最新微电子学概论复习题及答案(详细版)..
微电子学概论复习题及答案(详细版)

微电子学概论复习题及答案(详细版)第一章绪论1.画出集成电路设计与制造的主要流程框架。
2.集成电路分类情况如何?双极型PMOSMOS型单片集成电NMOS路CMOS按结构分类BiMOSBiMOS型BiCMOS厚膜混合集成电路混合集成电路薄膜混合集成电路SSIMSI集成电路LSI按规模分类VLSIULSIGSI组合逻辑电路数字电路时序逻辑电路线性电路按功能分类模拟电路非线性电路数字模拟混合电路按应用领域分类第二章集成电路设计1.层次化、结构化设计概念,集成电路设计域和设计层次分层分级设计和模块化设计.将一个复杂的集成电路系统的设计问题分解为复杂性较低的设计级别,这个级别可以再分解到复杂性更低的设计级别;这样的分解一直继续到使最终的设计级别的复杂性足够低,也就是说,能相当容易地由这一级设计出的单元逐级组织起复杂的系统。
从层次和域表示分层分级设计思想域:行为域:集成电路的功能结构域:集成电路的逻辑和电路组成物理域:集成电路掩膜版的几何特性和物理特性的具体实现层次:系统级、算法级、寄存器传输级(也称RTL级)、逻辑级与电路级2.什么是集成电路设计?根据电路功能和性能的要求,在正确选择系统配置、电路形式、器件结构、工艺方案和设计规则的情况下,尽量减小芯片面积,降低设计成本,缩短设计周期,以保证全局优化,设计出满足要求的集成电路。
3.集成电路设计流程,三个设计步骤系统功能设计逻辑和电路设计版图设计4.模拟电路和数字电路设计各自的特点和流程A.数字电路:RTL级描述逻辑综合(Synopy,Ambit)逻辑网表逻辑模拟与验证,时序分析和优化难以综合的:人工设计后进行原理图输入,再进行逻辑模拟电路实现(包括满足电路性能要求的电路结构和元件参数):调用单元库完成;没有单元库支持:对各单元进行电路设计,通过电路模拟与分析,预测电路的直流、交流、瞬态等特性,之后再根据模拟结果反复修改器件参数,直到获得满意的结果。
由此可形成用户自己的单元库;单元库:一组单元电路的集合;经过优化设计、并通过设计规则检查和反复工艺验证,能正确反映所需的逻辑和电路功能以及性能,适合于工艺制备,可达到最大的成品率。
微电子学基础考核试卷

B.高压测试
C.高速开关测试
D.热循环测试
10.以下哪些技术被用于微电子器件的互连技术?()
A.铝互连
B.铜互连
C.金互连
D.硅互连
11.下列哪些因素会影响集成电路的功耗?()
A.电压
B.频率
C.电路设计
D.制造工艺
12.以下哪些属于CMOS工艺的优点?()
A.低功耗
B.高集成度
C.宽工作电压范围
3. NMOS晶体管在_______电平下导通,而PMOS晶体管在_______电平下导通。
4.微电子器件的_______测试是用来检测器件在高温条件下的性能稳定性。
5.金属-氧化物-半导体(MOS)结构中,金属通常指的是_______。
6.在微电子器件设计中,_______是指电路中电流流动的路径。
D.硼磷硅玻璃
6.数字集成电路的逻辑功能测试主要包括()
A.功能测试
B.真值表测试
C.边沿测试
D.状态机测试
7.以下哪些是功率MOSFET的特点?()
A.高电压
B.高电流
C.低导通电阻
D.高开关频率
8.下列哪些是集成电路封装的作用?()
A.保护芯片
B.电气连接
C.散热
D.防止信号干扰
9.半导体器件的可靠性测试中,以下哪些测试方法可以用来评估器件的寿命?()
D.易于与BiCMOS工艺兼容
13.下列哪些是微电子器件设计中考虑的安全因素?()
A.电磁兼容性
B.静电放电
C.过压保护
D.短路保护
14.以下哪些技术被用于提高集成电路的散热性能?()
A.散热片
B.热管
C.热电冷却器
微电子技术基础知识单选题100道及答案解析

微电子技术基础知识单选题100道及答案解析1. 微电子技术的核心是()A. 集成电路B. 晶体管C. 电子管D. 激光技术答案:A解析:集成电路是微电子技术的核心。
2. 以下哪种材料常用于微电子器件的制造()A. 钢铁B. 塑料C. 硅D. 木材答案:C解析:硅是微电子器件制造中常用的半导体材料。
3. 微电子技术中,芯片制造工艺的精度通常用()来衡量。
A. 纳米B. 微米C. 毫米D. 厘米答案:A解析:芯片制造工艺精度通常用纳米来衡量。
4. 集成电路中,基本的逻辑门包括()A. 与门、或门、非门B. 加法门、减法门C. 乘法门、除法门D. 以上都不对答案:A解析:与门、或门、非门是集成电路中的基本逻辑门。
