广州市中考数学一模试卷

合集下载

2024年广东省广州市九强校中考数学一模试卷(含解析)

2024年广东省广州市九强校中考数学一模试卷(含解析)

2024年广东省广州市九强校中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−7的倒数是( )A. 7B. 17C. −7 D. −172.下列计算正确的是( )A. 3mn−2mn=1B. (m2n3)2=m4n6C. (−m)3⋅m=m4D. (m+n)2=m2+n23.2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000用科学记数法表示为( )A. 32×107B. 3.2×108C. 3.2×109D. 0.32×1094.在平面直角坐标系xOy中,点M(−4,2)关于x轴对称的点的坐标是( )A. (−4,2)B. (4,2)C. (−4,−2)D. (4,−2)5.若某三角形的三边长分别为3,4,m,则m的值可以是( )A. 1B. 5C. 7D. 96.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数−x(单位:环)及方差S2(单位:环 2)如表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )甲乙丙丁−x9889S2 1.60.830.8A. 甲B. 乙C. 丙D. 丁7.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是( )A. BE=DFB. ∠BAE=∠DAFC. AE=AFD. ∠AEB=∠AFD8.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =nx 的图象的四个分支上,则实数n 的值为( )A. −3B. −13C. 13D. 39.如图,在平面直角坐标系中,AB //DC ,AC ⊥BC ,CD =AD =5,AC =6,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是( )A. 11.4B. 11.6C. 12.4D. 12.610.已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)经过点(−1,−1),(0,1),当x =−2时,与其对应的函数值y >1.有下列结论:①abc >0;②关于x 的方程ax 2+bx +c−3=0有两个不等的实数根;③a +b +c >7.其中,正确结论的个数是( )A. 0B. 1C. 2D. 3二、填空题:本题共6小题,每小题3分,共18分。

