邓肯张模型参数作业

合集下载

邓肯张模型

邓肯张模型
1 1 Et Rf Ei 1 1 Ei ( 1 3 ) f
2
R f 值一般在0.75~1.0之间
(8)
(9)
式(9)中 Et 表示为应变 1 的函数,可将 E 表示为应 t 力的函数形式。从式(1)可以得到
a(1 3 ) 1 1 b(1 3 )
常规三轴压缩试验的结果按
1 a b1 1 2
(2)
的关系进行调整,其中a为截距,b为斜率
在常规三轴压缩试验中,由于 d 2 d 3 0 ,所以切 线模量为
Et d ( 1 3 ) a d 1 (a b1 )2
(3)
在试验的起始点,
则: Ei 1
2
2
(11)
将式(8)、式(4)代入式(11),得
1 3 Et Ei 1 R f ( 1 3 ) f
(12)
根据莫尔-库仑强度准则,有
2c cos 2 3 sin (1 3 ) f 1 sin
(13)
又有
替, 偏应力σ 1-σ
3
3
用(σ 2+σ 3)/2 来代
用σ 1-(σ 2+σ 3)/ 2 来代替, 摩尔—库
仑(Mohr-Coulomb)准则不变 2.2.作为三维计算中的一种近似模拟方法, 用球应力p 、广 义剪应力q 分别代替二维计算模型中相应于σ
3
和σ 1-σ 3的
位置,保持摩尔— 库仑准则不变,
(10)
将式(10)代入式(3),得
Et a ab( 1 3 ) a 1 b( ) 1 3
2

1 b( 1 3 ) a 1 1 b ( ) 1 3

3邓肯张试验精选全文

3邓肯张试验精选全文

可编辑修改精选全文完整版3.Duncan-Chang 模型参数的确定实验目的:Duncan 双曲线模型是一种建立在增量广义虎克定律基础上的非线性弹性模型,它在岩土工程界为人们所熟知和广泛应用。

这一类模型可以反映应力应变关系的非线性,参数的物理意义明确和易于确定, 本实验通过对不同围压的控制来模拟模型并确定其参数。

实验原理:点绘()a εσσ~31-曲线,如图3-1所示,Kondner 等人发现,可以用双曲线来拟和这些曲线。

对某一3σ,()a εσσ~31-关系可表示成:aab a εεσσ+=-31 (3-1)渐近线σ3=常量E iE tσ1-σ3(σ1-σ3)uεa 0εa /(σ1-σ3)uεa ba图 3-1 ()a εσσ~31-关系曲线 图3-2 ()a a εσσε--31/关系曲线式中:a 和b 为试验常数。

上式也可以写成:a ab a εσσε+=-31 (3-2)以()31/σσε-a 为纵坐标,a ε为横坐标,构成新的坐标系,则双曲线转换成直线。

见图3-2。

其斜率为b ,截距为a 。

有增量广义虎克定律,如果只沿某一方向,譬如Z 方向,给土体施加应力增量ΔZσ,而保持其他方向的应力不变,可得:E zx σεΔΔ=(3-3) Ev zx σεΔΔ-= (3-4)则 xzE εσΔΔ= (3-5)zxv εεΔΔ-= (3-6)邓肯和张利用上述关系推导出弹性模量公式。

由式(3-5)得:()()aa E εσσεσσεσ∂-∂=-==313111ΔΔΔ (3-7)由此可见虎克定律中所用的弹性模量实际上是常规三轴试验()a εσσ~31-曲线的切线斜率。

这样的模量叫做切线弹性模量,可用t E 表示,见图3-1。

将式(3-1)代入式(3-7),得到:()2a tb a aE ε+= (3-8)由式(3-2)可得:ba a --=311σσε (3-9)式(3-9)代入式(3-8),得: ()[]23111σσ--=b a E t (3-10)由式(3-2)可得:当0→a ε时31→⎪⎪⎭⎫⎝⎛-=a aa εσσε(3-11)而双曲线的初始切线模量i E 为: 031→⎪⎪⎭⎫⎝⎛-=a a i E εεσσ (3-12) 见图3-1。