5. 微电子技术的发展使得计算机的体积越来越()A. 大B. 小C. 不变D. 随机答案:B解析:微电子技术进步使计算机体积逐渐变小。
6. 以下哪个不是微电子技术的应用领域()A. 航空航天B. 农业种植C. 通信D. 医疗答案:B解析:农业种植通常较少直接应用微电子技术。
7. 在微电子制造中,光刻技术的作用是()A. 刻蚀电路B. 沉积材料C. 图案转移D. 检测缺陷答案:C解析:光刻技术主要用于图案转移。
8. 微电子封装技术的主要目的是()A. 保护芯片B. 提高性能C. 便于连接D. 以上都是答案:D解析:微电子封装技术能保护芯片、提高性能并便于连接。
9. 摩尔定律指出,集成电路上可容纳的晶体管数目约每隔()翻一番。
A. 18 个月B. 2 年C. 5 年D. 10 年答案:A解析:摩尔定律表明约每隔18 个月集成电路上晶体管数目翻番。
10. 微电子技术中的掺杂工艺是为了改变半导体的()A. 电阻B. 电容C. 电导D. 电感答案:C解析:掺杂改变半导体的电导特性。
11. 以下哪种设备常用于微电子制造中的检测()A. 显微镜B. 示波器C. 扫描仪D. 电子显微镜答案:D解析:电子显微镜常用于微电子制造中的检测。
微电子技术概论期末试题

《微电子技术概论》期末复习题试卷结构:填空题40分,40个空,每空1分,选择题30分,15道题,每题2分,问答题30分,5道题,每题6分填空题1.微电子学是以实现电路和系统的集成为目的的。
2.微电子学中实现的电路和系统又称为集成电路和集成系统,是微小化的。
3.集成电路封装的类型非常多样化。
按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。
4.材料按其导电性能的差异可以分为三类:导体、半导体和绝缘体。
5. 迁移率是载流子在电场作用下运动速度的快慢的量度。
6.PN 结的最基本性质之一就是其具有单向导电性。
7.根据不同的击穿机理,PN 结击穿主要分为雪崩击穿和隧道击穿这两种电击穿。
8.隧道击穿主要取决于空间电荷区中的最大电场。
9. PN结电容效应是PN结的一个基本特性。
10.PN结总的电容应该包括势垒电容和扩散电容之和。
11.在正常使用条件下,晶体管的发射结加正向小电压,称为正向偏置,集电结加反向大电压,称为反向偏置。
12.晶体管的直流特性曲线是指晶体管的输入和输出电流-电压关系曲线,13.晶体管的直流特性曲线可以分为三个区域:放大区,饱和区,截止区。
14.晶体管在满足一定条件时,它可以工作在放大、饱和、截止三个区域中。
15.双极型晶体管可以作为放大晶体管,也可以作为开关来使用,在电路中得到了大量的应用。
16. 一般情况下开关管的工作电压为 5V ,放大管的工作电压为 20V 。
17. 在N 型半导体中电子是多子,空穴是少子;18. 在P 型半导体中空穴是多子,电子是少子。
19. 所谓模拟信号,是指幅度随时间连续变化的信号。
20. 收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号是模拟信号。
21. 所谓数字信号,指在时间上和幅度上离散取值的信号。
22. 计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。
23. 半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、二极管、晶体管等元器件并具有某种电路功能的集成电路。
微电子学考试题库及答案

微电子学考试题库及答案1、PN结电容可分为过渡区电容和扩散电容两种,它们之间的主要区别在于扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。
2、当MOSFET器件尺寸缩小时会对其阈值电压VT产生影响,具体地,对于短沟道器件对VT 的影响为下降,对于窄沟道器件对VT的影响为上升。
4、硅-绝缘体SOI器件可用标准的MOS工艺制备,该类器件显著的优点是寄生参数小,响应速度快等。
5、PN结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等几种,其中发生雪崩击穿的条件为V B>6E g/q。
6、当MOSFET进入饱和区之后,漏电流发生不饱和现象,其中主要的原因有沟道长度调制效应,漏沟静电反馈效应和空间电荷限制效应。
