平分CAB ∠,PM BC ⊥,PN AC ⊥,PK AB ⊥,PM PK ∴=,PK PN =,PM PN ∴=,90C PMC PNC ∠=∠=∠=︒ ,,PC PC PM PN== ∴Rt Rt PCM PCN ≌,CM PM ∴=,90MPN ∴∠=︒,在PMJ 和PNF △中,90PM PN PMJ PNF MJ NF =⎧⎪∠=∠=︒⎨⎪=⎩,()SAS PMJ PNF ∴ ≌,MPJ FPN ∴∠=∠,PJ PF =,90JPF MPN ∴∠=∠=︒,45EPF ∠=︒ ,45EPF EPJ ∴∠=∠=︒,在PEF 和PEJ 中,PE PE EPF EPJ PF PJ =⎧⎪∠=∠⎨⎪=⎩,()SAS PEF PEJ ∴ ≌,EF EJ ∴=,EF EM FN ∴=+,CEF ∴ 的周长22CE EF CF CE EM CF FN EM PM =++=+++==,()1122ABC S BC AC AC BC AB PM +⋅+⋅==⋅ ,2PM ∴=,ECF ∴ 的周长为4,故答案为:4.【点睛】本题考查角平分线的性质定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形.17.52+【分析】本题考查了实数的混合运算,立方根,算术平方根,化简绝对值,乘方运算,先化简绝对值以及立方根,算术平方根,乘方运算,再运算加减,即可作答.【详解】解:()43202125128+--+-52121=+-+-5=18.21a -,9【分析】先根据单项式与多项式的乘法法则和平方差公式计算,再去括号合并同类项,然后把5a =代入计算即可.【详解】()()()2122121a a a a -++-()222441a a a =-+-222441a a a =-+-21a =-,当5a =时,原式2519=⨯-=.【点睛】本题考查了整式的混合运算以及求值,熟练掌握运算顺序及乘法公式是解答本题的关键.19.81【分析】本题考查了平方根的概念,根据正数的平方根有两个,且互为相反数,由此可得a 的方程,解方程即可得到a 的值;进而可得这个正数的平方根,最后可得这个正数的值.【详解】解:∵一个正数的平方根是6a +和215a -,∴62150a a ++-=,3a ∴=,69∴+=a ,22(6)981a ∴+==,∴这个数为81.20.见解析【分析】本题考查了全等三角形的性质与判定,根据题意得出AB FE =,进而证明()SAS ABC FED ≌,根据全等三角形的性质即可得证.【详解】证明:∵AE BF=∴AE EB BF EB +=+∴AB FE=在ABC 和FED 中,∵AC DF A F AB FE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC FED ≌C D ∴∠=∠.21.(1)见解析(2)6【分析】本题考查了尺规作图—作垂线,平行线的的判定,全等三角形的判定与性质等知识,解题的关键是:(1)过C 作AE 的垂线即可;(2)证明BDE CDF ≌,BE CF =,BDE CDF S S = ,进而得出ABF ACF S S = ,利用三角形中线的性质可得出BDF CDF S S = ,即可求解.【详解】(1)解:如图,点F 即为所求,由作图可知:CF AE ⊥,又BE AE ⊥,∴CF BE ∥;(2)解:连接BF ,∵AD 为ABC V 的边BC 上的中线,∴BD CD =,BDF CDF S S = 在BDE V 和CDF V 中,90E CFD BDE CDF BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴BDE CDF ≌,∴BE CF =,BDE CDF S S = ,∴ABF ACF S S = ,12CDF BDF BEFS S S == ∵ACF △的面积为8,ABE 的面积为20,∴12BEF ABE ACF S S S =-= ,∴162CDFBDF BEF S S S === .22.(1)4,174-(2)15(3)3389-【分析】本题考查了无理数的估算和实数的运算,平方根,熟练掌握无理数的估算方法是解题关键.(1(2)先估算3的取值范围,进而估算6+的取值范围,即可求出a 、b 的值,从而计算a b +的值;(3)进而估算10即可求出x 、y 的值,从而计算出3x y -的值.【详解】(1<,∴45<<,44,(2<<,∴12<<,∴768<,∴7a =,8b =,∴7815a b +=+=;(3<∴23<,∴121013<+,∴3109+的整数部分:12x =,∵01y <<,∴小数部分:331091292y =+-=-,∴()3333312923692389x y -=⨯--=-+=-.23.(1)32与69是“幸福数对”,理由见解析.(2)ac bd =,理由见解析(3)36和84.【分析】本题主要考查了新定义,多项式乘以多项式:(1)分别计算出3269⨯和2396⨯的结果,再根据“幸福数对”的定义进行判断即可;(2)分别求出()()1010a b c d ++和()()1010b a d c ++的结果,再根据“幸福数对”的定义可得()()()()101010100a b c d b a d c ++-++=,据此求解即可;(3)根据(2)的结论可得()()()()1642x x x x ++=++,解方程得到2x =,据此可得答案.【详解】(1)解:32与69是“幸福数对”,理由如下:32692208⨯= ,23962208⨯=,32692396⨯=⨯∴,∴32与69是“幸福数对”;(2)解:ac bd =,理由如下:由题意得,()()10101001010a b c d ac ad bc bd ++=+++,()()10101001010b a d c bd bc ad ac ++=+++,∵()()100101010010100ac ad bc bd bd bc ad ac +++-+++=,∴99990ac bd -=,∴()990ac bd -=,∴0ac bd ∴-=,即ac bd =;(3)解;由(2)可得()()()()1642x x x x ++=++∴227668x x x x ++=++解得2x =,∴13x +=,46x +=,68x +=,24x +=,∴这两个两位数分别为:36和84.24.(1)()()2222252a b b a a ab b++=++(2)5,46,9(3)2b a =,理由见解析【分析】本题主要考查了多项式乘多项式、整式的混合运算的应用等知识点,掌握数形结合能力以及整式的混合运算法则成为解题的关键.(1)根据图②结合图形的面积以及整式乘法列代数式即可;(2)根据多项式乘多项式的法则计算,然后根据相关系数即可解答;(3)设AB x =,由图可知()()32S x a b a x b =---,然后再化简,最后让x 的系数为0即可解答.【详解】(1)解:由()()2222252a b b a a ab b ++=++.故答案为:()()2222252a b b a a ab b ++=++.(2)解:∵()()22955469a b a b a ab b ++=++,∴需用A 类卡片5张,B 类卡片46张,C 类卡片9张.故答案为:5,46,9.(3)解:2b a =,理由如下:设AB x =,由题意可得()()32S x a b a x b =---322xb ab ax ab=--+()2b a x ab=--由于S 的值与x 无关,则20b a -=,即2b a =.25.(1)见解析;(2)BG AF =;(3)①OFE ∠的大小不变,45OFE ∠=︒;②满足条件的OEF 的面积为94或494【分析】(1)根据等角的余角相等得出CAE ABF ∠=∠,证明()AAS AEC BFA ≌;(2)证明()AAS COE BOG ≌得出CE BG =,则CE AF =,等量代换可得AF BG =;(3)①证明()AAS AEC BFA ≌,进而证明CEO BGO ∠=∠证明()AAS COE BOG ≌得出1452EFO EFG ∠=∠=︒;②根据题意画出图形,分类讨论,根据三角形的面积公式,即可求解.【详解】(1)证明:CE AE ⊥ ,BF AE ⊥,90AEC BFA CAB ∴∠=∠=∠=︒,90CAE BAF ∴∠+∠=︒,90BAF ABF ∠+∠=︒,CAE ABF ∴∠=∠,在AEC △和BFA V 中,AEC BFA CAE ABF AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS AEC BFA ∴ ≌;(2)如图,结论:OFE ∠的大小不变,45OFE ∠=︒,理由如下:由(1)得:AEC BFA△≌△CE AF ∴=,AE BF =,CE AE ⊥ ,BF AE ⊥,CE ∴∥BG ,CEO BGO ∴∠=∠,O 是BC 的中点,OC OB ∴=,在COE 和BOG △中,CEO BGO AOE BOG OC OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS COE BOG ∴ ≌,CE BG ∴=,OE OG =,AF BG ∴=,EF FG ∴=,根据()SSS EFO GFO ≌可得:EFO GFO∠=∠1452EFO EFG ∴∠=∠=︒;(3)如图,当2AE =,5CE =时,∴5AF CE ==,∴523EF FG ==-=,1119332224EOF EFG S S ∴==⨯⨯⨯= ;如图3中,当2AE =,5CE =时,527EF FG ==+=,11149772224EOF EFG S S ∴==⨯⨯⨯= 综上所述,满足条件的OEF 的面积为94或494.【点睛】本题考查了全等三角形的证明与性质,等腰三角形的判定和性质,三角形的动点问题以及三角形求面积的问题,正确掌握知识点是解题的关键;2024年秋季泉州培元中学八年级期中考试数学科试卷双向细目表1、命题规范细目表考试目标题型题号分值难度估值领域知识技能数学能力数学思想方法选择题14分0.95空间与几何全等图形的判断。