2024年广东省广州市部分学校中考数学一模试卷及答案解析

2024年广东省广州市部分学校中考数学一模试卷及答案解析

2024年广东省广州市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)=()A.﹣2024B.2024C.D.2.(3分)如图所示的几何体由6个小正方体组合而成,其三视图中为轴对称图形的是()A.主视图B.左视图C.俯视图D.均不是3.(3分)学校举行投篮比赛,某班有7名同学参加了比赛,比赛结束后,老师统计了他们各自的投篮数,分别为3,5,5,6,6,4,6.下列关于这组数据描述不正确的是()A.众数为6B.平均数为5C.中位数为5D.方差为1 4.(3分)下列运算不正确的是()A.B.C.(a2b)3=a6b3D.5.(3分)等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.6.(3分)关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,若a,b,c是△ABC的三边长,则这个三角形一定是()A.等边三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.(3分)如图,为了测量河两岸A,B两点间的距离,在河的一岸与AB垂直的方向上取一点C,测得AC=200米,∠ACB=α,则AB=()A.200•tanα米B.200•sinα米C.200•cosα米D.米8.(3分)九年级同学去距离学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,剩余同学坐汽车出发,结果他们同时到达.已知汽车的速度是自行车的2倍,设骑车的同学速度为x千米/小时,则下列方程正确的是()A.B.C.D.9.(3分)如图,在△ABC中,AC=BC,∠ACB=100°,⊙O与AB,BC分别切于点D,C,连接CD.则∠ACD的度数为()A.50B.40C.30D.2010.(3分)在平面直角坐标系中,P是双曲线上的一点,点P绕着原点O顺时针旋转90°的对应点P1(m,n)落在直线y=﹣2x+1上,则代数式的值是()A.B.C.﹣8D.二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)龙行龘龘,前程朤朤,生活䲜䲜,截止至2024年2月10日晚上8时,中央广播电视总台2024年春节联欢晚会“竖屏看春晚”直播播放量达到4.23亿次,将4.23亿用科学记数法表示为.12.(3分)已知A(﹣2,y1),B(3,y2)在抛物线y=x2+x+m上,则y1y2.(填“<”或“>”或“=”)13.(3分)某中学对九年级共450名学生进行“综合素质”评价,评价的结果分A,B,C,D共4个等级.现随机抽取30名学生的评价结果作为样本进行分析,绘制了如图所示的条形图,据此估算全级学生中“综合素质”评价等级为“B”学生约有人.若将评价等级按所占比例绘制成扇形统计图,则评价等级为“D”对应扇形的圆心角度数为__________°.14.(3分)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=,则GH的最小值为.15.(3分)如图,正方形ABCD的边AB=2,点E、F为正方形边的中点,以EF为半径的扇形交正方形的边于点G、H,则长为.16.(3分)如图,在△AOB中,,点O到线段AB的距离为.以点O为圆心,以2为半径作优弧DE,交AO于点D,交BO于点E,点M在优弧DE上从点D开始移动,到达点E时停止,连接AM,BM,则△ABM面积S 的取值范围是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解不等式:3(2x+7)>23.18.(4分)如图,AB⊥CF,DF⊥CF,AC∥DF,AB=DE,求证:BF=CE.19.(6分)如图所示,在平面直角坐标系中xOy中,点A(﹣4,1),△ABC的三个顶点都在格点上.将△ABC在坐标系中平移,使得点A平移至图中点D(1,﹣1)的位置,点B对应点E,点C对应点F.(1)点B的坐标为,点F的坐标为;(2)在图中作出△DEF,并连接AD;(3)求在线段AB平移到线段DE的过程中扫过的面积.20.(6分)已知:.(1)化简A;(2)从条件①、条件②这两个条件中选择一个作为已知,求A的值.条件①:若点P(a,a+2)是反比例函数图象上的点;条件②:若a是方程x2+x=8﹣x的一个根.21.(8分)甲、乙两位同学相约玩纸牌游戏.(1)有4张背面相同的纸牌A,B,C,D,其正面分别有四个不同的数字,将这四张纸牌洗匀后,背面朝上放在桌面上.若甲从中随机选择一张牌翻开,求他选中的牌面数字是整数的概率;(2)双方约定:两人各摸出一张牌,放回洗匀后再摸一张,若摸出的两张牌面数字之积为正数,那么甲赢,否则乙赢.这个规定是否公平?为什么?22.(10分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(h)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象求出血液中药物浓度下降阶段y关于x的函数表达式;(2)问:血液中药物浓度不低于5微克/毫升的持续时间为多少小时?23.(10分)如图,AB为⊙O的直径,C是圆上一点,D是BC的中点.(1)尺规作图:过点D作AB的垂线,交半圆AB于点E,交线段直径AB于点F(保留作图痕迹,不写作法);(2)点P是弧AE上一点,连接BP,CP,AC=6,BF=2.①求tan∠BPC的值;②若CP为∠ACB的角平分线,求CP的长.24.(12分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l 平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?25.(12分)如图,等边三角形ABC边长为2,点D是直线BC上一点,连接AD,将AD 绕点A逆时针旋转120°后得到AE.连接DE,AC与DE交于点F.(1)若AD⊥BC,求线段EF的长;(2)连接CE.①记点E的运动路径为l.试判断l与AC的位置关系;②在点D在运动的过程中,CE是否有最小值?如果有,请求出,并求此时的值;如果没有,请说明理由.2024年广东省广州市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据二次根式的性质:化简即可.【解答】解:,故选:A.【点评】本题考查了二次根式的性质,熟练掌握二次根式的性质是关键.2.【分析】先得到该几何体的三视图,再根据轴对称图形的定义即可求解.【解答】解:如图所示:是轴对称图形的是左视图.故选:B.【点评】本题考查了简单组合体的三视图,轴对称图形,关键是得到该几何体的三视图.3.【分析】根据相关定义求出对应数值分别判断,即可得到答案.【解答】解:A、6出现3次,出现次数最多,故众数是6,该项描述正确,不符合题意;B、,故该项描述正确,不符合题意;C、这组数据按由小到大排列是:3,4,5,5,6,6,6.最中间的是第四个数5,中位数为5,故该项描述正确,不符合题意;D、方差为,故该项描述错误;符合题意,故选:D.【点评】此题考查了求众数,中位数,方差及平均数,熟练掌握众数,中位数,方差及平均数的求法是关键.4.【分析】根据立方根、二次根式的加减、积的乘方、分式的加减运算法则计算判断即可.【解答】解:A、,故此选项符合题意;B、,故此选项不符合题意;C、(a2b)3=a6b3,故此选项不符合题意;D、,故此选项不符合题意;故选:A.【点评】本题考查了分式的加减,整式的运算,立方根,熟练掌握它们的运算法则是解题的关键.5.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:解得:x≥3故选:B.【点评】本题考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.6.【分析】由关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,可得Δ=(﹣2c)2﹣4(a2+b2)=0,整理得c2=a2+b2,根据勾股定理逆定理判断△ABC的形状即可.【解答】解:∵关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,∴Δ=(﹣2c)2﹣4(a2+b2)=0,整理得c2=a2+b2,∴△ABC是直角三角形,故选:B.【点评】本题考查了一元二次方程根的判别式,勾股定理逆定理.解题的关键在于对知识的熟练掌握与灵活运用.7.【分析】已知AC=200米,∠ACB=α,根据正切定义可得AB.【解答】解:tan∠ACB=tanα=,AB=200•tanα(米),故选:A.【点评】本题考查了解直角三角形的应用,关键是掌握正切定义.8.【分析】设骑车学生的速度为x千米/小时,则汽车的速度为2x,先分别表示出骑自行车学生和乘汽车学生所用时间,然后根据题中所给的等量关系,即可列出方程.【解答】解:设骑车学生的速度为x千米/小时,则汽车的速度为2x,∵20分钟=小时,∴,故选:C.【点评】本题考查了分式方程,理解题意建立等量关系是解答本题的关键.9.【分析】由AC=BC,∠ACB=100°,求得∠B=∠A=40°,由⊙O与AB,BC分别切于点D,C,根据切线长定理得BD=BC,则∠BCD=∠BDC,所以2∠BCD+40°=180°,求得∠BCD=70°,则∠ACD=∠ACB﹣∠BCD=30°,于是得到问题的答案.【解答】解:∵AC=BC,∠ACB=100°,∴∠B=∠A=×(180°﹣100°)=40°,∵⊙O与AB,BC分别切于点D,C,∴BD=BC,∴∠BCD=∠BDC,∵∠BCD+∠BDC+∠B=180°,∴2∠BCD+40°=180°,∴∠BCD=70°,∴∠ACD=∠ACB﹣∠BCD=100°﹣70°=30°,故选:C.【点评】此题重点考查等腰三角形的性质、三角形内角和定理、切线长定理等知识,求得∠B=40°并且证明BD=BC是解题的关键.10.【分析】过点P作PQ⊥y轴于点Q,过点P1作P1Q1⊥y轴于点Q1,由题意可得出OQ1=n,P1Q1=﹣m,2m+n=1.易证△PQO≌△P1Q1O(AAS),即得出PQ=OQ1=n,PQ =P1Q1=﹣m,即可求出P(﹣n,m),进而得出,最后将所求式子通分变形为,再整体代入求值即可.【解答】解:如图,过点P作PQ⊥y轴于点Q,过点P1作P1Q1⊥y轴于点Q1,∵P1(m,n),且在直线y=﹣2x+1上,∴OQ1=n,P1Q1=﹣m,n=﹣2m+1,∴2m+n=1.由旋转的性质可知∠POP1=90°,PO=P1O,∴∠POQ+∠P1OQ1=90°.又∵∠POQ+∠OPQ=90°,∴∠OPQ=∠P1OQ1.∵∠PQO=∠P1Q1O=90°,∴△PQO≌△P1Q1O(AAS),∴PQ=OQ1=n,PQ=P1Q1=﹣m,∴P(﹣n,m).∵P是双曲线上的一点,∴,即.∴.故选:A.【点评】本题为一次函数与反比例函数的综合题,考查函数图象上的点的坐标特征,三角形全等的判定和性质,旋转的性质,坐标与图形,代数式求值.画出大致图象并正确作出辅助线构造全等三角形是解题关键.二、填空题(本大题共6小题,每小题3分,共18分.)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,据此解答即可.【解答】解:4.23亿=423000000=4.23×108,故答案为:4.23×108.【点评】本题考查科学记数法的表示方法.熟练掌握科学记数法书写格式是关键.12.【分析】根据a=1>0,且,进而可求解.【解答】解:∵a=1>0,对称轴为,∴当x=﹣2与x=1时,函数值都都等于y2,∴当时函数值随自变量的增大而增大;∵,∴y1<y2,故答案为:<.【点评】本题考查了二次函数的性质,熟练掌握其性质是解题的关键.13.【分析】先根据抽取学生30名列方程求出a,再根据360°乘以等级为“D”占比求出对应的圆心角度数.【解答】解:由图得:13+3a+5+a=30,解得a=4,所以等级为“B”学生约有3a=12人,等级为“D”对应扇形的圆心角度数为,故答案为:30,36.【点评】本题考查了条形统计图和扇形统计图,解题的关键是掌握相关知识的灵活运用.14.【分析】连接AF,利用三角形中位线定理,可知GH=AF,求出AF的最小值即可解决问题.【解答】解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=2,∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF=AB=×2=,∴GH=,即GH的最小值为,故答案为:.【点评】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.15.【分析】根据EG=EF=EH=2,BE=CE=1,可求出∠BEG=∠CEH=60°,所以∠GEH=60°,再根据弧长公式计算即可.【解答】解:∵正方形ABCD的边AB=2,点E、F为正方形边的中点,∴EG=EF=EH=2,BE=CE=1,∴cos∠BEG=cos∠CEH==,∴∠BEG=∠CEH=60°,∴∠GEH=60°,∴长为=π.故答案为:π.【点评】此题考查了弧长公式、正方形的性质、解直角三角形,正确求出∠GEH=60°是解题的关键.16.【分析】由勾股定理可求出AB=12,再根据面积法可求出点O到线段AB的距离;由图易知△ABM的AB边最小高为M在D时,最大高为M在过O垂直于AB的直线上,求出最小高和最大高,进而求出△ABM的面积为S的取值范围.【解答】解:在△AOB中,,∴,,∴∠OAB=60°,∠ABO=30°,设点O到线段AB的距离为h,又,∴,∴点O到线段AB的距离为;如图:Ⅰ.由图可知,△ABM的AB边最小高为M在D时,∵OD=2,AO=6,∴AD=4,∴,∴△ABM的面积为S的最小值=.Ⅱ.在过点O且垂直于AB的直线上时,△ABM的AB边的高最大,∴△ABM的AB边的高最大值为,∴△ABM的面积为S的最大值为=.∴△ABM的面积为S取值范围为:.故答案为:;.【点评】本题考查了勾股定理以及直线与圆的位置关系,正确作出图形是解决此题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】不等式的两边同时除以一个负数,要改变不等号的方向.先去括号、再移项,然后合并同类项,最后系数化1求得不等式的解集.【解答】解:3(2x+7)>23,6x+21>23,6x>2,.【点评】本题考查解一元一次不等式,熟练掌握不等式的性质是关键.18.【分析】运用AAS证明△ABC≌△DEF,得到EF=BC,再根据等式的性质即可得出结论.【解答】证明:∵AB⊥CF,DE⊥CF,∴∠ABC=∠DEF=90°.∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).∴EF=BC.∴EF﹣BE=BC﹣BE.即:BF=CE.【点评】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定方法.19.【分析】(1)根据点D的位置,结合平移的性质可得出答案.(2)运用平移的性质作出图形即可;(3)线段AB沿AD的方向平移到DE的过程中扫过的图形为平行四边形ADEB,求出面积【解答】解:(1)点B的坐标为(﹣2,4);∵A(﹣4,1),D(1,﹣1),C(0,3)∴由平移得点F的坐标为:(5,1),故答案为:(﹣2,4);(5,1);(2)如图,△DEF和AD即为所作:(3)线段AB沿AD的方向平移到DE的过程中扫过的图形为平行四边形ADEB,.【点评】本题考查作图—平移变换,解题的关键是掌握平移的性质及平行四边形面积求法.20.【分析】(1)利用分式的减法法则化简即可;(2)①由点P在反比例函数图象上,即可得出a(a+2)的值,代入A化解后的分式中即可得出结论;②a是方程x2+x=8﹣x的一个根,即可得出a(a+2)的值,代入A化解后的分式中即可得出结论.【解答】解:(1)=﹣=;(2)①点P(a,a+2)是反比例函数图象上的点,∴a(a+2)=8,∴A==;②∵a是方程x2+x=8﹣x的一个根,∴a2+a=8﹣a,∴a(a+2)=8,∴A==;【点评】本题考查了反比例函数图象上点的坐标特征,一元一次方程的解,分式的运算,把分式化简是解题的关键.21.【分析】(1)直接根据概率公式计算即可.(2)首先画出树状图或列表列出可能的情况,再计算出甲赢和乙赢的概率,最后进行比较即可.【解答】解:(1)共有4张牌,正面是整数的情况有2种,所以摸到正面是整数的纸牌的概率是;(2)这个规定否公平,理由如下:画树状图如下:共产生16种结果,每种结果出现的可能性相同,其中两张牌面数字之积为正数的有8种,∴甲赢的概率为,乙赢的概率为,∴甲赢的概率=乙赢的概率,故这个规定否公平.【点评】本题考查的是用列表法或树状图法求概率以及概率公式,掌握概率公式使解题的关键.22.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=2分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,10)代入得:6=4k,解得:k=,故直线解析式为:y=x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,10)代入得:10=,解得:a=40,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=5,则5=x,解得:x=2,当y=5,则5=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于2微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.23.【分析】(1)在半圆AB上取点E,使,根据垂径定理的推论可知AB⊥DE,由此即可完成作图;(2)①连接OD,证明△ACB∽△OFD,设的半径为r,利用相似三角形的性质得r=5,AB=2r=10,由勾股定理求得BC,得到,即可得到;②过点B作BG⊥CP交CP于点G,证明△CBG是等腰直角三角形,解直角三角形得到,由得到,解得,由CP=CG+GP即可求解.【解答】解:(1)如图,在半圆AB上取点E,使,连接DE交AB于F,∴DE⊥AB,(2)解:①连接OD,∵D是BC的中点∴CD=BD,∴∠CAB=∠DOB,∵AB为⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DFO=90°,∴△ACB∽△OFD,∴,设⊙O的半径为r,则,解得r=5,经检验,r=5是方程的解,∴AB=2r=10,∴,∴,∵∠BPC=∠CAB,∴;②如图,过点B作BG⊥CP交CP于点G,∴∠BGC=∠BGP=90°,∵∠ACB=90°,CP是∠ACB的平分线,∴∠ACP=∠BCP=45°,∴∠CBG=45°,∴,∴,∴,∴,∴.【点评】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键.24.【分析】(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,连接CN,CM,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.25.【分析】(1)根据等边三角形的性质得到点D是BC的中点,,求得,得到,根据旋转的性质得到,∠DAE=120°,得到∠FAE=90°,由勾股定理求得EF=2;(2)①将AB绕点A逆时针旋转120°后得到AM.将AD绕点A逆时针旋转120°后得到AE.证明△ABD≌AME(SAS),证明∠MEA=∠CAE,得l∥AC;②点E在定直线上运动,当CE⊥AC时CE最短.过A作AH⊥CD于H,根据全等三角形的性质得到AH=CE,DH=AC=2,根据等边三角形的性质得到,根据勾股定理即可得到结论.【解答】解:(1)∵△ABC是等边三角形,AD⊥BC,∴点D是BC的中点,,∵AB=2,∴,∴∵将AD绕点A逆时针旋转120°后得到AE,∴,∴∠ADE=∠E=30°,∴∠FAE=90°,∵由勾股定理得,AE2+AF2=EF2,∴解得,EF=2;(2)①l∥AC,理由如下:如图,将AB绕点A逆时针旋转120°得到AM,连接ME,∴AB=AM,∠BAM=120°,∵将AD绕点A逆时针旋转120°后得到AE,∴AD=AE,∠DAE=120°,∴∠DAB=∠EAM,∴△ABD≌AME(SAS)∴∠AME=∠ABD=120°,∴∠MEA+∠MAE=60°,∵∠DAE=120°,∠BAC=60°,∴∠DAB+∠CAE=60°,∴∠MAE+∠CAE=60°,∴∠MEA=∠CAE,∴ME∥AC,即l∥AC;②∵点E在定直线上运动,当CE⊥AC时CE最短.过A作AH⊥CD于H,∴∠AHD=∠ACE=90°,∵∠CAM=120°﹣∠BAC=60°,∴∠CAD=60°﹣∠EAM,∵,∴∠ADH=180°﹣∠AHD﹣∠BAH﹣∠DAB=60°﹣∠DAB,∴∠ADH=∠CAE,∵AD=AE,∴△ADH≌△EAC(AAS),∴AH=CE,DH=AC=2,∵,∴BD=1,∵,∴,∴.所以,CE的最小值为,.【点评】本题考查了三角形综合,等边三角形的性质,全等三角形的判定和性质勾股定理以及30°角所对直角边等于斜边的一半等知识.正确作出辅助线是解题的关键。