8、热平衡时突变PN结的能带图、电场分布,以及反向偏置后的能带图和相应的I-V特性曲线。
答案:见最后附件9、PN结电击穿的产生机构两种;(答案:雪崩击穿、隧道击穿或齐纳击穿。
)10、双极型晶体管中重掺杂发射区目的;(答案:发射区重掺杂会导致禁带变窄及俄歇复合,这将影响电流传输,目的为提高发射效率,以获取高的电流增益。
)11、晶体管特征频率定义;(答案:随着工作频率f的上升,晶体管共射极电流放大系数下降为时所对应的频率,称作特征频率。
)12、P沟道耗尽型MOSFET阈值电压符号;(答案:)13、MOS管饱和区漏极电流不饱和原因;(答案:沟道长度调制效应和漏沟静电反馈效应。
)15、MOSFET短沟道效应种类;(答案:短窄沟道效应、迁移率调制效应、漏场感应势垒下降效应。
)16、扩散电容与过渡区电容区别。
(答案:扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。
)。
2、截止频率fT答案:截止频率即电流增益下降到1时所对应的频率值。
3、耗尽层宽度W。
答案:P型材料和N型材料接触后形成PN结,由于存在浓度差,就会产生空间电荷区,而空间电荷区的宽度就称为耗尽层宽度W。
微电子学考试题库及答案

解:由
VFB
1 1 C0 d
d 0
x
(
x)dx
和
Q0t
1 d
d
0 x0t (x)dx
得到
VFB
Qot CO
d 1 ox d
2106
0 xot (x)dx
1.6 1019 3.9 8.85 10 14
1 2
10 18
(2 10 6 )2
1 3
5 10 23
(2 10 6 )3 V
2、热平衡时突变 PN 结的能带图、电场分布,以及反向偏置后的能带图和相应的 I-V 特性曲线。(上题中已经回答,此处略)
1.纯净半导体 Si 中掺 V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂
质;相应的半导体称 N 型半导体。
2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加 电压情况下,载流子将做 漂移 运动。
4、内建电场;
答案:P 型材料和 N 型材料接触后形成 PN 结,由于存在浓度差,N 区的电子会扩散到 P 区, P 区的空穴会扩散到 N 区,而在 N 区的施主正离子中心固定不动,出现净的正电荷,同样 P 区的受主负离子中心也固定不动,出现净的负电荷,于是就会产生空间电荷区。在空间电荷 区内,电子和空穴又会发生漂移运动,它的方向正好与各自扩散运动的方向相反,在无外界 干扰的情况下,最后将达到动态平衡,至此形成内建电场,方向由 N 区指向 P 区。
3.nopo=ni2 标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积 nopo 改变否? 不变 ;当温度变化时,nopo 改变否? 改变 。
4.非平衡载流子通过 复合效应 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,
(整理)微电子器件课程复习题(1)

“微电子器件”课程复习题一、填空题1、若某突变PN 结的P 型区的掺杂浓度为163A 1.510cm N -=⨯,则室温下该区的平衡多子浓度p p0与平衡少子浓度n p0分别为( )和( )。
2、在PN 结的空间电荷区中,P 区一侧带( )电荷,N 区一侧带( )电荷。
内建电场的方向是从( )区指向( )区。
3、当采用耗尽近似时,N 型耗尽区中的泊松方程为( )。
由此方程可以看出,掺杂浓度越高,则内建电场的斜率越( )。
4、PN 结的掺杂浓度越高,则势垒区的长度就越( ),内建电场的最大值就越( ),内建电势V bi 就越( ),反向饱和电流I 0就越( ),势垒电容C T 就越( ),雪崩击穿电压就越( )。
5、硅突变结内建电势V bi 可表为( ),在室温下的典型值为( )伏特。
6、当对PN 结外加正向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。
7、当对PN 结外加反向电压时,其势垒区宽度会( ),势垒区的势垒高度会( )。
8、在P 型中性区与耗尽区的边界上,少子浓度n p 与外加电压V 之间的关系可表示为( )。
若P 型区的掺杂浓度173A 1.510cm N -=⨯,外加电压V = 0.52V ,则P型区与耗尽区边界上的少子浓度n p 为( )。