2024福建省泉州市高三高中毕业班质量监测数学试题与解析

2024福建省泉州市高三高中毕业班质量监测数学试题与解析

保密★使用泉州市2024届高中毕业班质量监测(一)2023.08数学考试用时120分钟。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合(){}30A x x x =∈-<Z ,{}1,2,3B =-,则A B = ()A.{}2 B.{}2,3 C.{}1,1,2,3- D.∅2.已知复数21iz =-,则2i z +=()A.C. D.103.已知2sin 21cos 2αα=+,,22ππα⎛⎫∈- ⎪⎝⎭,则tan α=()A.2-B.12-C.12D.24.已知函数()2f x x =,()22x x g x -=-,如图是下列四个函数中某个函数的大致图象,则该函数是()A.()()f xg x + B.()()f xg x ⋅ C.()()g x f x D.()()f xg x5.已知双曲线222:16x y C a -=的焦距为C 的渐近线方程是()A.y x =±B.y =C.3y x =±D.7y x =±6.记等比数列{}n a 的前n 项和为n S .若33S =,8596S S -=-,则6S =()A.3- B.6- C.21- D.24-7.已知函数())2sin 04f x x πωω⎛⎫=-> ⎪⎝⎭在[]0,2内有且仅有3个零点,则ω的值可以是()A.3B.5C.7D.98.方程2y xx y x y x=满足x y ≤的正整数解的组数为()A.0B.1C.2D.无数组二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得2分。

9.已知函数()22,1,log ,1,x x f x x x ⎧≤=⎨>⎩则下列结论正确的是()A.()()03f f <B.()f x 为增函数C.()f x 的值域为()0,+∞ D.方程()f x a =最多有两个解10.某市组织全市高中学生进行知识竞赛,为了解学生知识掌握情况,从全市随机抽取了100名学生,将他们的成绩(单位:分)分成5组:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,得到如图所示的频率分布直方图,已知图中未知的数据a ,b ,c 成等差数列,成绩落在[)60,70内的人数为40.从分数在[)70,80和[)80,90的两组学生中采用分层抽样的方法抽取5人,再从这5人中抽取3人,记3人中成绩在[)80,90内的人数为ξ,设事件A =“至少1人成绩在[)80,90内”,事件B =“3人成绩均在[)70,80内”.则下列结论正确的是()A.0.03b =B.()65E ξ=C.A 与B 是互斥事件,但不是对立事件D.估计该市学生知识竞赛成绩的中位数不高于72分11.已知圆柱12OO 的轴截面是正方形ABCD ,AB 为底面圆1O 的直径,点E 在圆1O 上,点F 在圆2O 上,且E ,F 不在平面ABCD 内.若A ,E ,C ,F 四点共面,则()A.直线BE ∥平面ADFB.直线BD ⊥平面AECFC.平面ADF ∥平面BCED.平面BEF ⊥平面AECF12.已知ABP △的顶点P 在圆()()22:3481C x y -+-=上,顶点A ,B 在圆22:4O x y +=上.若AB =)A.ABP △的面积的最大值为B.直线PA 被圆C截得的弦长的最小值为C.有且仅有一个点P ,使得ABP △为等边三角形D.有且仅有一个点P ,使得直线PA ,PB 都是圆O 的切线泉州市2024届高中毕业班质量监测(一)2023.08数学三、填空题:本题共4小题,每小题5分,共20分。