邓肯-张EB模型参数求解的二次优化法

邓肯-张EB模型参数求解的二次优化法

邓肯-张EB模型参数求解的二次优化法
陈立宏
【期刊名称】《水力发电》
【年(卷),期】2017(043)008
【摘要】邓肯-张非线性弹性模型是土石坝工程中最常用的本构模型.水利行业《土工试验规程》中根据应力水平75%和90%两点法进行计算时,得到的结果往往并不合理,有时n值还可能出现负数.一般的适线法仅仅对单个试样结果进行优化,而并不是针对整组试验结果,因此无法得到最优结果.提出了一种二步优化的参数计算方法,首先对每级围压下单个试样的试验成果采用适线法优化,得到每级围压下的参数a、b.在此基础上,计算得到参数K、n、Rf的初值.然后以邓肯-张理论为基础,根据获得的参数初值针对整组试验成果进行二次优化,以理论计算与试验的应力应变曲线差的平方和最小为目标函数,从而得到EB模型的主要参数.该方法简单实用,能够快速和准确地获得邓肯-张模型参数,并结合糯扎渡大坝堆石料三轴试验数据,对方法进行了验证.
【总页数】5页(P52-55,75)
【作者】陈立宏
【作者单位】北京交通大学土建学院,北京100044
【正文语种】中文
【中图分类】TU413
【相关文献】
1.复杂应力路径下邓肯-张EB模型适用性研究 [J], 卢声亮;迟世春;相彪
2.邓肯-张E-B模型的ANSYS二次开发及应用 [J], 孙明权;陈姣姣;刘运红
3.模型参数对邓肯-张非线性弹性模型应用影响研究 [J], 高志军;姜亭亭;黄满刚;王运霞
4.剪切速率对黄土力学性质及邓肯-张模型参数的影响 [J], 童国庆;张吾渝;高义婷;杨若辰
5.ADINA软件中邓肯—张模型的二次开发与应用 [J], 陈志坚;江涛;陈松
因版权原因,仅展示原文概要,查看原文内容请购买。

土力学实验报告_3

土力学实验报告_3

课程名称: 岩土工程测试技术课程编号: S021D05 课程类型: 非学位课考核方式:学科专业: 岩土工程年级: 2007研姓名: 学号:河北工程大学2007~2008学年第二学期研究生课程论文报告三轴压缩试验测定邓肯张模量参数实验报告一. 实验内容测定试样密度、含水量、界限含水率;采用静三轴仪不固结不排水剪试验测不排水强度参数及定邓肯张模量参数。

二. 实验原理1不排水强度参数以主应力差为纵坐标, 轴向应变为横坐标, 绘制主应力差与轴向应变关系曲线。

取曲线上主应力差的峰值作为破坏点, 无峰值时, 取15%轴向应变时的主应力差值作为破坏点。

以剪应力为纵坐标, 法向应力为横坐标, 在横坐标轴以破坏时的应力平面上绘制破损应力圆, 并绘制不同周围压力下破损应力圆的包线(破损应力圆的公切线), 求出不排水强度参数。

-模型)参数2邓肯张模量(Eν详见《三轴试验原理与应用技术》P117-P122(朱思哲等, 中国电力出版社2003年6月第一版)三. 仪器设备1应变控制式三轴仪: 由压力室、轴向加压设备、周围压力系统、反压力系统、孔隙水压力量测系统、轴向变形和体积变化量测系统组成。

2 附属设备: 包括压样器;环刀、饱和器、切土器、原状土分样器、切土盘、承膜筒和对开圆膜。

3 天平: 称量200g,最小分度值0.01g;称量1000g,最小分度值0.1g。

4 橡皮膜: 弹性乳胶膜, 厚度0.1-0.2mm。

5 透水板:直径与试样相等, 其渗透系数大于试样的渗透系数, 使用前在水中煮沸并泡于水中。

四. 实验步骤1试样制备本试验采用的原状土样, 试样制备, 步骤如下:⑴将土样筒按标明的上下方向放置, 剥去蜡封和胶带, 开启土样筒取出土样。

检查土样结构, 当确定土样已受扰动或取土质量不符合规定时, 舍弃此组土样。

⑵用环刀切取试样时, 在环刀内壁涂一薄层凡士林, 刃口向下放在土样上, 将环刀垂直下压, 并用切土刀沿环刀外侧切削土样, 边压边削至土样高出环刀, 采用钢丝锯或切土刀整平环刀两端土样, 擦净环刀外壁, 称环刀和土的总质量。