9、当对PN 结外加正向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( );当对PN 结外加反向电压时,中性区与耗尽区边界上的少子浓度比该处的平衡少子浓度( )。
10、PN 结的正向电流由( )电流、( )电流和( )电流三部分所组成。
11、PN结的正向电流很大,是因为正向电流的电荷来源是();PN结的反向电流很小,是因为反向电流的电荷来源是()。
12、当对PN结外加正向电压时,由N区注入P区的非平衡电子一边向前扩散,一边()。
每经过一个扩散长度的距离,非平衡电子浓度降到原来的()。
13、PN结扩散电流的表达式为()。
这个表达式在正向电压下可简化为(),在反向电压下可简化为()。
微电子期末考试复习题(附答案)

1. 光敏半导体、掺杂半导体、热敏半导体是固体的三种基本类型。
( × ) 2.用来做芯片的高纯硅被称为半导体级硅,有时也被称为分子级硅。
(×)电子3. 硅和锗都是Ⅳ族元素,它们具有正方体结构。
( × ) 金刚石结构4.硅是地壳外层中含量仅次于氮的元素。
( × ) 氧5.镓是微电子工业中应用最广泛的半导体材料,占整个电子材料的95%左右。
( × ) 硅6.晶圆的英文是wafer,其常用的材料是硅和锡。
( × ) 硅和锗7.非晶、多晶、单晶是固体的三种基本类型。
( √ )8.晶体性质的基本特征之一是具有方向性。
( √ )9.热氧化生长的SiO2属于液态类。
( × ) 非结晶态10.在微电子学中的空间尺寸通常是以μm和mm为单位的。
( × )um和nm 11.微电子学中实现的电路和系统又称为数字集成电路和集成系统,是微小化的。
( × ) 集成电路12.微电子学是以实现数字电路和系统的集成为目的的。
( × ) 电路13.采用硅锭形成发射区接触可以大大改善晶体管的电流增益和缩小器件的纵向尺寸。
( √ )14.集成电路封装的类型非常多样化。
按管壳的材料可以分为金属封装、陶瓷封装和塑料封装。
( √ )15.源极氧化层是MOS器件的核心。
( × ) 栅极16. 一般认为MOS集成电路功耗高、集成度高,不宜用作数字集成电路。
( × ) 功耗低,宜做17. 反映半导体中载流子导电能力的一个重要参数是迁移率。
( √ )18. 双极型晶体管可以作为放大晶体管,也可以作为开关来使用。
( √ )19. 在P型半导体中电子是多子,空穴是少子。
( × ) 空穴是多子20. 双极型晶体管其有两种基本结构:PNP型和NPN 型。
( √ )21. 在数字电路中,双极型晶体管是当成开关来使用的。
( √ )22. 双极型晶体管可以用来产生、放大和处理各种模拟电信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末考试神奇复习资料第一章 绪论1.画出集成电路设计与制造的主要流程框架。
2.集成电路分类情况如何?⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧按应用领域分类数字模拟混合电路非线性电路线性电路模拟电路时序逻辑电路组合逻辑电路数字电路按功能分类GSI ULSI VLSI LSI MSI SSI 按规模分类薄膜混合集成电路厚膜混合集成电路混合集成电路B iCMOS B iMOS 型B iMOS CMOS NMOS PMOS 型MOS双极型单片集成电路按结构分类集成电路3.微电子学的特点是什么?微电子学:电子学的一门分支学科微电子学以实现电路和系统的集成为目的,故实用性极强。
微电子学中的空间尺度通常是以微米(m, 1m =10-6m)和纳米(nm, 1nm = 10-9m)为单位的。
微电子学是信息领域的重要基础学科 微电子学是一门综合性很强的边缘学科涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试与加工、图论、化学等多个学科微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向微电子学的渗透性极强,它可以是与其他学科结合而诞生出一系列新的交叉学科,例如微机电系统(MEMS)、生物芯片等4.列举出你见到的、想到的不同类型的集成电路及其主要作用。
集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。