泉州市安溪一中,惠安一中,养正中学,实验中学2024-2025学年高三上学期11月期中联考数学试题

泉州市安溪一中,惠安一中,养正中学,实验中学2024-2025学年高三上学期11月期中联考数学试题

安溪一中、养正中学、惠安一中、泉州实验中学2024年秋季高三年期中联考考试科目:数学 满分:150分 考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.已知复数z 满足,则( )A. B. C. D.3.已知向量,满足,,且,则( )C.1D.24.甲、乙两校各有3名教师报名支教,现从这6名教师中随机派2名教师,则被派出的2名教师来自间一所学校的概率为( )A.B.C.D.5.已知,且,则( )A. B. C.D.6.已知函数是定义在上偶函数,当时,,若函数仅有4个零点,则实数的取值范围是( )A. B. C. D.7.已知函数,则满足的实数的取值范围是( ).A. B. C. D.8.双曲线的左、右焦点分别为,,右支上一点满足{}29200A x x x =-+≤{}2log (3)1B x x =-<A B = (,5)-∞[4,5)(,5]-∞(3,5]2(1i)1i z -=+z =1i-1i --1i +1i-+a b ||2a =|2|2a b -= ()a b a -⊥ ||b = 15251235()sin 404cos50cos 40cos θθ︒-=︒⋅︒⋅ππ,22θ⎛⎫∈- ⎪⎝⎭θ=π3-π6-π6π3()f x R 0x ≥25,0216()11,22xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩()y f x m =-m 51,4⎛⎫⎪⎝⎭50,4⎛⎫ ⎪⎝⎭50,4⎛⎫ ⎪⎝⎭5,4⎛⎫-∞ ⎪⎝⎭33()e e x x f x x --=-+(22)(1)6f m f m -+->m 1,3⎛⎫+∞ ⎪⎝⎭3,2⎛⎫+∞⎪⎝⎭7,3⎛⎫+∞⎪⎝⎭(3,)+∞222:1(0)5x y C a a-=>1F 2F P,直线平分,过点,作直线的垂线,垂足分别为A ,B ,设O 为坐标原点,则的面积为( ).A. B. C.10D.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设,且,则下列关系式中一定成立的题( )A.B.C. D.10.已知函数的图象经过点,则下列说法正确的是( )A.若,则对任意的都有B.若的图象关于直线对称,则C.若在上单调递增,则的取值范围是D.若方程在上恰有两个不同的实数解,则的取值范围是11.已知函数,,则下列说法正确的是( )A.若,则的图象在处的切线方程为B.若在上单调递増,则的取值范围是C.若当时,,则的取值范围是D.若,有唯一管点,且满足,则三、填空题:本大题共3小题,每小题5分,共15分.12.的展开式中的常数项为_________.13.在中,角A ,B ,C 所对的边分别为a ,b ,c ,且,,当取得最小值时,则最大内角的余弦值是_________.12PF PF ⊥l 12F PF ∠1F 2F l OAB △11122ab⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭R c ∈11a b>33a b >()()22ln 1ln 1a b +>+22c a c b<π()2sin()0,||2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭2ω=()f x x (π)()f x f x +=()f x π6x =13(N)k k ω=+∈()f x π0,2⎡⎤⎢⎥⎣⎦ω10,3⎛⎤ ⎥⎝⎦()1f x =[0,π]ω115,62⎡⎫⎪⎢⎣⎭()ln 1f x ax x x =++R a ∈1a =()f x 1x =2y x =()f x (1,)+∞a [1,)-+∞1x >()2()e xf x x-≤a (,2]-∞-0a >()f x 1x 2x 222sin e x x a -=+210x x >>733(1)x x-ABC △2b =cos 2cos 1cos()B B A C +=--2a c +ABC △14.已知函数,若曲线上存在点,使得,则实数的取值范围是_________.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,在直三棱柱中,,,是棱的中点,是的延长线与CB 的延长线的交点.(1)求证:平面;(2)若点在线段AP 上,且点E 为靠近点A 的三等分点,求直线与平面所成的角的正弦值.16.(15分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并进行解答.问题:在中,内角A ,B ,C 所对的边分别为a ,b ,c ,且_________.(1)求角C ;(2)若AB 边上的高为1,,求的周长.(注:如果选择多个条件分别解答,按第一个解答计分.)17.(15分)已知函数,.(1)当时,讨论的单调性;(2)当时,设,若既有极大值又有极小值,求的取值范围.18.(17分)已知椭圆,A ,F 分别为椭圆C 的左顶点和右焦点,过F 作斜率不为0的直线l 交椭圆C 于点P ,Q 两点,且,当直线轴时,.()f x =||1xy x =+()00,x y ()()00f f y y =a 111ABC A B C -90ACB ∠=︒13CA CB CC ===D 1BB P 1C D //AP 1A CD E 1A E 1A CD 22cos a b B -=2222sin sin a A B a b c =+-cos cos a B b Ac +=ABC △ABC △ABC △21()ln (1)2f x ax x a x =+-+R a ∈0a >()f x 0a >()()f x g x x=()g x a 2222:1(0)x y C a b a b+=>>||3AF =l x ⊥||3PQ =(1)求椭圆C 的标准方程;(2)设直线AP ,AQ 的斜率分别为,,且,求直线l 的方程;(3)设直线AP 交y 轴于点E ,若过O 点作直线AP 的平行线OM 交椭圆C 于点M,求的最小值.19.