邓肯-张模型参数求取
土体邓肯—张非线性弹性模型参数反演分析

土体邓肯—张非线性弹性模型参数反演分析邓肯张非线性弹性模型是一种用于描述弹性材料反应的普遍通用的模型,它适用于许多矿物组成的各种材料,如金属、合金、复合材料、多孔介质、矿物质等。
土体及其它各种介质的相关研究,借助邓肯张非线性弹性模型表达材料性能,曾在国内外受到广泛关注。
反演分析作为实验室微观及宏观材料特性参数确定的技术工具,也被广泛应用到各类固体中。
由于土体及其它介质微观结构的复杂性,传统的正演分析法在反演其变形特性参数时具有相当的局限性。
由于邓肯张非线性弹性模型的普遍性,它被认为是反演土体与其它介质的理想模型。
然而,由于邓肯张非线性弹性模型的复杂性,无法通过简单的正演分析方法来确定相关模型参数。
为了能够准确描述土体及其它介质的变形特性,本文对邓肯张非线性弹性模型参数反演分析进行了一系列研究。
首先,根据实验测量所得的弹性模量和泊松比数据,建立了解析解的求解过程,以解决邓肯张非线性弹性模型参数反演的问题;其次,利用最小二乘法的概念,对解析解式做进一步优化处理,以期达到更高的拟合准确度;最后,利用数值拟合算法(二次函数拟合、三次样条拟合及支持向量机方法),对反演得到的数据进行多次拟合优化。
本文通过研究邓肯张非线性弹性模型参数的反演分析,实现了土体及其它介质变形特性参数的智能识别。
结果表明:经过解析解与数值拟合过程的叠加,该方法能够极大地提高参数的反演精度,从而大大降低了反演变形特性参数时的误差。
本文反演分析的结果表明,邓肯张非线性弹性模型尤其适合于反演土体及其它介质变形特性参数,这可以为后续研究工作提供很好的基础。
未来,可以继续研究其它的介质及反演方法,以进一步提高变形特性参数反演的准确性及效率。
总之,本文将邓肯张非线性弹性模型应用于反演土体及其它介质变形特性参数,研究结果证明了该模型在反演方面的可行性和有效性,为土体及其它介质物理性能参数确定提供了一种有效的方法。
3邓肯张试验精选全文

可编辑修改精选全文完整版3.Duncan-Chang 模型参数的确定实验目的:Duncan 双曲线模型是一种建立在增量广义虎克定律基础上的非线性弹性模型,它在岩土工程界为人们所熟知和广泛应用。
这一类模型可以反映应力应变关系的非线性,参数的物理意义明确和易于确定, 本实验通过对不同围压的控制来模拟模型并确定其参数。
实验原理:点绘()a εσσ~31-曲线,如图3-1所示,Kondner 等人发现,可以用双曲线来拟和这些曲线。
对某一3σ,()a εσσ~31-关系可表示成:aab a εεσσ+=-31 (3-1)渐近线σ3=常量E iE tσ1-σ3(σ1-σ3)uεa 0εa /(σ1-σ3)uεa ba图 3-1 ()a εσσ~31-关系曲线 图3-2 ()a a εσσε--31/关系曲线式中:a 和b 为试验常数。
上式也可以写成:a ab a εσσε+=-31 (3-2)以()31/σσε-a 为纵坐标,a ε为横坐标,构成新的坐标系,则双曲线转换成直线。
见图3-2。
其斜率为b ,截距为a 。
有增量广义虎克定律,如果只沿某一方向,譬如Z 方向,给土体施加应力增量ΔZσ,而保持其他方向的应力不变,可得:E zx σεΔΔ=(3-3) Ev zx σεΔΔ-= (3-4)则 xzE εσΔΔ= (3-5)zxv εεΔΔ-= (3-6)邓肯和张利用上述关系推导出弹性模量公式。
由式(3-5)得:()()aa E εσσεσσεσ∂-∂=-==313111ΔΔΔ (3-7)由此可见虎克定律中所用的弹性模量实际上是常规三轴试验()a εσσ~31-曲线的切线斜率。
这样的模量叫做切线弹性模量,可用t E 表示,见图3-1。
将式(3-1)代入式(3-7),得到:()2a tb a aE ε+= (3-8)由式(3-2)可得:ba a --=311σσε (3-9)式(3-9)代入式(3-8),得: ()[]23111σσ--=b a E t (3-10)由式(3-2)可得:当0→a ε时31→⎪⎪⎭⎫⎝⎛-=a aa εσσε(3-11)而双曲线的初始切线模量i E 为: 031→⎪⎪⎭⎫⎝⎛-=a a i E εεσσ (3-12) 见图3-1。
黄土邓肯-张模型有限元计算参数的试验