5.用你自己的话解释微电子学、集成电路的概念。
集成电路(integrated circuit)是一种微型电子器件或部件。
采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。
6.简单叙述微电子学对人类社会的作用。
可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。
随着微电子的发展,器件的特征尺寸越来越小第二章半导体物理和器件物理基础1.什么是半导体?特点、常用半导体材料什么是半导体?金属:电导率106~104(W∙cm-1),不含禁带;半导体:电导率104~10-10(W∙cm-1),含禁带;绝缘体:电导率<10-10(W∙cm-1),禁带较宽;半导体的特点:(1)电导率随温度上升而指数上升;(2)杂质的种类和数量决定其电导率;(3)可以实现非均匀掺杂;(4)光辐照、高能电子注入、电场和磁场等影响其电导率;硅:地球上含量最丰富的元素之一,微电子产业用量最大、也是最重要的半导体材料。
硅(原子序数14)的物理化学性质主要由最外层四个电子(称为价电子)决定。
每个硅原子近邻有四个硅原子,每两个相邻原子之间有一对电子,它们与两个原子核都有吸引作用,称为共价键。
化合物半导体:III族元素和V族构成的III-V族化合物,如,GaAs(砷化镓),InSb(锑化铟),GaP(磷化镓),InP(磷化铟)等,广泛用于光电器件、半导体激光器和微波器件。
2.掺杂、施主/受主、P型/N型半导体(课件)掺杂:电子摆脱共价键所需的能量,在一般情况下,是靠晶体内部原子本身的热运动提供的。
常温下,硅里面由于热运动激发价健上电子而产生的电子和空穴很少,它们对硅的导电性的影响是十分微小的。
室温下半导体的导电性主要由掺入半导体中的微量的杂质(简称掺杂)来决定,这是半导体能够制造各种器件的重要原因。
施主:Donor,掺入半导体的杂质原子向半导体中提供导电的电子,并成为带正电的离子。
如Si中掺的P 和As(最外层有5个价电子)受主:Acceptor,掺入半导体的杂质原子向半导体中提供导电的空穴,并成为带负电的离子。
如 Si 中掺的B(硼)(最外层只有3个价电子) N 型半导体:n 大于p (如在硅中掺入五价杂质) P 型半导体:p 大于n (如在硅中掺入三价杂质)3.能带、导带、价带、禁带(课件)半导体晶体中的电子的能量既不像自由电子哪样连续,也不象孤立原子哪样是一个个分立的能级,而是形成能带,每一带内包含了大量的,能量很近的能级。
能带之间的间隙叫禁带,一个能带到另一个能带之间的能量差称为禁带宽度。
价带:0K 条件下被电子填充的能量最高的能带 导带: 0K 条件下未被电子填充的能量最低的能带 禁带:导带底与价带顶之间能带 带隙:导带底与价带顶之间的能量差4.半导体中的载流子、迁移率(课件)半导体中的载流子:在半导体中,存在两种载流子,电子以及电子流失导致共价键上留下的空位(空穴)均被视为载流子。
通常N 型半导体中指自由电子,P 型半导体中指空穴,它们在电场作用下能作定向运动,形成电流。
迁移率:单位电场作用下载流子获得平均速度,反映了载流子在电场作用下输运能力5.PN 结,为什么会单向导电,正向特性、反向特性,PN 结击穿有几种(课件)PN 结:在一块半导体材料中,如果一部分是n 型区,一部分是p 型区,在n 型区和p 型区的交界面处就形成了pn 结载流子漂移(电流)和扩散(电流)过程保持平衡(相等),形成自建场和自建势在PN 结上外加一电压 ,如果P 型一边接正极 ,N 型一边接负极,电流便从P 型一边流向N 型一边,空穴和电子都向界面运动,使空间电荷区变窄,甚至消失,电流可以顺利通过。
如果N 型一边接外加电压的正极,P 型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。
这就是PN 结的单向导性。
正向特性:正向偏置时,扩散大于漂移, 称为PN 结的正向注入效应。
反向特性:反向偏置时,漂移大于扩散, PN 结的反向抽取作用。
击穿:PN 结反偏时,电流很小,但当电压超过临界电压时,电流会突然增大。
这一临界电压称为PN 结的击穿电压。
PN 结的正向偏压一般为0.7V ,而它的反向击穿电压一般可达几十伏,击穿电压与PN 结的结构及P 区和P 区的掺杂浓度有关。
齐纳/隧道击穿:电子的隧道穿透效应在强电场的作用下迅速增加的结果。
