2015年四川省巴中市中考数学试卷(含答案)

合集下载

巴中中考数学试题及答案

巴中中考数学试题及答案

巴中中考数学试题及答案1. 填空题1) 12 ÷ 0.4 = ________2) 定义域是(-∞, 5]的一元函数图象的解集为________3) 在下图中,有 u + v - w = ________2. 选择题1) 如果一个等差数列的首项是3,公差是2,那么前5项的和是:A. 5B. 10C. 15D. 252) 已知函数 f(x) = x^2 - 2x + 3,那么 f(3) 的值是:A. 0B. 2C. 4D. 63) 一个直角三角形的斜边长为5,其中一个直角边是1,那么另一个直角边的长度是:A. 4B. 3C. 2D. 13. 解答题解释下列术语的含义:1) 质数2) 最小公倍数3) 函数的定义域1) 质数是只能被1和自身整除的自然数,例如2、3、5、7等。

2) 最小公倍数是指多个数中能同时整除这些数的最小正整数,例如12和18的最小公倍数是36。

3) 函数的定义域是指使函数有意义的自变量的取值范围,例如函数f(x) = √x,其定义域为x≥0。

4. 简答题1) 什么是直角三角形?直角三角形的性质有哪些?解答:直角三角形是指存在一个内角为90°的三角形。

直角三角形的性质有:- 直角三角形的斜边是最长的一边。

- 直角三角形两直角边的长度满足勾股定理:斜边的平方等于两直角边平方和。

- 直角三角形的两个锐角之和等于90°。

2) 解释下列函数的特性:- 奇函数- 偶函数- 奇函数是指满足f(-x) = -f(x)的函数,即函数关于原点对称。

- 偶函数是指满足f(-x) = f(x)的函数,即函数关于y轴对称。

奇函数的图象关于原点对称,即若点P(x, y)在图象上,则点P'(-x, -y)也在图象上;偶函数的图象关于y轴对称,即若点P(x, y)在图象上,则点P'(-x, y)也在图象上。

5. 答案1) 填空题1) 12 ÷ 0.4 = 302) 定义域是(-∞, 5]的一元函数图象的解集为{x | x ≤ 5}3) 在下图中,有 u + v - w = u + (v - w)2) 选择题1) B. 102) A. 03) C. 23) 解答题1)- 质数是只能被1和自身整除的自然数。

中考数学真题汇编详解11:一次函数的应用

中考数学真题汇编详解11:一次函数的应用

一、选择题1. (四川省自贡市,8,4分)小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这-过程的是 ·································· ( )【答案】C2. (四川省巴中市,7,3分)小张的爷爷每天见识体育锻炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间(分钟)之间关系的大致图象是( )【答案】 B .3. (重庆B 卷,11,4分)某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y (公里)和所用时间x (分)之间的函数关系.下列说法中错误的是 A .小强从家到公共汽车站步行了2公里 B .小强在公共汽车站等小明用了10分钟 C .公共汽车的平均速度是30公里/小时 D .小强乘公共汽车用了20分钟 【答案】D【解析】从图中可以看出:图象的第一段表示小强步行到车站,用时20分钟,步行了2公里;第二段表示小强在车站等小明,用时30-20=10分钟,此段时间行程为0;第三段表示两个一起乘公共汽车到学校,用时60-30=30分钟=0.5小时,此段时间的行程为17-2=15公里,所以公共汽车的平均速度为30公里/小时.故选D.4. (山东省聊城市,11,3分)小亮家与姥姥家相距24千米,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,在同一直角坐标系中,小亮和妈妈的行进路程S (km )与北京时间t (时)的函数图象如图所示,根据图象得到下列结论,其中错误的是( ) A.小亮骑自行车的速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家11题图(分)ABCDC.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【答案】D【解析】妈妈追上小亮反映在图象上就是两人行进的路程与时间关系的函数图象的交点,由图象可知交点在时间为9时,所以妈妈在9点时追上小亮。

四川巴中中考数学试题及答.doc

四川巴中中考数学试题及答.doc

2015年四川巴中中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

中考复习数学真题汇编15:统计图表(含答案)

中考复习数学真题汇编15:统计图表(含答案)