黄土邓肯-张模型有限元计算参数的试验

黄土邓肯-张模型有限元计算参数的试验

高 江 平1#李 ! 芳6
#1F长安大学 特殊地区公路工程教育部重点实验室%陕西 西安 713324& 6F长安大学 建筑工程学院%陕西 西安 713321$
摘 ! 要 !为 配 合 有 限 元 计 算 分 析 的 需 要 #从 工 地 现 场 取 样 #进 行 了 黄 土 的 室 内 三 轴 试 验 #并 对 试 验 结 果进行了分析#得到了邓肯 张非线性模型有限元计算的5个参数$黄土的有限元参数随着试样 的 压实度和试验时围压的不同而变化$在含水量保持不变的情况下#邓肯 张 C"# 模型的 5 个参数 中#参数 X%*%<.%M%’%8 均随压实度的提高而增大&D%O 随 X 的变化规律不明 显$ 在 含 水 量 和 压 实度保持不变的情况下进行三轴试验#土样的!$1d$8".%!$1d$8"&EP%C4%<. 均 随$8 的 增 大 而 增 大# #4 随$8 的增大而减小#O 随$8 变化的规律不明显$ 关键词!道路工程&邓肯 张模型&黄土&参数&试验 中 图 分 类 号 !S414F1&[S48! ! ! 文 献 标 识 码 !B! ! !
) T1Y3"强度恰好发挥*)&1Y3"则土体发生塑流#
) 值 愈 大"塑 流 变 形 愈 大"但 该 值 不 超 过 &$1 U
$8’&EP(&$1 U$8’.#
可 见"邓肯 张C (#模型具有5个参数"即)X!
*!<. !M!’!8!D!O#
4!试验简介
土 样 取 自 甘 肃 某 工 地 "按 现 行 +公 路 土 工 试 验 规 程,$8%规定的方法"经颗粒分析!液塑限试验"确 定 该

邓肯-张模型参数变化对计算结果的影响

邓肯-张模型参数变化对计算结果的影响

!"#$% ?
# 值的变化对最大位移及应力水平 " 的影响 " 1 变化率 8 ; > ?B@ > =B< = E =B< E ?BF " , 8 02 > &A B &C > &A B =? > &A B @< > &A B =? > &< B G? " , 变化率 8 ; > ?BC > <B@ = > <B@ > AB? " 变化率 8 ; E ?B& E =BD = > <BD > =BD
邓肯 ! 张模型在国内外广泛使用近 )’ 年, 大量的 试验成果表明, 由于取样制样、 试验仪器、 试验方法与 过程、 试验人员操作熟练程度、 整理分析资料等诸多因 素, 使其 * 个参数变化较大,! 值可成倍甚至成量级相
[# B )] , 用于计算所得结果的差别也较大。邓肯等人 差
曾对该模型的参数作了初步讨论, 对几种不同类型的
!


!
偏应力 ("# ! ") ) 不太大时, 就能达到较高应力水平 ’ , ( 从而使 " > 降低, 变形增大。 ’ F( G "# ! ") ) "# ! ") ) ?, 黏聚力 # (#) 黏聚力 # 的增减对水平位移 ’ 4 、 垂直位移 ’ H 、 应 力水平 ’ 的影响见图 # B ) 及表 #。
[-] 土给出了参数的范围, 并编制了图表 。这些图表变
化范围较大, 不同的取值对计算结果的影响没作进一 步讨论。 本文依据文献 [(] 分别增减 * 个参数, 用有限元法 考察对一个均质土坝的位移和应力水平的影响程度。 考察某一参数时, 其余 / 个参数不变, 即保持试验取值。