2024广东省广州市天河区中考一模数学试题含答案解析

2024广东省广州市天河区中考一模数学试题含答案解析

2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。

2023年广东省广州市荔湾区广雅中学中考一模数学试题

2023年广东省广州市荔湾区广雅中学中考一模数学试题

2023年广东省广州市荔湾区广雅中学中考一模数学试题一、单选题1.2022年11月20日第二十二届世界杯足球赛在卡塔尔拉开帷幕,这是历史上首次在中东国家境内举行、也是第二次在亚洲举行的世界杯足球赛.世界杯是一场足球盛宴,以下是4只参赛队伍的图标,其中是中心对称图形的是( )A .B .C .D .2.下列运算正确的是( )A .a +2a =3a 2B .(a 2)3=a 5C .a 3·a 4=a 12D .(-3a )2= 9a 2 3.在平面直角坐标系中,第四象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是( )A .(5,4)B .(4,5)C .(4,﹣5)D .(5,﹣4)4.已知点()13,y ,()22,y -,()32,y 都在反比例函数6y x=-的图象上,那么1y 、2y 与3y 的大小关系是( )A .312y y y <<B .321y y y <<C .123y y y <<D .132y y y <<5.不等式组2561x x x ≤+⎧⎨<⎩ 解集在数轴上表示正确的是( ) A . B . C . D . 6.某工厂生产空气净化器,实际平均每天比原计划多生产100台空气净化器,实际生产1200台空气净化器的时间与原计划生产900台空气净化器所需时间相同.若设原计划每天生产x 台空气净化器,则根据题意可列方程为( )A .1200900100x x =+ B .12009000100x x -=- C .9001200100x x=+ D .1200900100x x -= 7.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是»AC 的中点,则D ∠的度数是( )A .30︒B .40︒C .50︒D .60︒ 8.抛物线()221y x -+=的顶点坐标是( )A .()21--,B .()21-,C .()21-,D .()21,9.一次函数y kx b =+中,若kb <0,且y 随x 的增大而减小,则其图象可能是( ) A . B . C . D .10.如图,抛物线2()y x a h =-+(a >0)与y 轴交于点B ,直线y =13x 经过抛物线顶点D ,过点B 作BA ∥x 轴,与抛物线交于点C ,与直线y =13x 交于点A ,若点C 恰为线段AB 中点,则线段OA 长度为( )AB .C D二、填空题11.因式分解:222x -=.12.已知5x y =-,2xy =,计算334x y xy +-的值为.13.函数y x 的取值范围是.14.如图,小明用长为3m 的竹竿CD 作测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12m ,则旗杆AB 的高为m .15.如图,点A 的坐标为(2,0),点B 的坐标为(0,6),将线段AB 绕点B 顺时针旋转90°后得到A 'B ,若反比例函数y =k x的图象经过A ′B 的中点D ,则k 的值为.三、解答题16.计算:201332-⎛⎫+- ⎪⎝⎭. 17.解方程:2432x x -+=.18.先化简:222334442x x x x x x x x++-÷⋅-+-,然后x 从0、1、2三个数中选一个你认为合适的数代入求值.19.如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''△,连接AA ',2AC =.(1)求A A '的长;(2)若120∠=︒,求BAA '∠的度数.20.为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A .“北斗卫星”;B .“5G 时代”;C .“东风快递”;D .“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:(1)九(1)班共有________名学生;(2)补全折线统计图;(3)D 所对应扇形圆心角的大小为________;(4)小明和小丽从A 、B 、C 、D 四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.21.某快递公司为了提高工作效率,计划购买A 、B 两种型号的机器人来搬运货物,已知每台A 型机器人比每台B 型机器人每天多搬运20吨,并且3台A 型机器人和2台B 型机器人每天共搬运货物460吨.(1)求每台A 型机器人和每台B 型机器人每天分别搬运货物多少吨?(2)每台A 型机器人售价3万元,每台B 型机器人售价2万元,该公司计划采购A 、B 两种型号的机器人共20台,必须满足每天搬运的货物不低于1800吨,请根据以上要求,求出A 、B 两种机器人分别采购多少台时,所需费用最低﹖最低费用是多少?22.如图,已知ABC V 是等边三角形,以AB 为直径作O e ,交BC 边于点D ,交AC 边于点F ,作DE AC ⊥于点E .(1)求证:DE 是O e 的切线;(2)若ABC V 的边长为2,求EF 的长度.23.如图,二次函数2y ax bx c =++经过点 ()1,0A -,()5,0B ,()0,5C -,点D 是抛物线的顶点,过D 作x 轴垂线交直线BC 于E .(1)求此二次函数解析式及点D 坐标(2)连接CD ,求三角形CDE 的面积(3)当2>0ax bx c ++时,x 的取值范围是___________。