(17分)若存在常数,使得数列满足,则称数列为“数列”.(1)判断数列:1,3,5,10,152是否为“数列”,并说明理由;(2)若数列是首项为2的“数列”,数列是等比数列,且与满足,求的值和数列的通项公式;(3)若数列是“数列”,为数列的前项和,,,证明:.1k 2k 121k k +=||||||AP AE OM +t {}n a 1123(1,N)n n a a a a a t n n +-=≥∈ {}n a ()H t (2)H {}n a ()H t {}n b {}n a {}n b 212321log nin n i aa a a ab ==+∑ t {}n b {}n a ()H t n S {}n a n 11a >0t >1e n S n n n t S S -+>--安溪一中、养正中学、惠安一中、泉州实验中学2024年秋季高三年期中联考参考答案一、单选题BCDBAADC 二、多选题(9)AC(10)ACD(11)ACD三、填空题(12)105(13)(14)8.【详解】由双曲线,解得,令直线交的延长线交于,直线交于,则,,由PA 平分,且,得,则,,,显然A ,B 分别为线段,的中点,而O是的中点,于是,,,即,,所以的面积.故选:C 11.【详解】对于A 选项,,,,切线方程为,即,A 选项正确.对于B 选项,若在上单调递增,则对一切都有.[1,e)222:1(0)5x y C a a -=>=220a =1F A 2PF 2PF Q 2F B 1PF N 1PA FQ ⊥2PB F N ⊥12F PF ∠1290F PF ∠=︒112245PFQ PQF PF N PNF ∠=∠=∠=∠=︒1PA PF =2PB PF =2AB PA PB a =-==1FQ 2F N 12F F //OA PQ 1//OB PF 145OAB APQ APF OBA ︒∠=∠==∠=∠90AOB ∠=︒||||||OA OB AB a ===OAB △2211||1022S OA a ===()ln 2f x x ='+(1)2f '=(1)2f =22(1)y x -=-2y x =()f x (1,)+∞(1,)x ∈+∞()(ln 1)10f x a x '=++≥当时,由知满足条件:当时,,,不满足条件.因此的取值范围是,B 选项错误.对于C 选项,当时,等价于.而(用到不等式()).证明如下:记,则,时,,时,,故在上单调递减,在上单调递增,因此对一切有,即,等号成立当且仅当,结合知因此的取值范围是,C 选项正确.对于D 选项,由知在上单调递增,令得,且在上单调递减,在上单调递增,结合条件知,是的唯一零点,故,则.于是,由在上单调递增,结合,知.这样,由结合在上单调递增(因为,等号成立当且仅当)及知.由在上单调递增,结合知,,即,又在R 上单调递增,故,D 选项正确.14.【详解】由题意可知:,0a ≥ln 0x >0a <11ae >10af e a ⎛⎫'=< ⎪⎝⎭a [0,)+∞1x >()2()e xf x x -≤()2e 1ln xx x a x x---≤()22ln e 101(2ln 1)12ln ln ln xx x x x x x x x x x x xx x x x-------+--=≥=-e 1x x ≥+x ∈R ()e 1xh x x =--()e 1xh x '=-0x <()0h x '<0x >()0h x '>()h x (,0)-∞(0,)+∞x ∈R ()(0)0h x h ≥=e 1xx ≥+2ln 0x x x -=1x >x =a (,2]-∞-0a >()(ln 1)1f x a x '=++(0,)+∞()10f x ''=11ln 1x a -'=--()f x ()10,x '()1,x '+∞()min 1()0f x f x '==1x '()f x 11x x '=()()11111110111f x ax a x ax a x --==--++=-+⇒=11ln 10x x ++=()ln 1m x x x =++(0,)+∞()22e e 10m --=-<()11e e 0m --=>()211e ,e x --∈222sin e 0x x a --=>()sin x x x ϕ=-R ()1cos 0x x ϕ'=-≥2π()x k k =∈Z (0)0ϕ=20x >()()()12e x x xφϕ-=-(0,)+∞()211e ,e x --∈()()()()()1121111211121e e sine e sin 0e x x x x x φϕϕ------=-<--=<=-()()12x x ϕϕ<()x ϕ210x x >>000(1,1)1x y x =∈-+因为曲线上存在点,使得,所以存在,使得成立,且下面证明:成立,假设,则,所以不满足,假设不成立,假设,则,所以不满足,假设不成立,由上可知,;则原问题等价于“在上有解”,即“在上有解”,设,,所以,令,则,令,解得,当时,,单调递减,当时,,单调递增,所以,所以在上单调递增,所以的值域为,即为,所以,四、解答题15.(1)连接交于点,连接MD ,如下所示:因为是直三棱柱,故可得是矩形,故为的中点,又是的中点,所以,又,,,||1xy x =+()00,x y ()()00f f y y =0[0,1)y ∈()00f y y =()f x =()00f y y =()00f y c y =>()()()0()f f y f c f y c y =>=>()()0f f y y =()00f y c y =<()()()0()f f y f c f y c y=<=<()()0ff y y =()00f y y =()f x x =[0,1]2x a e x x =+-[0,1)2()e xg x x x =+-[0,1)x ∈()e 12x g x x '=+-()()s x g x '=()e 2xs x '=-()0s x '=ln 2x =[0,ln 2)x ∈()0s x '<()g x '(ln 2,1)x ∈()0s x '>()g x 'm 2()(ln 2)12ln 232ln 20g x g e ''≥=+-=->()g x [0,1)()g x ()())0,1g g ⎡⎣[1,)e [1,)a e ∈1AC 1AC M 111ABC A B C -11AC CA M 1AC D 1B B 1B D BD =11B DC BDP ∠=∠ 1190C B D PBD ∠=∠=︒11B P DC D B ∴≌△△,即是的中点,故在中,M ,D 分别为,的中点,故可得,又平面,平面,故面.