雪崩击穿:PN 结反偏电压增大时,空间电荷区电场增强,通过空间电荷区的电子和空穴在电场作用下获得足够大的能量,当与晶格原子碰撞时可以使满带的电子激发到导带,形成电子-空穴对,这种现象成为“碰撞电离”。
新的电子-空穴对又在电场作用下获得足够的能量,通过碰撞电离又产生更多的电子-空穴对,当反偏电压大到一定值后,载流子碰撞电离的倍增象雪崩一样,非常猛烈,使电流急剧增加,从而发生击穿。
这种击穿是不可恢复的6.双极晶体管工作原理,基本结构,直流特性(课件)*=mq τμ工作原理:基本结构:由两个相距很近的PN 结组成 直流特性:1. 共发射极的直流特性曲线2 . 共基极的直流特性曲线7.MOS 晶体管基本结构、工作原理、I-V 方程、三个工作区的特性(课件)基本结构:属于四端器件,有四个电极。
由于结构对称,在不加偏压时,无法区分器件的源和漏。
源漏之间加偏压后,电位低的一端称为源,电位高的一端称为漏。
工作原理:施加正电荷作用使半导体表面的空穴被排走,少子(电子)被吸引过来。
继续增大正电压,负空间电荷区加宽,同时被吸引到表面的电子也增加。
形成耗尽层。
电压超过一定值Vt ,吸引到表面的电子浓度迅速增大,在表面形成一个电子导电层,反型层。
I-V 方程:电流-电压表达式:线性区:Isd=βp (|Vgs|-|Vtp|-|Vds|/2) |Vds| 饱和区:Isd=(βp/2)(|Vgs|-|Vtp|)² 三个工作区的特性: 线性区(Linear region) : Vds < Vgs - Vt Ids=βn[(Vgs-Vtn)-Vds/2]Vds ——线性区的电压-电流方程 饱和区(Saturation region ): Vds >= Vgs - Vt Vgs-Vtn 不变,Vds 增加的电压主要降在△L 上,由于△L L ,电子移动速度主要由反型区的漂移运动决定()22Vtn Vgs nIds -=β截至区(Cut off ): Vgs – Vt ≤0 Ids=08.MOS 晶体管分类 答:按载流子类型分:• NMOS: 也称为N 沟道,载流子为电子。
• PMOS: 也称为P 沟道,载流子为空穴。
按导通类型分:• 增强(常闭)型:必须在栅上施加电压才能形成沟道。
• 耗尽(常开)型:在零偏压下存在反型层导电沟道,必须在栅上施加偏压才能使沟道内载流子耗尽的器件。
四种MOS 晶体管:N 沟增强型;N 沟耗尽型;P 沟增强型;P 沟耗尽型1.载流子的输运有哪些模式?对这些输运模式进行简单的描述。
答:载流子的漂移运动:载流子在电场作用下的运动载流子的扩散运动:载流子在化学势作用下运动2.讨论PMOS晶体管的工作原理,写出PMOS管的电流电压方程。
答:PMOS: 也称为P沟道,载流子为空穴。
PMOS管I~V特性电流-电压表达式:线性区:Isd=βp (|Vgs|-|Vtp|-|Vds|/2) |Vds|饱和区:Isd=(βp/2)(|Vgs|-|Vtp|)²第三章大规模集成电路基础芯片(Chip, Die):没有封装的单个集成电路。
硅片(Wafer):包含许多芯片的大圆硅片。
双极逻辑门电路类型(几种主要的):电阻耦合型---电阻-晶体管逻辑 (RTL):二极管耦合----二极管-晶体管逻辑 (DTL)晶体管耦合----晶体管-晶体管逻辑 (TTL)合并晶体管----集成注入逻辑 (I2L)发射极耦合逻辑 (ECL)1.集成电路制造流程、特征尺寸集成电路的制造过程:设计工艺加工测试封装集成电路的性能指标:集成度速度、功耗(功耗延迟积,又称电路的优值。
功耗延迟积越小,集成电路的速度越快或功耗越低,性能越好)特征尺寸(集成电路中半导体器件的最小尺度)可靠性集成电路发展的原动力:不断提高的性能/价格比主要途径:缩小器件的特征尺寸、增大硅片面积缩小尺寸:0.5μm(深亚微米)~0.25~0.18 μm(超深亚微米)~0.13 μm增大硅片:8英寸~12英寸集成电路的关键技术:光刻技术(DUV)2.CMOS集成电路特点双极型: COMS :优点是速度高、驱动能力强, 功耗低、集成度高,随着特征缺点是功耗较大、集成度较低 尺寸的缩小,速度也可以很高3. MOS 开关、CMOS 传输门特性MOS 开关(以增强型NMOS 为例):VgViTClV oV o/(Vg-Vt )11Vi/(Vg-Vt )V o=Vg-VtVi<Vg-Vt 时:输入端处于开启状态,设初始时V o=0,则Vi 刚加上时,输出端也处于开启状态,MOS 管导通,沟道电流对负载电容Cl 充电,直至V o=Vi 。