2024年广东省广州市番禺区初三一模数学试题含答案解析

2024年广东省广州市番禺区初三一模数学试题含答案解析

2024年广东省广州市番禺区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中运算正确的是( )A .321a a -=B .()11a a --+=-C .()22330-+-=D .()3326a a -=【答案】C【分析】本题考查了合并同类项,去括号,有理数的乘方和积的乘方,根据合并同类项,有理数的乘方,去括号和积的乘方运算法则逐项判断即可,熟知相关计算法则是解题的关键.【详解】A 、32a a a -=,原选项计算错误,不符合题意;B 、()1121a a a a a --+=+-=-,原选项计算错误,不符合题意;C 、()2233990-+-=-+=,原选项计算正确,符合题意;D 、()3328a a -=-,原选项计算错误,不符合题意;故选:C .2.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题主要考查了轴对称图形和中心对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,根据中心对称图形的定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,熟练掌握轴对称图形和中心对称图形的概念是解题的关键.【详解】A .不是轴对称图形,是中心对称图形,故本选项不符合题意;B .即是轴对称图形,又是中心对称图形,故本选项符合题意;C .是轴对称图形,不是中心对称图形,故本选项不符合题意;D .是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B .3.实数a 、b 、c 在数轴上的位置如图所示,则下列各式中正确的个数有( )(1)0abc >;(2)c a b ->>-;(3)11b a> ;(4)c a >A .1个B .2个C .3个D .4个4.深中通道是世界级“桥、岛、隧、水下互通”跨海集群工程,总计用了320000万吨钢材,320000这个数用科学记数法表示为( )A .93.210⨯B .60.3210⨯C .43210⨯D .53.210⨯5.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于13【答案】B【分析】根据事件发生的可能性大小判断即可.【详解】解:A 、点数和为1,是不可能事件,不符合题意;B 、点数和为6,是随机事件,符合题意;C 、点数和大于12,是不可能事件,不符合题意;D 、点数的和小于13,是必然事件,不符合题意.故选:B .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图, 在ABCD Y 中,4AB =,6BC =,将线段AB 水平向右平移a 个单位长度得到线段EF ,若四边形ECDF 为菱形,则a 的值可以为( )A .2B .3C .23D .32【答案】A【分析】本题主要考查了菱形的判定,平行四边形的性质和判定,平移的性质,熟练掌握菱形的判定方法是解决问题的关键.先证得四边形ECDF 为平行四边形,当4CD CE ==时,ECDF 为菱形,此时642a BE BC CE ==-=-=,即可解答.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD ∥,即CE DF ∥,4CD AB ==,∵将线段AB 水平向右平移a 个单位长度得到线段EF ,∴AB EF CD ∥∥,∴四边形ECDF 为平行四边形,∴当4CD CE ==时,ECDF 为菱形,此时642a BE BC CE ==-=-=.故选:A7.下列命题中是真命题的是( )A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为60︒C .对角线相等的四边形是矩形D .有一个角是60︒的等腰三角形是等边三角形【答案】D【分析】本题考查了命题与定理,根据多边形外角和、正多边形内角和,矩形的判定,等边三角形的判定,对各个选项逐个分析,即可得到答案.【详解】A 、正六边形的外角和,和正五边形的外角和相等,均为360︒,原选项不符合题意;B 、正六边形的内角和为720︒, 则每一个内角为120︒,原选项不符合题意;C 、对角线相等的平行四边形是矩形,原选项不符合题意;D 、有一个角是60︒的等腰三角形是等边三角形,原选项符合题意;故选:D .8.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3 月份的生产成本为12.8 万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x ,则根据题意所列方程正确的是( )A .()213112.8x -=B .()213112.8x -=C .()212.8113x -=D .()213112.8x +=【答案】A【分析】此题考查了一元二次方程的应用,设每个月生产成本的下降率为x ,由题意可列方程()213112.8x -=,根据题意列出方程是解题的关键.【详解】解:设每个月生产成本的下降率为x ,由题意得:()213112.8x -=,故选:A .9.如图,抛物线²y ax c =+经过正方形OABC 的三个顶点A ,B ,C , 点B 在y 轴上, 则ac 的值为( )A .1-B .2C .3-D .2-∵正方形OABC ,10.若关于x 的一个一元一次不等式组的解集为a x b <<(a b 、为常数且a b <),则称2a b +为这个不等式组的“解集中点”.若关于x 的不等式组 24x x mx m >+⎧⎨-<⎩的解集中点大于方程13233x x ⎛⎫+=+ ⎪⎝⎭的解且小于方程264x x +=的解, 则 m 的取值范围是( )A .01m <<B .0m <C .1m >D .21m -<<二、填空题11.若分式32x-有意义,则实数x 的取值范围是 .【答案】2x ≠【分析】根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:2-x≠0,∴x≠2,故答案为:2x ≠.【点睛】本题考查了分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.12.分解因式:23x y y -= .【答案】()()y x y x y +-【详解】试题分析:原式提公因式得:y (x 2-y 2)=()()y x y x y +-考点:分解因式点评:本题难度中等,主要考查学生对多项式提公因式分解因式等知识点的掌握.需要运用平方差公式.13.方程31512x x=+的解为 .【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.14.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3= .【答案】25°【分析】如图,由平行线的性质可求得∠4,结合三角形外角的性质可求得∠3.【详解】解:如图,∵a ∥b ,∴∠4=∠2=55°,又∵∠4=∠1+∠3,∴∠3=∠4-∠1=55°-30°=25°.故答案为:25°.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键.15.如图, 在ABC 中,AB AC =, 点 O 在边AC 上, 以O 为圆心, 3 为半径的圆恰好过点C ,且与边AB 相切于点D ,交边BC 于点E ,则劣弧DE 的长是 (结果保留π ) .∵AB 是切线,∴90ODB ∠=︒,∵AB AC =,OE OC =,∴B ACB OEC ∠=∠=∠,∴OE ∥A B ,16.如图,已知在直角三角形ABO 中,点 B 的坐标为(-,将ABO 绕点O 旋转至A B O ''△的位置,使点A '落在边OB 上,点B '落在反比例函数ky x=的图象上,则k 的值为.三、解答题17.解不等式组: 23535x x x x +⎧≥⎪⎨⎪-<+18.如图, 点E F 、在线段BC 上, AB CD ∥,A D ∠=∠, BE CF =.求证:AB CD =.【答案】证明见解析.【分析】本题考查了平行线的性质和全等三角形的判定与性质知识,根据平行线的性质可得B C ∠=∠,进而根据AAS 证明ABE DCE △≌△,再由全等三角形的性质即可求证,解题的关键是掌握全等三角形的判定与性质.【详解】∵AB CD ∥,∴B C ∠=∠,在ABE 和DCE △中A DB CBE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABE DCE ≌,∴AB CD =.19.如图, 在ABCD Y 中, 30DCB ∠=︒.(1)操作:用尺规作图法过点D 作AB 边上的高DE ;(保留作图痕迹,不要求写作法)(2)计算∶在(1)的条件下, 若4=AD , 6AB =, 求梯形EBCD 的面积.∴DE 即为所求;(2)∵四边形ABCD 是平行四边形,∴6CD AB ==,由(1)得:DE AB ⊥,20.已知 221121x x A x x x x -⎛⎫=-÷ ⎪+++⎝⎭.(1)化简A ;(2)若已知 210x x --=,求A 的值.21.已知一次函数2y x m =+的图象与反比例函数 ()0k y k x=>的图象交于A ,B 两点.(1)当点A 的坐标为()2,1时.①求m , k 的值;②分别作出上述一次函数与反比例函数的大致图象(不用列表),并依据图象,直接写出不等式 2k x m x>+的解集;(2)若将函数2y x m =+的图象沿y 轴向下平移4个单位长度后,点A ,B 恰好关于原点对称,求m 的值.联立232y x y x =-⎧⎪⎨=⎪⎩,解得:21x y =⎧⎨=⎩或124x y ⎧=-⎪⎨⎪=-⎩,根据图象可知:当12x <-或02x <<时2k x m x>+;(2)一次函数2y x m =+的图象沿y 轴向下平移4个单位长度后,可得联立24y x m k y x =+-⎧⎪⎨=⎪⎩,∴()2240x m x k +--=,∵点A ,B 恰好关于原点对称,∴点A ,B 的横坐标之和为0,22.《广州市生活垃圾分类管理条例》实施以来,我区多次组织共产党员到社区进行垃圾分类宣传志愿服务,带头破解小区垃圾分类难点、堵点问题,社区垃圾分类文明实践蔚然成风.生活垃圾分为四类:可回收物、餐厨垃圾、有害垃圾、其他垃圾,某校“玩转数学”小组在对当地垃圾分类调查中,绘制了如图所示的垃圾分类扇形统计图.(1)求图中可回收物所在的扇形的圆心角的度数;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.15万元.若某镇某月生活垃圾清运总量为2000吨,请估计该月可回收物可创造的经济总价值是多少万元?(3)为了进一步宣传垃圾分类知识,提升青少年环保参与意识,提高居民分类质量,学校开展了“桶边督导进小区,少年助力齐参与”垃圾分类宣传志愿者活动,每班每次从志愿报名参加的同学中派2名同学参加.甲班经选拔后,决定从小组3名男生和2名女生中随机抽取2名同学在党员教师的带领下参加小区的宣传服务活动,求所抽取的学生中恰好是一男一女的概率.23.如图,以Rt ABC △的一边AB 为直径作ABC 的外接圆O ,B ∠的平分线BE 交AC 于D ,交O 于E ,过E 作EF AC ∥交BA 的延长线于F .(1)判断EF 是否是O 切线,并证明你的结论;(2)连接AE ,若AE =10AB =,求点C 到直线AB 的距离.∵BE是ABC∠的平分线,∴12ABE CBE ABC∠=∠=∠,∴AE CE=,∴OE AC⊥,24.过点(B , (C-的抛物线2y bx c=++与y轴交于点A.(1)求b,c的值;(2)直线BC交y轴于点D,点E是抛物线2y bx c=++上位于直线AB下方的一动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②当12ABC FAE∠=∠时,求点E的坐标.∴90EFG BHG ∠=∠= ,∴FEG HBG ∠=∠,由2232222y x x =--得(D 又()0,2A - ,()4,2B ,C ∴4BD =,22AC =,25.如图,正方形ABCD 中,点E 在边AD 上(不与端点A ,D 重合),点A 关于直线BE 的对称点为点F , 连接CF , 设ABE α∠=.(1)求BCF ∠的大小 (用含α的式子表示);(2)过点C 作CG AF ⊥,垂足为G , 连接DG . 试判断DG 与CF 的位置关系, 并证明所得的结论;(3)将ABE 绕点B 顺时针旋转90︒得到CBH , 点E 的对应点为点H , 连接BF HF ,. 当sin α=BFH △的形状,并说明理由.∵正方形ABCD ,点∴BC AB BF ==,∴CBF ABC ∠=∠-∴BCF BFC ∠=∠=∵90AGC ADC ∠=︒=∠∴A D G C 、、、四点共圆,∴45AGD ACD ∠=∠=∵FBE ABE α∠=∠=,α由旋转的性质可知,∴HBF EBH ∠=∠-∵90BEA α∠=︒-,∴HBN BEA ∠=∠,∵HBN BEA ∠=∠,。