邓肯-张模型参数反演的两种不适定问题

邓肯-张模型参数反演的两种不适定问题

关键词: 邓肯一 张模 型 ;参数 反 演 ;不适 定 问题 ;莫 尔一 库 仑 准则
中图分类号 : T U4 1 文献标志码 : A 文章 编 号 : 1 0 0 0 —0 8 4 4 ( 2 0 1 5 ) 增刊 1 —0 0 0 1 -0 6
DOI : 1 0 . 3 9 6 9 / J . i s s n . 1 0 0 0 —0 8 4 4 . 2 0 1 5 . 0 2 . 0 5 6 3
( 1 . S t a t e E n g i n e e r i n g L a b o r a t o r y o f Hi g h wa y Ma i n t e n a n c e T e c h n o l o g y, C h a n g s h a U n i v e r s i t y o f S c i e n c e& T e c h n o l o g y。 C h a n g s h a,Hu n a n 4 1 0 0 0 4 , C h i n a;2 . S c h o o l o f T r a f f i c a n d Tr a n s p o r t a t i o n E n g i n e e r i n g。C h a n g s h a U n i v e r s i t y o f S c i e n c e& T e c h n o l o g y, C h a n g s h a,Hu n a n 4 1 0 0 0 4 , C h i n a;3 . C o — I n n o v a t i o n C e n t e r f o r Ad v a n c e d C o n s t r u c t i o a n d Ma i n t e n a n c e T e c h n o l o g y o f Mo d e r n Tr a n s p o r t a t i o n I n f r a s t r u c t u r a l F a c i l i t y,C h a n g s h a,Hu n a n 4 1 0 0 0 4 。C h i n a)

应用MATLAB确定邓肯-张双曲线模型中的K,n参数

应用MATLAB确定邓肯-张双曲线模型中的K,n参数

应用MATLAB确定邓肯-张双曲线模型中的K,n参数简介:接合承德中密砂常规三轴试验数据,介绍应用Matlab语言编写计算及绘图程序来处理试验数据的方法,可显著提高试验研究的数据处理效率和结果的可视化程度。

关键字:Matlab 三轴试验邓肯-张模型1 前言基于广义胡克定律的线弹性理论形式简单,参数少,物理意义明确,而且在工程界有广泛深厚的基础,得以应用于许多工程领域中。

早期土力学中的变形计算主要是基于线弹性理论的,只有在计算机得到迅速发展之后,非线性理论模型才得到较广泛的应用。

邓肯-张模型是建立在增量广义胡克定律基础之上的变模量的弹性模型,可以反映土变形的非线性,并在一定程度上反映土变形的弹塑性,很容易为工程界所接受,加之所用参数和材料参数不多,物理意义明确,只需用常规三轴压缩试验即可确定这些参数及材料常数适应的土类比较广,所以该模型为岩土工程界所熟知,并得到了广泛的应用,成为土的最为普及的本构模型之一。

本文主要是应用MATLAB编写计算及绘图程序来处理承德中密砂常规三轴试验数据。

2 基于MATLAB的计算过程实现现场的观测数据经过采集和整理后,按照一定的格式把数据存储在数据文件中,然后可以使用MATLAB丰富的数值运算功能可以非常容易地编制出数据处理程序,先用函数fope n()打开数据文件,fid=fopen(‘filename’,’r’)再用fscanf 函数依次从文件中读取格式化数据来完成对各变量地赋值,其使用语法为:matrix=fscanf(fid,format)。

本文由于数据不是太多,所以在计算过程中没有采取调用存储文件地形式。

直接在计算过程中输入试验数据计算。

2.1 数据的处理对第一组数据,通过编写Matlab语言,由轴向应变和应力差的试验数据可以作出~()和~双曲线关系图形,主要用到的MATLAB命令为:plot(x1,y1);axis([0 0.04 0 3]) ;hold on%(1)plot(x1, x1./y1);a=polyfit(x1, x1./y1,1);t1=0:0.001:0.07;plot(x1, x1./y1,'.',t1,a(1)*t1 +a(2))%(2)其中x1代表第一组轴向应变,x2代表第一组应力差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档