高 江 平1#李 ! 芳6
#1F长安大学 特殊地区公路工程教育部重点实验室%陕西 西安 713324& 6F长安大学 建筑工程学院%陕西 西安 713321$
摘 ! 要 !为 配 合 有 限 元 计 算 分 析 的 需 要 #从 工 地 现 场 取 样 #进 行 了 黄 土 的 室 内 三 轴 试 验 #并 对 试 验 结 果进行了分析#得到了邓肯 张非线性模型有限元计算的5个参数$黄土的有限元参数随着试样 的 压实度和试验时围压的不同而变化$在含水量保持不变的情况下#邓肯 张 C"# 模型的 5 个参数 中#参数 X%*%<.%M%’%8 均随压实度的提高而增大&D%O 随 X 的变化规律不明 显$ 在 含 水 量 和 压 实度保持不变的情况下进行三轴试验#土样的!$1d$8".%!$1d$8"&EP%C4%<. 均 随$8 的 增 大 而 增 大# #4 随$8 的增大而减小#O 随$8 变化的规律不明显$ 关键词!道路工程&邓肯 张模型&黄土&参数&试验 中 图 分 类 号 !S414F1&[S48! ! ! 文 献 标 识 码 !B! ! !
) T1Y3"强度恰好发挥*)&1Y3"则土体发生塑流#
) 值 愈 大"塑 流 变 形 愈 大"但 该 值 不 超 过 &$1 U
$8’&EP(&$1 U$8’.#
可 见"邓肯 张C (#模型具有5个参数"即)X!
*!<. !M!’!8!D!O#
4!试验简介
土 样 取 自 甘 肃 某 工 地 "按 现 行 +公 路 土 工 试 验 规 程,$8%规定的方法"经颗粒分析!液塑限试验"确 定 该
邓肯模型参数整理研究

邓肯模型参数k、n、R f整理方法研究张波(西安地质矿产勘查开发院,陕西,西安710100.)摘要:对四种石渣料进行三轴CD试验,采用全部法(全部试验点)、70~95法(应力水平70~95%的试验点)及分段法(小应变试验点求参数k、n,应力水平70~95%的试验点求参数R f)三种方法来求取Duncan-Chang模型参数k、n、R f,并采用三种方法求取的参数拟合应变应变曲线与试验曲线对比,研究了不同求取方法的优劣。
结果表明:三轴试验应力应变曲线并不完全符合双曲线关系,ε1/(σ1-σ3)~ε1关系曲线表现出明显的双线性,转折点应变约为1%;石渣料虽然是无粘性土,但其粘聚力并不为零,在工程中应予适当考虑;全部法和70~95法求取的参数拟合曲线与试验曲线较为吻合,拟合效果较好,但考虑到应力应变软化问题,70~95法求取的参数能较好的模拟试验曲线,分段法求取的参数虽然符合物理力学意义,但由于求取参数k、n仅采用小应变的试验点,拟合曲线与试验曲线差别较大,建议采用应力水平70~95%的试验点求取Duncan-Chang 模型参数k、n、R f。
关键词:三轴试验;石渣料;Duncan-Chang模型;应力-应变Duncan model parameters k, n, Rf sorting method/Zhang Bo,(Xi’an Institute of Geological And Mineral exploration,Xi’an Shannxi710100,China)Abstract: The four kinds of gravel material for triaxial CD tests, using all methods (all test points), 70 - 95 method (stress level 70 ~ 95% of test points) and section method (small strain test point demand parameter k , n, the stress level of 70 to 95% of the test points request parameter Rf) are three ways to strike a Duncan-Chang model parameters k, n, Rf, and the use of three methods of parameter fitting to strike a strain-strain curves and