2024年广东省广州市中考模拟数学试题

2024年广东省广州市中考模拟数学试题

2024年广东省广州市中考模拟数学试题一、单选题1.如图,几何体由5个相同的小正方体搭成.它的主视图是( )A .B .C .D .2.下列各式中运算正确的是( ) A .321a a -= B .()11a a --+=- C .()22330-+-=D .()3326a a -=3.石墨烯堪称目前世界上最薄的材料,约为0.3纳米(1纳米0.000000001=米).与此同时,石墨烯比金刚石更硬,是世界上最坚硬又最薄的纳米材料.0.3纳米用科学记数法可以表示为( )米. A .8310-⨯B .90.310-⨯C .9310-⨯D .10310-⨯4.不透明的盒子放有三张大小、形状及质地相同的卡片,卡片上分别写有李白《峨眉山月歌》,李白《渡荆门送别》和王维《寄荆州张丞相》三首诗,小明从盒子中随机抽取两张卡片,卡片上诗的作者都是李白的概率( ) A .13B .14C .15D .165.端午节,赛龙舟,小亮在点P 处观看400米直道竞速赛,如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30︒方向上,终点B 位于点P 的北偏东60︒方向上,400AB =米,则点P 到赛道AB 的距离为( )米.A .B .C .87D .1736.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-7.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .-14 C .28 D .-568.如图,在等边ABC V 中,D 是边AC 上一点,连接BD ,将BCD △绕点B 按逆时针方向旋转60︒,得到BAE V ,连接ED ,若10BC =,9BD =,则四边形ADBE 的周长是( )A .19B .20C .28D .299.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1610.如图,正方形ABCD 的边长为4,点E ,F 分别在边DC BC ,上,且BF CE =,AE 平分CAD ∠,连接DF ,分别交AE AC ,于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN AC ⊥,垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM PN +的最小值为③2CF GE AE =⋅;④ADM S =△ )A .1B .2C .3D .4二、填空题11.因式分解:29x y y -=.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3=.13.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l 为.14.若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第象限.15.如图,在平面直角坐标系xOy 中,反比例函数(0)k y x x=>的图象与半径为10的O e 交于,A B 两点,若60AOB ∠=︒,则k 的值是.16.如图,已知正方形ABCD 的边长为2,E 为AB 的中点,F 是AD 边上的一个动点,连接EF ,将AEF △沿EF 折叠得HEF V ,若延长FH 交边BC 于点M ,则DH 的取值范围是.三、解答题17.计算:()11113tan303π-⎛⎫-+--︒ ⎪⎝⎭18.先化简,再求值:222211121x x x x x ++⎛⎫+÷ ⎪--+⎝⎭,其中4x =.19.为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.20.某文具店准备购进甲、乙两种圆规,若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元. (1)求购进甲、乙两种圆规的单价各是多少元;(2)文具店购进甲、乙两种圆规共100个,每个甲种圆规的售价为15元,每个乙种圆规的售价为12元,销售这两种圆规的总利润不低于480元,那么这个文具店至少购进甲种圆规多少个?21.如图,四边形ABCD 为正方形,点A 在y 轴上,点B 在x 轴上,且4OA =,2OB =,反比例函数()0ky k x=≠在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的解析式;(2)若点N 为直线OD 上的一动点(不与点O 重合),在y 轴上是否存在点M ,使以点A 、M 、C 、N 为顶点的四边形是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.22.如图是一个山坡的纵向剖面图,坡面DE 的延长线交地面AC 于点B ,点E 恰好在BD 的中点处,60CBD ∠=︒,坡面AE 的坡角为45°,山坡顶点D 与水平线AC 的距离,即CD 的长为.(1)求BE 的长度;(2)求AB 的长度.(结果保留根号)23.如图,在Rt ABC △中,90ABC ∠=︒,点P 是斜边AC 上一个动点,以BP 为直径作O e ,交BC 于点D ,与AC 的另一个交点为E ,连接DE ,BE .(1)当»»DPEP =时,求证:AB AP =; (2)当3AB =,4BC =时.①是否存在点P ,使得BDE V 是等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由;②连接DP ,点H 在DP 的延长线上,若点O 关于DE 的对称点Q 恰好落在CPH ∠内,求CP 的取值范围.24.已知抛物线22y x mx n =-++经过点(2,23)m -. (1)用含m 的式子表示n ;(2)当0m <时,设该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,ABC V 的外接圆与y 轴交于另一点D (点D 与点C 不重合),求点D 的坐标;(3)若点()13,E y -,()2,F t y ,()31,G m y -在该抛物线上,且当34t <≤时,总有123y y y <<,求3y 的取值范围.25.如图,在四边形ABCD 中,点N ,M 分别在边BC ,CD 上.连接AM ,AN ,MN ,45MAN ∠=︒.(1)【实践探究】如图①,四边形ABCD 是正方形. (ⅰ)若6CN =,10MN =,求CMN ∠的余弦值; (ⅱ)若1an 3t BAN =∠,求证:M 是CD 的中点;(2)【拓展】如图②,四边形ABCD 是直角梯形,AD BC ∥,90C ∠=︒,12CD =,16AD =,12CN =,求DM 的长.。