(2)因为是直三棱柱,故可得平面,又,平面,则,,又,故,综上可得,,两两垂直,故以为坐标原点,建立如图所示空间直角坐标系;则,,,,,,,由(1)知,故,则;则,,,.设平面的一个法向量为,故可得,即,不妨取,则.又,则点的坐标为,则,又设直线与平面所成的角为,故可得,所以直线与平面.1C D PD ∴=D 1C P 1C AP △1C A 1C P //MD AP MD ⊂1ACD AP ⊂1ACD //AP 1ACD 111ABC A B C -1C C ⊥ABC CA CB ⊂ABC 1CC CA ⊥1CC CB ⊥90ACB ∠=︒CA CB ⊥1CC CA CB C (0,0,0)C 1(0,0,3)C (3,0,0)A 1(3,0,3)A (0,3,0)B 1(0,3,3)B 30,3,2D ⎛⎫ ⎪⎝⎭11BP C B =6CP =(0,6,0)P 1(3,0,3)CA = 30,3,2CD ⎛⎫= ⎪⎝⎭ 11(3,0,0)AC =- 130,3,2C D ⎛⎫=- ⎪⎝⎭1ACD (,,)m x y z =100m CA m CD ⎧⋅=⎪⎨⋅=⎪⎩ 0102x z y z +=⎧⎪⎨+=⎪⎩2z =-(2,1,2)m =- 1(1,2,0)3AE AP ==- E (2,2,0)1(1,2,3)A E =--1A E 1ACD θ111sin cos ,A E m A E m A E mθ⋅====1A E 1ACD(公式没加绝对值扣1分,结论没写不扣分)16.【详解】(1)选①,因为,由正弦定理可得,且,即,整理可得,且,则,可得,即,且,所以.选②,在中,由正弦定理得.因为,所以,化简得.在中,由余弦定理得.又因为,所以.选③由及,有,又由正弦定理,有,有,有,又由,可得.22cos a b c B -=22cos a b c B -=2sin sin 2sin cos A B C B -=sin sin()sin cos cos sin A B C B C B C =+=+2sin cos 2cos sin sin 2sin cos B C B C B C B +-=2cos sin sin 0C B B -=(0,π)B ∈sin 0B ≠2cos 10C -=1cos 2C =(0,π)C ∈3C π=2222sin sin a Aa b c B=+-ABC △sin sin A aB b=2222sin sin a A a b c B =+-2222a a abc b =+-222a b c ab +-=ABC △2221cos 22a b c C ab +-==0πC <<π3C =222cos 2a b cC ab+-=cos cos a B b A c +=cos cos a B b A c +=sin cos sin cos sin A B B A C +=sin()sin A B C +=sin sin C C =tan C =(0,π)C ∈π3C =(2)因为AB 边上的高为1,,得由(1)知,所以,得,由余弦定理得,即,得,所以,即,所以,所以,即的周长为17.【详解】(1)当时,的定义域为,,当时,恒成立,在上为增函数;当时,,,当或时,,当时,,所以的单调递增区间为,,单调递减区间为,当时,,当或时,,当时,,所以的单调递增区间为,,单调递堿区间为.综上所述,当时,在上为增函数;当时,的单调递增区间为,,单调递减区间为,ABC △112c ⨯=c =π3C =11sin 22ab C ab ==43ab =2222cos c a b ab C =+-22241232a b =+-⨯⨯2283a b +=2288162333a b ab ++=+=216()3a b +=a b +=a b c ++==ABC △0a >()f x (0,)+∞()1(1)(1)(1)ax x f x ax a x x--'=+-+=1a =()2(1)0x f x x-'=≥()f x (0,)+∞1a >101a <<()1(1)a x x a f x x⎛⎫-- ⎪⎝⎭'=10x a <<1x >()0f x '>11x a<<()0f x '<()f x 10,a ⎛⎫ ⎪⎝⎭(1,)+∞1,1a ⎛⎫⎪⎝⎭01a <<11a >01x <<1x a >()0f x '>11x a<<()0f x '<()f x (0,1)1,a ⎛⎫+∞⎪⎝⎭11,a ⎛⎫⎪⎝⎭1a =()f x (0,)+∞1a >()f x 10,a ⎛⎫ ⎪⎝⎭(1,)+∞1,1a ⎛⎫⎪⎝⎭当时,的单调递增区间为,,单调递减区间为,(2)因为,所以,若既有极大值又有极小值,则至少存在两个变号零点,即至少有两个不同实数根,记,则,当时,,当时,,所以在时,取得极大值,又趋近于0时,趋近于,当趋近于时,趋近于0,所以,的图象如图所示,由图可知,当,即时,有两个变号零点,且分别为极大值点和极小值点,所以的取值范围为.18.【详解】(1)设椭圆右焦点,,则①,由,得②,直线轴时,P ,Q 两点横坐标为,将代入椭圆方程中,解得,所以③, 联立①②③解得,,,椭圆的标准方程为.01a <<()f x (0,1)1,a ⎛⎫+∞⎪⎝⎭11,a ⎛⎫ ⎪⎝⎭()1ln ()(1)2f x x g x ax a x x ==+-+()211ln 2xg x a x-'=+()g x ()g x '2ln 112x a x -=2ln 1()x h x x-=332ln ()xh x x -'=320e x <<()0h x '>32e x >()0h x '<()h x 32e x =333i12(e)e 2eh -==x ()h x -∞x +∞()h x ()h x 31022ea <<30e a -<<()g x '()g x a ()30,e -(,0)F c 0c >222a b c =+||3AF =3a c +=l x ⊥c x c =22221x y a b +=2b y a =±22||3b PQ a ==24a =23b =21c =C 22143x y +=(2)①,显然,直线PQ不与轴垂直,可设PQ的方程为,联立椭圆方程,消去并整理得,又设,,显然,所以由韦达定理得,所以,即,所以直线方程为.