test curves comparative study of the pros and cons of different methods to strike.The results showed that: Triaxial stress-strain curve does not fully comply with the h yperbolic relationship, ε1 / (σ1-σ3) ~ ε1 curve showed a clear bilinear, the turning point is about 1% strain; carbide material although no viscous soil, but its cohesion is not zero, the project should be properly taken into account; all law and to strike the law from 70 to 95 parameter fitting curve is more consistent with the experimental curve, fit better, but considering the stress strain-softening problems, 70 to 95 law parameters can strike a better simulation curve, although the parameters of sub-strike law in line with the physical and mechanical sense, but to strike a parameter k, n using only a small strain of test points, the proposed curve together with the experimental curves vary greatly, the stress level is recommended 70 to 95% of the test points to strike Duncan-Chang model parameters k, n, Rf.Keywords: triaxial tests; carbide material; Duncan-Chang model; stress - strain1 引言土的本构模型研究是目前岩土工程的重要课题之一,目前主要有非线性弹性模型及弹塑性模型[1]。
不同应力路径下的邓肯_张模型模量公式

摘
要:实际工程中,土体可能处于轴向卸载、侧向加载、侧向卸载应力路径下,而邓肯–张模型是在轴向加载条件
下得到的,这限制了它的适用范围。本文模拟邓肯—张模型思路推导了不同应力路径下的切线模量公式,从而使模量 公式系列化,扩大了邓肯–张模型适用范围;根据不同应力路径试验的结果,发现公式推导中使用的假设可以得到验 证。 关键词:应力路径;邓肯–张模型;模量公式;三轴试验 中图分类号:TU431;X705 yindeshun @。 文献标识码:A 文章编号:1000–4548(2007)09–1380–06 作者简介:殷德顺(1972– ),男,山东人,讲师,主要从事岩土力学基础理论和岩土数值分析方面的研究。E-mail:
与邓肯–张模型类似,同样假设初始切线模量 Ei (Ei 为 2(σ rc − σ r ) – ε a − 2ε r 曲线上原点处的斜率) 随 轴 向 固 结 压 力 σ ac 而 变 化 , 且 在 双 对 数 纸 上 点 绘 lg( Ei / pa ) 和 lg(σ ac / pa ) 的关系,可用直线来拟合,设 直线的截距为 k、斜率为 n。
0
引
言
