直线参数方程t的几何意义
直线的参数方程的几何意义

直线的参数方程的几何意义直线的参数方程是用变量表示直线上的每一个点的坐标的一种表示方法。
在二维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt,其中n和m是常数。
在三维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt, z = z0 + pt,其中n、m和p是常数。
直线的参数方程的几何意义体现在以下几个方面:1.直线的方向向量:直线的参数方程中的常数n、m和p是直线的方向向量的分量。
直线上的每一个点都可以通过起点坐标加上方向向量的分量与参数的乘积得到。
2. 直线的斜率:在二维空间中,直线的参数方程可以转化为斜截式方程y = mx + c的形式,其中m代表直线的斜率。
直线的斜率是直线上两个不同点之间纵坐标变化量与横坐标变化量的比值。
3. 直线的截距:在二维空间中,直线的参数方程可以转化为截距式方程y = mx + c的形式,其中c代表直线与y轴的交点坐标。
直线的截距可以通过将参数方程中x等于零得到。
4.直线的方向:直线的参数方程中的常数n、m和p可以决定直线的方向。
当n、m和p都不为零时,直线是斜的,方向由斜率来确定;当其中一个常数为零时,直线平行于一个坐标轴,方向由与之平行的轴来决定;当两个常数为零时,直线垂直于一个坐标轴,方向由与之垂直的轴来决定。
5.直线上的点的坐标:直线的参数方程中的变量t可以取不同的值,对应于直线上的不同点。
通过给定不同的t值,可以得到直线上的各个点的坐标。
直线上的点的坐标可以通过代入参数方程中的t值来计算。
总之,直线的参数方程能够描述直线的方向、斜率、截距以及直线上各个点的坐标。
利用参数方程,可以方便地求解与直线相关的问题,如直线与其他几何图形的交点、直线的长度等。
同时,参数方程也是研究曲线、平面、空间之间关系的重要工具。
直线参数方程中参数的几何意义

到点 的距离
例1 求直线2x+y一3=0的参数方程
解 :直线2x+y一3=0过点(0,3)和 (1,1)。
若选 取直线 上点 (0,3)为基本 起点 ,向量a= (1,一2)为直线的基本向量 ,
f..- ‘
则直线的参数方程为{一 ( 为参数 ); ty j—Zt
若选 取直线 上点 (1,1)为基点 起点Mo,向量口: (一1,2)为直线 的基本向量 ,
为这 一 说 法 值 得 商 榷 。
事实上 ,由直线上一点和直线 的一个方 向向量
可以确定一条直线的位置 ,所以只要确定直线上一
点的坐标和它 的方 向向量的坐标 就可 以确定直线的
一 个参数方程 。
设 为直 线上一 点 ,其坐标 为 ( yo),n= a,b)
为直线的方向向量,则直线的参数方程为:{ Ly=yo+t ̄t
(2)表示过点(3,、/了 )且方向向量为(一 ,
2
^ / ^
一
)的直 线 。
2
教材第36页 中的例 1(已知直线f: +v一1:0与抛
物线y=x ̄ A,B两点 ,求线段A曰的长 和点 (一1,2)
 ̄_IJA,B两点的距 离之积 。)可以有如下解法 :
解 :由于 题 目涉 及 点 到A,B的距 离 ,故 选 取 肘
{ n+把? (f为参数)
[y=yo+tslna
.——-—
若t>O,则尬 与ቤተ መጻሕፍቲ ባይዱ位 向量口同向,点 在 止 方 ;
若t=0,则点 与 重合 ;若t>0,则 与 单位 向量 P
反向 ,点 疮 下方 。
_ + — — — —
————
由于尬 =te,所 以l尬 I=ltllel=Itl,所 以Itl表示点
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
怎样用直线的参数方程中参数的几何意义解题