(3)依题意直线AP的斜率存在且不为0,设直线AP的方程为:,则直线OM的方程为.联立直线AP与椭圆C的方程可得:,由,可得,联立直线OM与椭圆C的方程可得:,即,即即的最小值为.19.【详解】(1)根据“数列”的定义,则,故,因为成立,成立,不成立,(1,0)F y1x my=+22143x y+=x()2234690m y my++-=()11,P x y()22,Q x y0∆>122122634934my ymy ym⎧+=-⎪⎪+⎨-⎪=⎪+⎩()()1212121212212121212231223339my y y yy y y yk kx x my my m y y m y y+++=+=+==+++++++1m=-l1y x=-+(2)y k x=+y kx=()2222341616120k x k x k+++-=2Ax=-226834Pkxk-=+()2234120k x+-=221234Mxk=+202P A E A PM MAP AE x x x x xOM x x+-+-+++====+≥==k=||||||AP AEOM+()H t2t=11232n na a a a a+-=212a a-=3212a a a-=43211013552a a a a-=-⨯⨯=-≠所以1,3,5,10,152不是“数列”.(2)由是首项为2的“数列”,则,,由是等比数列,设公比为,由,则,两式作差可得,即,由是“数列”,则,对于,恒成立,所以,即对于,恒成立,则,即,解得,,,又由,,则,即,故所求的,数列的通项公式.(3)设函数,则,令,解得,当时,,则在区间单调递减,且,又由是“数列”,即,对于,恒成立,因为,,则,再结合,,,反复利用,可得对于任意的,,, 则,即,则,即,,…,,(2)H {}n a ()H t 22a t =+334a t =+{}n b q 212321log nl n ni a a a a a b ==+∑ 121231211log n i n n n i a a a a a a b +++==+∑ ()2112312121log log n n n n n a a a a a a b b +++=-+- ()21123121log n n n a a a a a a q ++=-+ {}n a ()H t 1123n n a a a a a t +-= 1n ≥n ∈N ()()211121log n n n a a t a q +++=--+1212(1)log log n n n t a t b b +++=+-1n ≥n ∈N 2232(1)log (1)log t a t q t a t q +-=⎧⎨+-=⎩22(1)(2)log (1)(34)log t t t q t t t q ++-=⎧⎨++-=⎩1t =-2q =12a =21121log a a b =+14b =12n n b +=1t =-{}n b 12n n b +=()ln 1f x x x =-+()11f x x'=-()0f x '=1x =1x >()0f x '<()ln 1f x x x =-+(1,)+∞(1)ln1110f =-+={}n a ()H t 1123n n a a a a a t +-= 1n ≥n ∈N 11a >0t >211a a t =+>11a >0t >21a >1123n n a a a a a t +=+ 1n ≥N n ∈1n a >()(1)0n f a f <=ln 10n n a a -+<ln 1n n a a <-11ln 1a a <-22ln 1a a <-ln 1n n a a <-相加可得,则,又因为在上单调递增,所以,又,所以,即,故.1212ln ln ln n n a a a a a a n +++<+++- ()12ln n n a a a S n <- ln y x =(0,)x ∈+∞12e n S nn a a a -< 1123n n a a a a a t +-= 1e n S nn a t -+-<1en S nn n S S t -+--<1en S nn n t S S -+>--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省泉州市初中毕业、升学考试测试卷 数学试题 (满分:150分;考试时间:120分钟) 一、填空题(每小题3分,共36分)
1、计算:|2|-= ;
2、某公司一名员工,月工资由1200元增加了10%后达到 元;
3、若1x ,2x 是方程210x x --=的两个根,则1212x x x x ++⋅= ;
4、梯形的上底长为4,中位线长为6,则下底长为 ;
5、如图,⊙O 为△ABC 的外接圆,若140BOC ∠=︒,则A ∠= 度;
6、函数1y x =-中自变量x 的取值范围为 ;
7、点(3,2)P 关于x 轴对称的点的坐标为 ;
8、两圆的半径分别为3、2,它们的圆心距是1,则这两圆的位置关系是 ;
9、人数相等的甲、乙两班学生参加同一次数学测验,班级平均分与方差分别为:x 甲=80,
x 乙=80,2
S 甲=240,2S x 甲=180,则测验成绩较整齐的是 班;
10、圆锥的底面半径是4,母线长为5,则圆锥的侧面积等于 ;
11、用正三角形与正方形作平面镶嵌,则在它的每一个顶点周围有3个正三角形和 个
正方形;
12、一个圆台形物体的上底面积是下底面积的13
,如果如图放在桌上,对桌面的压强是200帕,翻过来放,对桌面的压强应是 帕(压强P 、压力F 与受力面积S 之间的关系式为=
F P S
);
二、选择题(每小题4分,共24分)
每小题有四个答案,其中有且只有一个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分。