20世纪以来,伴随着土木水利工程的发展,高层 建筑、地下工程以及水利设施的数量迅速增多,这些 工程的建造使承担基础作用的土体处于不同荷载的作 用下。 很多学者对于土体应力–应变关系受应力路径影 响的问题进行了研究,而且这一方面的研究积累也非 常多。Lambe[1]首先提出了应力路径方法。曾国熙等[2] 的研究发现,软黏土的应力–应变关系不但具有非线 性特点,而且受应力路径的影响,正常固结饱和黏土 的应力–应变曲线可以按双曲线拟合,并可归一化; 他还将这个结论应用于软黏土的深基坑开挖非线性有 限元中。刘国彬、侯学渊[3]对上海地区有代表性软土 的卸荷模量的变化规律研究发现,软土的应力–应变 关系与应力路径密切相关,其卸荷应力–应变关系为 双曲线形式,并得到了切线卸荷模量的计算公式。应 宏伟等[4]对杭州、 上海饱和软黏土采用排水分析研究, 得到了同时考虑应力路径和应力历史影响的、用有效
[知识]在ansys中导入自定义本构模型---邓肯-张模型(转载)
![[知识]在ansys中导入自定义本构模型---邓肯-张模型(转载)](https://img.taocdn.com/s3/m/5a08b2f4534de518964bcf84b9d528ea81c72fb8.png)
在ansys中导入自定义本构模型---邓肯-张模型(转载)邓肯-张模型的关键点是材料的弹性模量随大小主应力差及小主应力(围压)的变化而变化,用APDL实现之的基本思路是:给每个单元定义一个材料号,分级施加荷载,在每个荷载步结束时提取出各单元的大小主应力,据此计算出下个荷载步的弹性模量Et,修改各单元之MP,用于下一步计算。
以下是一个简单算例,copy出去可直接运行。
常规三轴试验模拟by taomingxing,NWPU2003.7.16FINISH/CLEAR/TITLE,Numerical Simulation of three axes testing of soils /PREP7*dim,SUy,array,50 !Settlement records*dim,MaxPs,array,120 !Max history p1-p3*dim,MaxDs,array,120 !Max history Ds!*dim,EEt,array,50 !Et of elememtDuncan-Chang ModelSymbols:c-粘滞力,Fai-内摩擦角,Sf-破坏强度(p1-p3)f,Ds-应力水平,Pa-大气压,P3-围压*CREATE,Duncan-Chang !Creat Macro file*afun,deg !Unit of angle*set,Pa,1e5*set,P1,-ArrS3(i) !注意:岩土工程中应力为拉负压正*set,P3,-ArrS1(i)*if,P3,LT,0.1*Pa,thenP3=0.1*Pa !围压最小取值*endifSf=2*(c*cos(Fai)+P3*sin(Fai))/(1-sin(Fai)) !Mohr-Coulomb破坏强度(p1-p3)fDs=(P1-P3)/Sf !应力水平,*if,Ds,GT,0.95,thenDs=0.95 !应力水平最大取值*endif!判断加卸荷,如果(P1-P3)小于历史最大值视为卸荷-再加荷过程 *if,MaxPs(i),LT,P1-P3,thenEi=k*Pa*(P3/Pa)**nEt=Ei*(1-Rf*Ds)**2 !加荷情况的切线模量MaxPs(i)=P1-P3 !保存历史最大应力*elseif,MaxPs(i),GE,P1-P3Et=Kur*Pa*(P3/Pa)**n !卸荷模量*endifmp,ex,i,Et !修改单元i的Etmp,nuxy,i,Mu*END单元类型et,1,42 !平面四节点单元KEYOPT,1,3,2 !平面应变以下定义材料初始模量mp,ex,1,3.728e7 !砂土的弹性模量mp,nuxy,1,0.33mp,dens,1,1800建立几何模型blc4,0,0,0.08,0.15 !8cm X 15cm /PNUM,AREA,1/REPLOT网格划分aesize,all,0.01mat,1amesh,all边界条件nsel,s,loc,y,0d,all,Uy !底边界竖向约束nsel,s,loc,x,0d,all,Ux !左侧边界水平向约束nsel,all/replotfini/SOLUtime,0.01 !施加围压sfl,all,pres,2e5 !200kPasolve分级施加荷载,实现非线性计算荷载增量10kPa,共50级*DO,ti,1,50取出计算结果,修改弹性模量 /POST1*get,SUy(ti),node,29,u,y !Settlement record of time ti ETABLE,EtabS1,S,1 !