备考指南解析几何中的长度(距离)问题通常较为复杂,且运算量较大.此时若巧妙地设出直线的参数方程,从其参数的几何意义入手,便能大大加快解题的速度,提升运算结果的准确率.过点P 0(x 0,y 0),倾斜角为α的直线参数方程为{x =x 0+t cos α,y =y 0+t sin α.(t 为参数)对任意参数为t ,直线上任意点M ,有t = P 0M ,当M 在P 0的上方时,t >0;当M 在P 0的下方时,t <0;当M 与P 0重合时,t =0,||P 0M =|t |.若已知直线上的点,我们便可引入参数,设出直线的参数方程,根据直线的参数方程中参数的几何意义进行求解,下面举例说明.例1.在平面直角坐标系xOy 中,已知点F 1(-17,0),F 2(17,0),点M 满足||MF 1-||MF 2=2,记M 的轨迹为C .(1)求C 的轨迹方程;(2)设点T 在直线x =12上,过点T 的两条直线分别与C 交于A ,B 和P ,Q ,且||TA ∙||TB =|TP |∙|TQ |,求直线AB 的斜率和直线PQ 的斜率之和.解:(1)x 2-y 216=1(x ≥1);(过程略)(2)设T æèöø12,m ,AB 倾斜角为α,PQ 的倾斜角为β,直线AB 参数方程为ìíîïïx =12+t cos α,y =m +t sin α,(t 为参数)①直线PQ 参数方程为ìíîïïx =12+t cos β,y =m +t sin β,(t 为参数)②将①代入x 2-y 216=1(x ≥1)得()16cos 2α-sin 2αt 2+()16cos α-2m sin αt -()m 2+12=0,由直线的参数方程中参数的几何意义,设||TA =|t 1|,||TB =|t 2|,结合图形可知,A ,B 均在点T 的同侧,所以||TA ∙||TB =t 1t 2=m 2+12sin 2α-16cos 2α,同理可得||TP ∙||TQ =m 2+12sin 2β-16cos 2β,由||TA ∙||TB =|TP |∙|TQ |得m 2+12sin 2α-16cos 2α=m 2+12sin 2β-16cos 2β,得sin 2α=sin 2β,又0<α<π,0<β<π,且α≠β所以α+β=π,tan α+tan β=0,即直线AB 的斜率与直线PQ 的斜率之和为0.||TA 、||TB 、||TP 、|TQ |均是与点T 有关的距离,容易联想到直线的参数方程中参数的几何意义,于是设出直线AB 、PQ 的参数方程,利用直线参数方程中参数的几何意义来解题.这样能回避运用两点间距离公式、根与系数的关系、倾斜公式,讨论角的取值范围带来的繁琐运算.例2.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴交点为P ,与C 的交点为Q ,且||QF =54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解:(1)C 的方程为y 2=4x ;(过程略)(2)设l 的倾斜角为α,中点为P (x 0,y 0),因为l ′与l 垂直,所以l ′的倾斜角为π2+α,设l 的方程为{x =x 0+t cos α,y =y 0+t sin α,(t 为参数)①l ′的方程为ìíîïïx =x 0+t cos (α+π2),y =y 0+t sin (α+π2),(t 为参数)②将①代入y 2=4x 得sin 2αt 2-4cos αt +y 20-4x 0=0,PA ,PB 对应的参数分别为t 1与t 2,则t 1t 2=y 20-4x 0sin 2α,得||PA ∙||PB =4x 0-y 20sin 2α,同理可得||PM ∙||PN =4x 0-y 20sin 2æèöøπ2+α=4x 0-y 20cos 2α,由A ,M ,B ,N 四点共圆得||PA ∙||PB =|PM |∙|PN |,所以4x 0-y 20sin 2α=4x 0-y 20cos 2α,又点P (x 0,y 0)不在l 上,所以4x 0-y 20≠0,可得sin 2α=cos 2α,所以tan 2α=1,即tan α=±1,又l 过点F (1,0),所以l 方程为x -y -1=0或x +y -1=0.本题若采用常规方法,需运用弦长公式及两点间的距离公式,运算量很大.由四点共圆可联想到圆中相交弦定理,得到||PA ∙||PB =|PM |∙|PN |,再利用直线的参数方程中参数的几何意义,建立关于P 点坐标以及α的关系式,便可求得直线的方程.综上所述,利用直线的参数方程中参数的几何意义,能有效地简化运算,提升解题的效率.在运用参数方程解题时一定要注意:(1)采用直线参数方程的标准形式(参数的系数的平方和为1);(2)结合图形找到所求距离对应的参数.(作者单位:湖南省地质中学)涂应良53。
直线的参数方程t的几何意义应用