13、气温是零下4摄氏度,应记作( )
A 、-4;
B 、 4;
C 、 -︒4C ;
D 、︒4C
14、计算32
()x -的结果应是( )
A 、5x ;
B 、6x ;
C 、5x -;
D 、6x -; 15、不等式组{23
12x x x <+<的解集是( )
A 、32x < ;
B 、1x > ;
C 、 1332x << ;
D 、312
x << ; 16、如果一个角的补角是120︒,那么这个角的余角为( )
A 、30︒ ;
B 、60︒ ;
C 、90︒ ;
D 、150︒ ;
17、过点(2,3)的正比例函数解析式是( )
A 、23y x = ;
B 、6y x = ;
C 、21y x =- ;
D 、32
y x = ; 1831个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,……,则按以上规律作出的第8个圆的外切正六边形的边长为( ) A 、 72(3)3; B 、 82(3)3 ; C 、73(2 ; D 、832 ; 三、解答题(共90分)
19、(8分)计算:
310
1(1)4()23--+;
解:
20、(8分)先化简下面的代数式,再求值: 2()2()x y x x y +-+,其中3x =2y =;
解:
21、(8分)用换元法解方程:
22222
x x x x -+=-; 解;
22、(8分)如图,已知点A 、C 、B 、D 在同一直线上,AM CN =,BM DN =,M N ∠=∠。