取各单元第一主应力ETABLE,EtabS3,S,3 !取各单元第三主应力*dim,ArrS1,array,120*dim,ArrS3,array,120*do,Num,1,120 !Num为单元编号*get,ArrS1(Num),elem,Num,etab,EtabS1 !将单元结果存入数组*get,ArrS3(Num),elem,Num,etab,EtabS3*enddo/PREP7!^^修改砂土单元的Et,单元号1-120c=0 $Fai=35 $Rf=0.7 $k=400 $n=0.6 $Mu=0.33 $Kur=326.7 *do,i,1,120 !各单元循环计算*use,Duncan-Chang,c,Fai,Rf,k,n,Mu,Kur !调用Duncan-Chang宏文件*enddo!EEt(ti)=ET !保存第120单元之ET/SOLUtime,tisfl,3,pres,2e5+1e4*ti !施加荷载,增量1e4solve !对ti级荷载情况求解*ENDDO。
本构模型之邓肯张模型

主要是根据试验成果拟合推导得出
邓肯-张双曲线模型
• 该模型是一种建立在增量广义虎克定律 基础上的非线性弹性模型,可经反映应 力~应变关系的非线性,模型参数只有 8个,且物理意义明确,易于掌握,并 可通过静三轴试验全部确定,便于在数 值计算中运用,因而,得到了广泛地应 用。
邓肯张应力应变关系之双曲线图
vt GFlg(3 / pa) D (1 3) 1 R ( )( 1 sin ) K pa( 3 )n 1 f 1 3 pa 2ccos2 3 sin
2
(20)
• 这样在切线泊松比 v t 的计算公式中又 引人了 等3种材料常数,加上 E t 中的5个常数,共有8个常数。其中可 取若干不同围压的三轴试验平均值。 0 0.5 。 根据弹性理论, • 邓肯—张模型的八大参数:
2
(9)
式(9)中 E t 表示为应变 1 的函数,可将 E t 表示为 应力的函数形式。从式(1)可以得到
a(1 3) 1 1b(1 3)
(10)
将式(10)代入式(3),得
a 1 1 (11) E t 2 2 2 a b ( ) b ( ) 1 1 3 1 3 a a 1 a 1( 1( b ) b ) 1( b ) 1 3 1 3 1 3
l g E i / P a
3
/Pa成为无量纲数
1
n
l g k
l g 3/ P a
3 /Pa成为无量纲数 Pa为大气压,单位与Ei相同,以便使Ei/Pa、
K、n为无因次基数和无因次指数,是决定于土质的 试验常数,由lg(Ei/Pa)与lg(σ3/Pa)直线关系确定, 其截距为lgK、斜率为n。Ei为初始切线模量,Ei= 1/a, Pa大气压力。
邓肯-张模型参数求取

(1)根据邓肯等人总结的经验公式计算参数a 、b :总r] +(泊~[^v\[(勺「+(勺人订5 丿95% k a i ^3 J TO % k 0!5 丿』计算得到表一如下。
围压(kpa)(5一。
3开(W_。
3)95%(£1)95%(5_。
3)70%(^1)70%b (5 一a3)ulta Rf100289.4274.9300233 8 2015800103 1 0 00 261 26 382.765 09E -05 0756 079300 805.8 765 51 00317 6 564 060011960 00 102 45 976 082.12E -05 0 825 549500 1323 9 1257 71 00339 7926 730 0129 20.00 062 081610.821 39E -05 0 821882对Rf 取平均值可得:又因为a 为起始变形模量§的倒数,即1r可得表二,并绘制lg (Ei/Pa )与Ig (o3/Pa )的试验关系图如图一所示。
表二围压(kpa)a Eilg (Ei/Pa) Ig(o3/Pa) 100 5.09E-05 19648.88458 1287299947 -0.006037955 3002.12E-054716120736 2.667556168 047108330 500 1.39E-0571728.328172.8496527540 692932049(5 -二 b(q - s )f1 E 1 aPa Pa PaR^ + Rf 2 + Rf 33 = 0.80117(6 —。