2024年广东省广州市花都区初三一模数学试题含答案解析

2024年广东省广州市花都区初三一模数学试题含答案解析

2024年广东省广州市花都区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2的倒数是()A.-2B.12-C.12D.22.下列图形中,是中心对称图形的是()A.B.C.D.【答案】D【分析】本题主要考查了中心对称图形,解答本题的关键是掌握中心对称的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.根据中心对称图形的定义逐项判断即可.【详解】解:选项A、B、C均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项D能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形.故选:D .3.数学上一般把n a a a a a ⋅⋅⋅⋅ 个记为( )A .na B .n a +C .na D .a n 【答案】A【分析】根据乘方的意义解答即可.【详解】解:数学上一般把n a a a a a ⋅⋅⋅⋅ 个记为n a .故选A .【点睛】本题考查了乘方的意义,一般地,n 个相同的因数a 相乘,即...a a a a ⋅⋅⋅计作n a ,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.4.下列计算正确的是( )A .()232639ab a b =B .236a a a ⋅=C .523a a -=D .()222ab a b +=+【答案】A【分析】本题考查实数的运算,利用积的乘方法则,同底数幂乘法法则,合并同类项法则及完全平方公式逐项判断即可.熟练掌握相关运算法则是解题的关键.【详解】解:A 、()232639ab a b =,则A 符合题意;B 、235a a a ⋅=,则B 不符合题意;C 、523a a a -=,则C 不符合题意;D 、()2222a b a b ab +=++,则D 不符合题意;故选:A .5.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b>B .0a b ->C .0a b -<D .0ab <6.如图,已知:四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点, 的半径为1,P是O上的点,且位于右上方的小正方形内,则APBO∠等于()A.30︒B.45︒C.60︒D.90︒7.一次函数y=kx+b中,y随x的增大而减小,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=kx+b中,y随x的增大而减小,∴k<0.∵b<0,∴此函数的图象经过第二、三、四象限,不经过第一象限.故选:A.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.8.如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA=OC;②∠BAD =∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个B.2个C.3个D.4个【答案】C【详解】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但无法得到AC⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.AC=米,则坡面AB的长度是9.如图,河堤横断面迎水坡AB的坡度i=30()A.B.30米C.米D.10米10.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-二、填空题11有意义,则a 的值可以是 .(写出一个即可)【答案】3(答案不唯一)【分析】本题考查二次根式有意义的条件,根据被开方数不小于零的条件进行解题即可.掌握被开方数不小于零的条件是解题的关键.【详解】解:由题意可知-≥a30a≤解得3故答案为:3(答案不唯一)12.因式分解:2218x-= .【答案】2(x+3)(x﹣3)【分析】先提公因式2后,再利用平方差公式分解即可.【详解】2218x-=2(x2-9)=2(x+3)(x-3).故答案为:2(x+3)(x﹣3)【点睛】考点:因式分解.13.某校九年级(1)班对全班50名学生进行了“一周(按7天计算)做家务劳动时间(单位:小时)”的统计,并整理成频率分布表如下:一周做家务劳动时间(单位:小时)012345频率0.10.10.20.30.20.1①该班学生一周做家务劳动时间为3小时的有名同学;②该班学生一周做家务劳动时间的中位数为小时.【答案】15 3【分析】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息.(1)根据频率=频数÷总数,可求出一周做家务劳动时间为3小时的学生数量;(2)根据中位数的定义把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【详解】解:(1)0.35015÷=(名),故答案为:15.(2)根据题意可知共50人,其中第25和第26人的平均数是中位数,将数据从小到大排列,第25个和第26个为3、3,+÷=,所以这组数据的中位数为:(33)23故答案为:3.14.如图,带有刻度的直尺结合数轴作图,已知图中的虚线相互平行,若点A 在数轴上表示的数是2-,则点B 在数轴上表示的数是 .15.某盏路灯照射的空间可以看成如图所示的圆锥,它的高A O =8米,母线AB 与底面半径O B 的夹角为α,tanα=43,则圆锥的底面积是 平方米.(结果保留π)16.如图,在Rt ABC △中,AC BC =,90ACB ∠=︒,O 为斜边AB 的中点,P 为ABC 形外一点,60BPC ∠=︒,①若2AC =,则OC = ;②若PB =PO =PC 的值为 .∵AC BC =,ACB ∠∴222AB AC ==∵O 为斜边AB 的中点,∴OC AB ⊥,12OC =故答案为:2;(2)∵OC AB ⊥,OC则:63,BP CP OP OP '===∴2214PP OP OP ''=+=,∵90,60COB CPB ∠=︒∠=︒,∴36090OCP OBP ∠+∠=︒-︒∴36090OCP OCP '∠+∠=︒-︒三、解答题17.解不等式组:()31512x x x x ⎧-+≤⎪⎨>-⎪⎩【答案】23x -<≤【分析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在正方形ABCD 中,CE ⊥DF .若CE=10cm ,求DF 的长.【答案】10cm【分析】先根据条件判定两三角形全等,再对应三角形全等条件求解.【详解】解:∵CE ⊥DF ,∴∠CDF+∠DCE=90°,又∵∠DCB=∠DCE+∠BCE=90°,∴∠CDF=∠BCE ,在正方形ABCD 中又∵BC=CD ,∠EBC=∠FCD=90°,∴△BCE ≌△CDF (ASA ),∴CE=DF ,∵CE=10cm ,∴DF=10cm .【点睛】本题考查了三角形全等的判定和性质,正方形对的性质,一般以考查三角形全等的方法为主,判定两个三角形全等,再对应三角形全等条件求解.19.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为所以选中的两名同学恰好是甲,丁的概率2 12 ==【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,20.《九章算术》是我国古代重要的数学专著之一,全书共收集了246个数学问题,分为九章,内容涵盖了算术、代数、几何等多个领域.其中记录的一道题译为现代文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马速度的2倍,求规定时间是多少天.经检验:7x =是原方程的解,且符合题意,答:规定时间是7天.21.已知224442a a T a a ⎛⎫+-=-÷ ⎪+⎝⎭(1)化简T .(2)若a 为二次函数2245y x x =-+的最小值,求此时的T 值.22.数学中的轴对称就像镜子一样,可以展现出图形对称的美,初中常见的轴对称图形有:等腰三角形、菱形、圆等.如图,在等腰ABC 中,AB BC =.(1)尺规作图:作ABC 关于直线AC 对称的ADC △(保留作图痕迹,不写作法);(2)连接BD ,交AC 于点O ,若2BD =,四边形ABCD 周长为ABCD 的面积.由作图可知:AD CD ==∵AB BC=∴AD CD AB BC===∴四边形ABCD 为菱形,∵ABC 与ADC △关于直线∴AC BD ⊥,OB OD =,∴112122OB BD ==⨯=,由(1)知四边形ABCD 为菱形,23.如图,Rt ABO △中,90∠=︒ABO ,2AB =,反比例函数8y x=-的图象经过点A .(1)求点A 的坐标.(2)直线CD 垂直平分AO ,交AO 于点C ,交y 轴于点D ,交x 轴于点E ,求线段OE 的长.24.已知抛物线:()230y x bx a =+-≠的对称轴是直线1x =,与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于C 点.(1)求抛物线的解析式;(2)若点D 在线段BC 上,且CD =,求sin CAD ∠的值;(3)抛物线向右平移m 个单位(1m >),平移后A 、B 的对应点分别是1A 、1B ,点E 在y 轴的负半轴上,且以点O 、1A 、E 为顶点的三角形与OAC 相似.点F 是平移后的抛物线上的一点,若四边形11A EFB 是平行四边形,求m 的值.∴212DG CG CD ===, ∴()1,2D -,∴()231422BD =-+=,AD ∴222BD AD AB +=,∴90ADB ADC ∠=∠=︒,25.【读一读】一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进行分类(即给一类图形下定义——定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题.课本里对三角形、四边形的研究即遵循着上面的思路.【算一算】当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.如图,在ABC 中,AB AC =,点M 、N 分别为边AB 、BC 的中点,连接MN .(1)如图1,若90BAC ∠=︒,BC =BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,当点A 、E 、F 在同一直线上时,AE 与BC 相交于点D ,连接CF 、ME .①填空:BMN ∠=______(填度数),BME 是______三角形(填类别);②求CD 的长.(2)如图2,若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE 、CF .当旋转角α满足0360α︒<<︒,点C 、E 、F 在同一直线上时,利用所提供的图2和备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.∴∠=∠,设∠ABC ACB的中位线,是ABCMN∴ ,MN AC∴∠=∠=,MNB MBNθ将BMN绕点B顺时针旋转∠∴△≌△,MBEEBF MBN∴∠=∠=,EBF EFBθ1802BEF θ∴∠=︒-,点C ,E ,F 在同一直线上,2BEC θ∴∠=,180BEC BAC ∴∠+∠=︒,A ∴,B ,E ,C 在同一个圆上,EAC EBC αθ∴∠=∠=-,(1802)()180BAE BAC EAC θαθαθ∴∠=∠-∠=︒---=︒--,ABF αθ∠=+ ,180BAE ABF ∴∠+∠=︒,如图所示,当F 在EC 上时,BEF BAC ∠=∠ ,BC BC =,A ∴,B ,E ,C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,ABF θβ∴∠=-,BFE EBF θ∠=∠= ,EFB FBC FCB ∠=∠+∠,ECB FCB EFB FBC θβ∴∠=∠=∠-∠=-,EBEB =,EAB ECB θβ∴∠=∠=-,BAE ABF ∴∠=∠,综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒.【点睛】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.。