由韦达定理得
t1 t2 12cos,t1t2 11
AB t1 t2 t1 t2 2 4t1t2 10
即 144cos2 44 10
cos2 3 从而sin2 5
8
8
直线l的斜率k tan 15
3
【及时总结】
当直线与曲线相交于两点,解决有关弦长或 以直线所过定点为起点的线段长的有关问题的步 骤:
轨迹参数 方程
题 有 关 的
参化普
求圆的轨 迹方程
直化极
极化参
全国2卷
椭圆中点 弦的斜率
求三角形 面积最大 值
弦长问题
直线与圆 的切点坐 标
高 考
直线和圆 相交求倾 斜角范围
求双曲线 方程
参化普、 极化直
真 题
全国3卷
求圆的弦 中点的轨 迹方程
求直线与 双曲线交 点的极坐 标
椭圆上动 点到直线 距离的最 值
a的值.
y
解:设A, B两点对应的参数分别是 t1,t2
由| PA| 2 | PB | 得 | t1 | 2 | t2 |, 即t1 2t2
A
P
B
x
变式
2.若直线
l
的参数方程为
x
a
y
1
2t
2 2
t
(t为参数 , a
R)
,l
交 C1
:
y2
4x
于
2
A,B 两点,点 P(a,1) 在线段 AB 上,若| PA| 2 | PB | ,求实数 a 的值。
1. 确定该点所在直线的标准参数方程;
直线的参数方程中t的几何意义总结

直线的参数方程中t的几何意义总结直线的参数方程中t的几何意义总结直线是平面几何中的基本图形之一,其参数方程是直线研究中常用的一种表达方式。
在直线的参数方程中,t代表着自变量,其具有较为重要的几何意义。
下面将从不同角度出发,对直线参数方程中t的几何意义进行总结。
一、t表示直线上某一点到起点距离所占总距离的比例在平面直角坐标系中,设直线L过点A(x1,y1)和B(x2,y2),则L的参数方程为:x = x1 + t(x2 - x1)y = y1 + t(y2 - y1)其中0≤t≤1。
这时,我们可以将t理解为从A到B这条线段上任意一点P到A点距离与AB长度之比。
例如当t=0.5时,P点距离A点和B点的长度相等,即P点处于AB 中点M处;当t=0时,P点位于A点处;当t=1时,P点位于B点处。
因此,在L的参数方程中,t表示了从起始端点到任意一点所需走过路程与整条直线长度之比。
二、t表示向量AB与向量AP夹角余弦值在向量学中,向量的夹角是指两个向量之间的夹角,其余弦值可以用点积公式来表示。
在直线参数方程中,我们可以将t理解为从起点A到任意一点P所对应的向量AP与直线L上已知向量AB之间的夹角余弦值。
设向量AB=(x2-x1,y2-y1),向量AP=(x-x1,y-y1),则有:cosθ = (AB·AP) / (|AB|×|AP|)= [(x2-x1)(x-x1)+(y2-y1)(y-y1)] / [(x2-x1)²+(y2-y1)²]^(1/2) × [(x-x1)²+(y-y1)²]^(1/2)其中θ为向量AB与向量AP之间的夹角。
因此,在直线参数方程中,t也可以表示从起始点A出发到任意一点P所对应的向量与已知向量之间的夹角余弦值。
三、t表示平面上一条射线上某个点到起点距离在平面几何中,射线是由一个端点和以该端点为原点的半直线组成的。
《直线参数方程t的几何意义》专题-直线参数方程t的意义