3)1讥 (^1)95% 一(“)70%2At对图一中的试验点进行拟合,得到lg (Ei/Pa)与Ig(o3/Pa)的直线关系: 尸0.8033X+2.2914.根据公式:E=5③可知K、n分别代表lg (Ei/Pa)与lg(a 3/Pa)直线的截距和斜率,故可得K=2.2914: n=0.8033oE-v 法在常规三轴试验中,轴向应变£ 1与侧向应变一£ 3之间也存在双曲线关系,经 变换之后可得如下公式:由上式知一£ 3/8 1与一£ 3为直线关系,但实际上,二者并不是严格的直线关 系,需先对试验结果进行収舍,然后选取某一区间进行拟合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 根据邓肯等人总结的经验公式计算参数a 、b :
b =1(σ1−σ3)ult =(ε1σ1
−σ3)95%−(
ε1σ1−σ3)70%(ε1)95%−(ε1)70%
()()111195%70%13131395%70%112
a 1i a a a ult
E p p p εεεεσσσσσσ==
⎛⎫⎛⎫⎛⎫
⎡⎤+-+ ⎪ ⎪ ⎪⎣⎦
---⎝⎭⎝⎭⎝⎭
()131313ult
()()-f
f f
R b σσσσσσ-=
=-
计算得到表一如下。
f 80117.03
3
21=++=
Rf Rf Rf Rf
又因为a 为起始变形模量E i 的倒数,即
E i =1a
可得表二,并绘制lg (Ei/Pa) 与lg(σ3/Pa)的试验关系图如图一所示。
表二
图一:承德中密砂lg (Ei/Pa) 与lg(σ3/Pa)的试验关系图
对图一中的试验点进行拟合,得到lg (Ei/Pa) 与lg(σ3/Pa)的直线关系:y=0.8033x+2.2914.
根据公式:
E i=Kp a(σ3 p a )
n
可知K、n分别代表lg (Ei/Pa) 与lg(σ3/Pa)直线的截距和斜率,故可得K=2.2914;n=0.8033。
E-ν法
在常规三轴试验中,轴向应变ε1与侧向应变—ε3之间也存在双曲线关系,经
变换之后可得如下公式:
−ε3
ε1
=f−Dε3
由上式知—ε3/ε1与—ε3为直线关系,但实际上,二者并不是严格的直线关系,需先对试验结果进行取舍,然后选取某一区间进行拟合。
本文中选取试验曲线的后半部分进行拟合,得到不同围压下相应的拟合曲线,如下图所示。
图二:—ε3/ε1与—ε3关系曲线
对应不同围压下的拟合曲线分别为:
σ3=100kpa时,y=2.8211x+0.4719;
σ3=300kpa时,y=2.8809x+0.4381;
σ3=500kpa时,y=3.258x+0.4177.
f和D分别为—ε3/ε1与—ε3直线的截距和斜率,结果如下表所示。
又因为νi=f=G -Flg (σ3/Pa )
故可做νi—lg (σ3/Pa )关系曲线如下所示。
图三:νi—lg (σ3/Pa )关系曲线
G 和F 分别为νi—lg (σ3/Pa )线性关系曲线的截距和斜率绝对值,由上图可知: G=0.4721;F=0.0765.
E-B 法:
E-B 法中引入体变模量B 代替切线泊松比νt ,即
B =E t
3(1−2νt )
根据邓肯等人的经验公式:
B =
∆p ∆εv =(σ1−σ3)70%
3(εv )70%
其中,(σ1−σ3)70%与εv70%为(σ1−σ3)达到70%(σ1−σ3)f 时的偏差应力和体应变
的试验值.计算结果如下.
3
B =K b p a (σ3p a
)m
变换之后有:
lg (B p a ⁄)=lgK b +mlg (σ3p a ⁄)
其中, lgK b 和m 分别为lg (B p a ⁄)与lg (σ3p a ⁄)直线关系的截距和斜率.由lg (B p a ⁄)与
lg (σ3p a ⁄)关系曲线(图四)拟合得到拟合直线为y=1.5089x —3.723. 进而可得:
m=1.5089;K b =0.000189.
图四:lg (B p a ⁄)与lg (σ3p a ⁄)关系曲线。