求证:AC BD =。

证明:
23、(8分)如图,一艘船向北航行,上午8时到达B 处,看到一灯塔在它的北偏东32︒距离
为72海里的A 处,上午10时到达C 处,看到灯塔A 在它的正东方向,试求这艘船航行的速度(精确到0.01海里/时,供选用的数据:sin320.5299︒=,cos320.8480︒=,
tan320.6249︒=,cot32 1.6003︒=)
; 解:
24、(8分)为了了解中学生的身体发育情况,对某中学同年龄的一些女学生的身高进行测量,
现将测量到的部分数据列在下表(表中分组数据的单位是厘米):
分组 151.5~154.5 154.5~157.5 157.5~160.5 160.5~163.5 163.5~166.5 合计 频数
4 16 4 频率 0.1 0.2
5 0.4 0.1 1.00
(1)将上表中所缺的数据补充完整(直接填在表中);
(2)从(1)中所填完整的频率分布表中你能得到哪些结论?请写出其中两条结论与他人交流;
25、(8分)如图,△ABF 、△ADF 均内接于⊙O ,AB 是⊙O 的直径,AD 平分BAF ∠,直线l 与
⊙O 相切于D 且与AF 的延长线相交于点E 。

(1)求证:BF ∥DE ;
(2)若2DE =,3AF =,试求AD 的长;
26、(8分)已知抛物线243y x x =-+。

(1)求这条抛物线的对称轴;
(2)设⊙A 的半径为2,圆心A 的坐标是(3,
4)--,若⊙B 与⊙A 关于原点O 中心对称,请问⊙B 与这条抛物线的对称轴有怎样的位置关系?为什么?
解:
27、(13分)如图,在Rt ABC 中,90B ∠=︒,30C ∠=︒,12AB =厘米,质点P 从A
点出发沿线路AB BC -作匀速运动,质点Q 从AC 的中点D 同时..
出发沿线路DC CB -作匀速运动逐步靠近质点P ,设两质点P 、Q 的速度分别为1厘米/秒、a 厘米/秒(1a >),它们在t 秒后于BC 边上的某一点E 相遇。

(1)求出AC 与BC 的长度;
(2)试问两质点相遇时所在的E 点会是BC 的中点吗?为什么?
(3)若以D 、E 、C 为顶点的三角形与△ABC 相似,试分别求出a 与t 的值;
28、(13分)某市为更有效地利用水资源,制定了用水标准:如果一户三口之家每月用水不
超过标准用水量,按每立方米1.3元收费;如果超过标准用水量,超过部分按每立方米2.9元收费,其余仍按每立方米1.3元收费。

小红一家三人,1月份共用水11立方米,支付水费19.1元。

(1)问小红一家1月份用水是否超过标准用水量,为什么?
(2)设某户三口之家用水量为x 立方米,应交水费y 元,当此户用水量超标时,请求出y
x 之间的函数关系式,并写出自变量x 的取值范围;
(3)某单位共有20户三口之家,某月共交水费300.8元,若其中超标的用户平均每户用水12立方米,求这个月该单位用水量未超标的用户最多能有多少户?。

相关文档
最新文档