《直线参数方程t 的几何意义》专题2019年( )月( )日 班级 姓名直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) t 的几何意义:t 表示有向线段P P 0的数量,P 0P =t ∣P 0P ∣=t P (y x ,)为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 直线参数方程的一般式 过点P 0(00,y x ),斜率为abk =的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)性质一:A 、B 两点之间的距离为||||21t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|21t t性质二:A 、B 两点的中点所对应的参数为221t t +,若0M 是线段AB 的中点,则 021=+t t ,反之亦然。
在解题时若能运用参数t 的上述性质,则可起到事半功倍的效果。
应用一:求距离之积例1:已知直线l :01=-+y x 与抛物线2x y =交于B A ,两点,求线段AB 的长和点)2,1(-M 到B A ,两点的距离之积。
应用二:求距离例2、直线l 过点)0,4(0-P ,倾斜角为6π,且与圆722=+y x 相交于A 、B 两点。
(1)求弦长AB .(2)求A P 0和B P 0的长。
应用三:求点的坐标例3、直线l 过点)4,2(0P ,倾斜角为6π,求出直线l 上与点)4,2(0P 相距为4的点的坐标。
直线参数方程t的几何意义

直线参数方程t的几何意义
1 几何意义
直线参数方程t是一种数学表达式,描述的是一条直线上所有点的位置。
它很好地表现出空间中的直线,是一种非常实用的空间表达方式。
直线参数方程t的广义形式如下:
t(X,Y)= X * Cosα + Y * Sinα – a
其中X,Y是一个直线上的点的极坐标,a是表达直线的参数,α是一个系数。
该系数α描述的是以原点为基准,水平方向为0°时,直线与水平方向的偏角,也叫斜率角或偏角。
但凡参数t的系数a和α都一定,则t可以表达出特定一条直线,从中可以看出t“=0”这条直线本身。
当
t“>0”或者“<0”时,表示一个空间中到该直线上某一点的距离,当t“=0”时,表示在直线上某一点的位置。
因此,直线参数方程t的几何意义就是用它来描述一条直线以及距离该直线距离的具体数值。
空间中任意一点到该直线距离可由t值来确定,如果t值等于0,就表示该点在该直线上。
这样就可以将直线参数方程t用来描述空间中任意一条直线,该方法非常方便、实用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用直线参数方程t 的几何意义
1、直线参数方程的标准式
(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是
⎩
⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)
P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,
则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣
(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3
则P 1P 2中点P 3的参数为t 3=221t
t +,∣P 0P 3∣=2
21t t +
(4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0
2、直线参数方程的一般式
过点P 0(00,y x ),斜率为a
b
k =的直线的参数方程是
⎩
⎨⎧+=+=bt y y at
x x 00 (t 为参数)
点击直线参数方程:
一、直线的参数方程
问题1:(直线由点和方向确定)
求经过点P 0(00,y x ),倾斜角为α的直线l
设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时,
P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数,
又∵P 0Q =0x x -, 0x x -=tcos α
Q P =0y y - ∴ 0y y -=t sin α
即⎩
⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程
∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t|
①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; ③当t<0时,点P 在点P 0的下方;
x
特别地,若直线l 的倾斜角α=0时,直线
⎧+=0t
x x ④当t>0
时,点P 在点P 0的右侧; ⑤当t =0时,点P 与点P 0重合;
⑥当t<0时,点P 在点P 0的左侧;
问题2:直线l 上的点与对应的参数t 是不是一
对应关系?
我们把直线l 看作是实数轴,
以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.
问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=?
P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2问题4:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义, P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P |=|P 2P |
P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0
一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 则t 3=2
21t t + (∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,
∴P 1P 3= t 3-t 1, P 2P 3= t 3-t 2, ∴t 3-t 1=-(t 3-t 2,) )
性质一:A 、B 两点之间的距离为||||21t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|21t t
性质二:A 、B 两点的中点所对应的参数为
2
2
1t t +,若0M 是线段AB 的中点,则 021=+t t ,反之亦然。
在解题时若能运用参数t 的上述性质,则可起到事半功倍的效果。
x
x
应用一:求距离
例1、直线l 过点)0,4(0-P ,倾斜角为6
π,且与圆72
2=+y x 相交于A 、B 两点。
(1)求弦长AB.
(2)求A P 0和B P 0的长。
应用二:求点的坐标
例2、直线l 过点)4,2(0P ,倾斜角为6
π
,求出直线l 上与点)4,2(0P 相距为4的点的坐标。
应用三:解决有关弦的中点问题 例3、过点)0,1(0P ,倾斜角为4
π的直线l 和抛物线x y 22
=相交于A 、B 两点,求线段AB 的中点M 点的坐标。