2024年广东省广州市黄埔区初三一模数学试题含答案解析

2024年广东省广州市黄埔区初三一模数学试题含答案解析

2024年广东省广州市黄埔区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数为无理数的是()A.3B.3.14C.D.23 72.如图表示互为相反数的两个点是()A.点A与点B B.点A与点D C.点C与点B D.点C与点D【答案】B【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A与点D表示互为相反数的两个点.故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6位进入决赛.如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这12位同学成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选D.【点睛】此题考查统计量的选择,解题关键在于掌握中位数的意义.4.下列运算正确的是( )A =B .=C .5=D =5.分式方程213x x =-的解是( )A .3x =B .3x =-C .1x =D .0x =∴分式方程的解为3x =-,故选:B .6.在ABCD Y 中,对角线AC 、BD 交于点O ,若5AD =,10AC =,6BD =,BOC 的周长为( )A .13B .16C .18D .21【答案】A 【分析】此题主要考查了平行四边形的性质,利用平行四边形的性质对角线互相平分,进而得出BO ,CO 的长,即可得出BOC 的周长.【详解】解:∵ABCD Y 的两条对角线交于点O ,10AC =,6BD =,5AD =,∴3BO DO ==,5AO CO ==,5BC AD ==,∴BOC 的周长为:35313BO CO BC ++=++=.故选:A .7.如图,Rt ABC △中,90C ∠=︒,10AB =,8AC =,E 是AC 上的一点,ED AB ⊥,垂足为D ,若4=AD ,则BE 的长为( )A .B .C .185D .38.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数()0k y x x=>的图象上,点D 的坐标为()4,3,将菱形ABCD 向右平移m 个单位,使点D 刚好落在反比例函数()0k y x x =>的图象上,则m 的值为( )A .5B .6C .203D .323【答案】C 【分析】本题考查了反比例函数的图象性质,勾股定理,菱形的性质,熟练掌握反比例函数图象上点的坐标特征是解题的关键.过D 作DF x ⊥轴于点F ,利用勾股定理求出菱形的边长,再求出A 的坐标后,代入反比例函数解析式求出k 的值,利用平移的性质得到点D 的坐标后,代入反比例函数解析式中运算求解即可.【详解】解:过D 作DF x ⊥轴于点F ,如图所示:∴90DFO ∠=︒,∵D 点的坐标为()4,3,∴3DF =,4OF =,∴222234OD DF OF =+=+9.如图,在塔前的平地上选择一点,由A 点看塔顶的仰角是α,在A 点和塔之间选择一点B ,由B 点看塔顶的仰角是β.若测量者的眼睛距离地面的高度为1.5m ,9m AB =,45α=︒,50β=︒,则塔的高度大约为( )m .(参考数据:sin 500.8︒≈,tan50 1.2︒≈)A .55.5B .54C .46.5D .45∴9CD AB ==,EF AC =∵45GCE α∠==︒,∴设GE EC x ==,则ED ∴tan tan GE GDE ED β∠=∠=解得:54x =,10.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠,1c >),经过点()2,0,其对称轴是直线12x =.则下列结论:①0abc <;②关于x 的方程2ax bx c a ++=无实数根;③当0x >时,y 随x 增大而减小;④0a b +=.其中正确的结论有( )个.A .1B .2C .3D .4二、填空题112x 应满足的条件是 .【答案】4x ≥-【分析】本题考查了二次根式有意义的条件,熟悉掌握二次根式的概念是解题的关键.根据二次根式有意义的概念运算求解即可.【详解】解:∵40x +≥,∴4x ≥-,故答案为:4x ≥-.12.因式分解34a a -=.【答案】()()2121a a a +-【分析】先提公因式,然后再用平方差公式分解因式.【详解】解:()()()324412121a a a a a a a -=-=+-.故答案为:()()2121a a a +-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握因式分解的方法,准确计算.13.如图,在△ABC 中,∠C =90°,∠ADC =60°,∠B =30°,若CD =3cm ,则BD = cm .【答案】6【分析】根据30°直角三角形的比例关系求出AD,再根据外角定理证明∠DAB=∠B,即可得出BD=AD .【详解】∵∠B =30°,∠ADC =60°,∴∠BAD =∠ADC ﹣∠B =30°,∴AD =BD ,∵∠C =90°,∴∠CAD =30°,∴BD =AC =2CD =6cm ,故答案为:6.【点睛】本题考查30°直角三角形的性质、三角形的外角性质,关键在于熟练掌握基础知识并灵活运用.14.关于x 的一元二次方程()21230k x x --+=有实数根,则k 的取值范围是 .15.如图,ABCD Y 绕点A 逆时针旋转30︒,得到AB C D ''' (点B '与点B 是对应点,点C '与点C 是对应点,点D ¢与点D 是对应点),点B '恰好落在BC 边上,则C ∠的度数为 ︒.【答案】105【分析】由旋转的性质可知,30BAB '∠=︒,AB AB '=,再根据等腰三角形点性质及三角形内角和定理,得到75B ∠=︒,然后根据平行四边形和平行线的性质,即可求出C ∠的度数.【详解】解:由旋转的性质可知,30BAB '∠=︒,AB AB '=,B AB B '∴∠=∠,180BAB B AB B ''∠+∠+∠=︒ ,75B ∴∠=︒,ABCD ,AB CD ∴∥,180B C ∠+∠=︒∴,105C ∴∠=︒,故答案为:105.【点睛】本题考查了旋转的性质,等腰三角形点性质,三角形内角和定理,平行四边形的性质等知识,熟练掌握旋转的性质是解题关键.16.如图,已知正方形ABCD 的边长为2,E 为AB 的中点,F 是AD 边上的一个动点,连接EF ,将AEF △沿EF 折叠得HEF ,若延长FH 交边BC 于点M ,则DH 的取值范围 .三、解答题17.解方程:x 2+6x+5=0.【答案】x 1=-1,x 2=-5【分析】方程利用因式分解法求出解即可.【详解】x 2+6x+5=0 (x+1)(x+5)=0∴x+1=0或x+5=0∴x 1=-1.x 2=-5【点睛】此题考查了解一元二次方程−−因式分解法,熟练掌握因式分解的方法是解本题的关键.18.如图,在四边形ABCD 中,BD 平分ADC ∠和ABC ∠.求证:AD CD =,AB CB =.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,角平分线的定义,由角平分线的定义得到ADB CDB ABD CBD ==∠∠,∠∠,进而利用ASA 证明ABD CBD ≌△△,据此可证明AD CD =,AB CB =.【详解】证明:∵BD 平分ADC ∠和ABC ∠,∴ADB CDB ABD CBD ==∠∠,∠∠,又∵BD BD =,∴()ASA ABD CBD △△≌,∴AD CD =,AB CB =.19.已知2111a T a a =--+.(1)化简T ;(2)已知反比例函数y =的图象经过点()1,1A a a -+,求T 的值.20.“2023广州黄埔马拉松”比赛当天,某校玩转数学小组针对其中一个项目“半程马拉松”(21.0975公里)进行调查.(1)为估算本次参加“半程马拉松”的人数,调查如下:调查总人数2050100200500参加“半程马拉松”人数7173158150参加“半程马拉松”频率0.350.340.310.290.30已知共有20000人参与“2023广州黄埔马拉松”比赛,请估算本次赛事中,参加“半程马拉松”项目的人数约为______人;(2)本赛事某岗位还需要2名志愿者参与服务工作,共有4人参加了志愿者遴选,其中初中生2名,高中生1名,大学生1名,请利用画树状图或列表的方法,求恰好录取2名初中生志愿者的概率.21.某文具店准备购进甲、乙两种圆规,若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元.(1)求购进甲、乙两种圆规的单价各是多少元;(2)文具店购进甲、乙两种圆规共100个,每个甲种圆规的售价为15元,每个乙种圆规的售价为12元,销售这两种圆规的总利润不低于480元,那么这个文具店至少购进甲种圆规多少个?【答案】(1)购进甲圆规每个需要10元,乙圆规每个需要8元(2)这个文具店至少购进甲种圆规80个【分析】本题考查了二元一次方程组的应用,不等式的应用,解题的关键是:(1)设购进甲圆规每个需要x 元,乙圆规每个需要y 元,根据“若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元”,可列关于x 、y 的二元一次方程组,求解即可;(2)设购进甲圆规m 个,则购进乙圆规()100m -个,根据“销售这两种圆规的总利润不低于480元”列出关于m 的不等式,求解即可.【详解】(1)解:设购进甲圆规每个需要x 元,乙圆规每个需要y 元,根据题意,得10303403050700x y x y +=⎧⎨+=⎩,解得108x y =⎧⎨=⎩,答:购进甲圆规每个需要10元,乙圆规每个需要8元;(2)解:设购进甲圆规m 个,则购进乙圆规()100m -个,根据题意,得()()()1510128100480m m -+--≥,解得80m ≥,答:这个文具店至少购进甲种圆规80个.22.如图,二次函数()()()1304y x a x a a =-+->的图象与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点E .(1)尺规作图:作抛物线的对称轴,交x 轴于点D ,并标记抛物线的顶点C ,连接AE ,且AE 与对称轴相交于点F ;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若2AO OE =,求CAD ∠的大小及AF 的值.(2)解:把0x =代入∴234OE a =,把0y =代入(14y x =-+23.如图,ABC 内接于O ,AB AC =,CO 的延长线交AB 于点D .(1)求证:AO 平分BAC ∠;(2)若12BC =,3sin 5BAC ∠=,求AC 和CD 的长.∵AB AC =,OB OC =∴A ,O 在线段BC 的垂直平分线上,∴AH BC ⊥,又∵AB AC =,∴AO 平分BAC ∠;∴CE 是O 的直径,∴90EBC ∠=︒,BC ⊥∵ BCBC =∴E BAC ∠=∠,【点睛】本题考查了等腰三角形的性质及判定,圆周角定理,勾股定理,相似三角形的性质及判定,三角函数等知识点,合理作出辅助线是解题的关键.24.如图,在矩形ABCD 和矩形AGFE 中,4=AD ,2AE =,AB =,AG .矩形AGFE 绕着点A 旋转,连接BG ,CF ,AC ,AF .(1)求证:ABG ACF ∽;(2)当CE 的长度最大时,①求BG 的长度;②在ACF △内是否存在一点P ,使得CP AP ++的值最小?若存在,求CP AP +的最小值;若不存在,请说明理由.此时AC AE CE +=,90CEF ∠=︒①∵4=AD ,343AB AD ==,∴228AC AB BC =+=,BAC ∠=由旋转可得:30PAF KAL FAK ∠=∠=︒-∠,∴AKL APF ∽,∴3KL AK PF AP==,∴3KL PF =,过P 作PS AK ⊥于S ,则 12PS AP =,32AS AP =3PS25.已知二次函数22y ax ax c =++图象与x 轴交于点A 和点()3,0B -,与y 轴交于点()0,3C .(1)求点A 的坐标;(2)若点D 是直线BC 上方的抛物线上的一点,过点D 作DE y ∥轴交射线AC 于点E ,过点D作DF BC ⊥于点F ,求DE -的最大值及此时点D 坐标;(3)在(2)的条件下,若点P ,Q 为x 轴下方的抛物线上的两个动点,并且这两个点满足90PBQ ∠=︒,试求点D 到直线PQ 的最大距离.(3)解:设()223P s s s Q --+,,设直线PB 解析式为y k x b ''=+,∴22330sk b s s k b ⎧+=--+⎨-+=''''⎩,∴()()2312333s s s s k s s -+---+==++'∴直线PB 解析式为()1y s x =-++【点睛】本题主要考查了二次函数综合,相似三角形的性质与判定,一次函数与几何综合,等腰直角三角形的性质与判定,勾股定理等等,解(三角形得到2=,解(3)的关键是推出直线DH DF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州市中考数学一模试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)(2019·黔东南) 下列四个数中,2019的相反数是()
A . -2019
B .
C .
D . 20190
2. (2分)据中国新闻网报道,在2014年11月17日公布的全球超级计算机500强榜单中,中国国防科技大学研制的“天河”二号超级计算机,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒
3.39亿亿次双精度浮点运算的优异性能位居榜首,第四次摘得全球运行速度最快的超级计算机桂冠.用科学记数法表示“5.49亿亿”,记作()
A . 5.49×1018
B . 5.49×1016
C . 5.49×1015
D . 5.49×1014
3. (2分)已知2001xn+7y与-2002x2m+3y是同类项,则(2m-n)2的值是()
A . 16
B . 4×2001
C . -4×2002
D . 5
4. (2分)(2019·平房模拟) 若不等式组有2个整数解,则a的取值范围为()
A . ﹣1<a<0
B . ﹣1≤a<0
C . ﹣1<a≤0
D . ﹣1≤a≤0
5. (2分) (2020七下·沭阳月考) 如图,在△ABC中,∠BAC=60°,BD、CE分别平分∠ABC、∠ACB,BD、CE相交于点O,则∠BOC的度数是()
A . 120°
B . 130°
C . 75°
D . 150°
6. (2分)如图所示的几何体的主视图是()
A .
B .
C .
D .
7. (2分)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()
A .
B .
C .
D .
8. (2分)下表是食品营养成分表的一部分(每100克食品中可食部分营养成分的含量)
蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247
在表中提供的碳水化合物的克数所组成的数据中,中位数是________,平均数是_________.()
A . 3 ;5
B . 4 ;4
C . 2 ;3
D . 3;7
9. (2分)在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于
A .
B .
C .
D .
10. (2分)⊙o的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()
A . 7
B . 17
C . 7或17
D . 4
二、填空题 (共4题;共4分)
11. (1分) (2020八上·大洼期末) 分式有意义,则x的取值范围是________。

12. (1分)(2017·合肥模拟) 因式分解: =________.
13. (1分) (2015九上·南山期末) 如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC=________
14. (1分)(2020·嘉定模拟) 定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”.如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为________.
三、综合题 (共9题;共79分)
15. (5分)计算:﹣15﹣+2cos30°+(π﹣3.14)0+|﹣ |.
16. (6分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于M(1,3),N两点,点N的横坐标为﹣3.
(1)根据图象信息可得关于x的方程=kx+b的解为________ ;
(2)求一次函数的解析式.
18. (5分)随着家庭轿车拥有量逐年增加,渴望学习开车的人也越来越多.据统计,某驾校2008年底报名人数为3 200人,截止到2010年底报名人数已达到5 000人.
(1)若该驾校2008年底到2010年底报名人数的年平均增长率均相同,求该驾校的年平均增长率.
(2)若该驾校共有10名教练,预计在2011年底每个教练平均需要教授多少人?
19. (5分)如图所示,太阳光与地面成60°角,一颗倾斜的大树在地面上所成的角为30°,这时测得大树在地面上的影长约为10m,试求此大树的长约是多少?(得数保留整数)
20. (8分)如图:
(1)如果∠1=∠D,那么________∥________;
(2)如果∠1=∠B,那么________∥________;
(3)如果∠A+∠B=180º,那么________∥________;
(4)如果∠A+∠D=180º,那么________∥________;
21. (10分)(2020·北京模拟) 如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
22. (15分) (2016九上·牡丹江期中) 某服装店在销售中发现,进货价每件60元,销售价每件100元的服装平均每天可售出20件,为了迎接“国庆节”,服装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件服装降价1元,那么平均每天就可多售出2件,请解答下列问题:
(1)降价前服装店每天销售该服装可获利多少元?
(2)如果服装店每天销售这种服装盈利1200元,同时又要使顾客得到更多的实惠,那么每件服装应降价多少元?
(3)每件服装降价多少元服装店可获得最大利润,最大利润是多少元?
23. (15分) (2016八上·吉安开学考) 以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.
(1)试判断BD、CE的数量关系,并说明理由;
(2)延长BD交CE于点F试求∠BFC的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共4题;共4分)
11-1、
12-1、
13-1、
14-1、
三、综合题 (共9题;共79分)
15-1、
16-1、
16-2、18-1、
19-1、20-1、20-2、20-3、20-4、
21-1、
21-2、22-1、22-2、22-3、
23-1、23-2、
23-3、。

相关文档
最新文档