一、选择题1. (2015福建省福州市,5,3分)下列选项中,显示部分在总体中所占百分比的统计图是( ) A.扇形图 B.条形图 C.折线图 D.直方图 【答案】A2. (2015浙江省温州市,3,4分)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )A.25人B.35人C.40人D.100人【答案】C3. (2015内蒙古呼和浩特,8,3分)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 【答案】B4. (2015年江苏扬州市)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是 ( )各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图A 、音乐组B 、美术组C 、体育组D 、科技组二、填空题 1.2. (2015四川省凉山州市,15,4分)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A 型血的有20人,则O 型血的有 人 【答案】10. 【解析】总人数为20÷40%=50人,O 型血的有50×(1﹣40%﹣30%﹣10%)=10人,故答案是10.3. (2015广东省广州市,12,3分)根据环保局公布的广州市2013年至2014年PM 2.5的主要来源的数据,制成扇形统计图(如图4),其中所占百分比最大的主要来源是 .(填主要来源的名称)【答案】机动车尾气【解析】用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫做扇形统计图.所以一看数据就知道是机动车尾气.4. (2015四川资阳,13,3分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1) 2~3(不含2)超过3 人 数 7 10 14 19【答案】240.21.7%11.5%20.6%19%8.2%8.6%10.4% 机动车尾气 工业工艺源 燃煤 其他 生物质燃烧 生活面源扬尘图41296301518181312b 3课时数 组)与 不等式(组)A一次方程 B 一次方程组C 不等式与不等式组 D二次方程 E分式方程图数与代数(内容) 课时数数与式 67 方程(组)与 不等式(组) a图实践与综合应用统计与概率空间与图形 数与代数 40%45%5%图5. (2014江苏省苏州市,13,3分)某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.【答案】60【解析】最喜欢羽毛球的人数所占百分率比最喜欢乒乓球的人数所占百分率少10%,故被调查总人数为6÷105=60(人).6. (2015年湖南衡阳,22,6分)为了进一步了解义务教育阶段学生体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分别为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人. 【答案】(1)40%;(2)16;(3)128【解析】解:(1)总人数=8÷16%=50人,合格百分比:20100%50=40%; (2)不合格的人数=50×32%=16人; (3)九年级不合格为数=400×32%=128人.三、解答题1. (2015浙江省丽水市,20,8分)某运动品牌店对第一季度A ,B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(第13题)20%30%40%乒乓球篮球羽毛球50606552销售量(双)A ,B 两款运动鞋销售量统计图6总销售额(万元)5A ,B 两款运动鞋总销售额统计图A B(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【答案】解:(1)50×45=40(双).∴一月份B款运动鞋销售了40双.(2)设A,B两款运动鞋的销售单价分别为x元,y元.由题意可得504040000 605250000x yx y+⎧⎨+⎩==.解方程组得400500xy⎧⎨⎩==.∴三月份的总销售额为400×65+500×26=39000=3.9(万元).(3)答案不唯一,只要学生结合数据分析,言之有理即可.例如:从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销售量大,建议多进A款运动鞋,少进或不进B款鞋.从总销售额来看,由于B款运动鞋销售量减少,导致总销售额减少,建议店里采取一些促销手段,增加B 款运动鞋的销售量.2.(2015四川省巴中市,26,10分)“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦·我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛.已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.【答案】解:(1)根据统计图,可知A等级的有3人,占15%,∴参加比赛的共有3÷15%=20(人).∴C等级所占百分比为8=40%20,D等级所占百分比为4=20%20.∴m=40,D等级所占百分比为360°×20%=72°.(2)由题意,B等级所占百分比为1-15%-40%-20%=25%,∴B等级人数为20×25%=5(人),补全统计图如下所示.3.(2015山东省青岛市,17,6分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】解:(1)∵10÷25%=40,∴B的人数为40-10-14-3-1=12.补全条形统计图如下:(2)∵1-25%-30%-35%-2.5%=7.5%,∴360°×7.5%=27°.∴扇形统计图中扇形D 的圆心角的度数为27°. (3)∵2000×35%=700,∴该中学有2000名学生中有700名学生能在1.5小时内完成家庭作业.4. (2015重庆B 卷,22,10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A )、音乐类(记为B )、球类(记为C )、其他类(记为D ).根据调查结果发现该班每个学生都进行了登记且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.类别人数22题图”我最喜欢的课外活动“各类别人数占全班总人数的百分比的扇形统计图DCB25%A“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642【答案】(1)48,105;(2)23【解析】解:(1)总人数=12÷25%=48人;D 类对应的圆心角的度数=360°×1448=105°. 类别人数18“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642,则可列下表: A 1 A 1 A 2 A 2A 1 √ √ A 1 √ √ A 2 √ √ A 2√√∴由上表可得:82(123P =一名擅长书法一名擅长绘画)=5. 小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图). 月均用水量(单位:t )频数 百分比23x ≤<2 4% 34x ≤< 12 24% 45x ≤< 56x ≤< 10 20% 67x ≤< 12% 78x ≤<3 6% 89x ≤<24%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率。

川省巴中市中考数学试卷 含答案解析版

川省巴中市中考数学试卷 含答案解析版

2017年四川省巴中市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)﹣2017的相反数是()A.﹣2017B.﹣12017C.2017D.120172.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.3.(3分)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.×107B.×106C.×102D.×1074.(3分)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=,S乙2=,则乙的射击成绩较稳定5.(3分)函数y=√3−x中自变量x的取值范围是()A.x<3B.x≥3C.x≤3D.x≠36.(3分)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形7.(3分)下列运算正确的是()A.a2?a3=a6B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a68.(3分)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°9.(3分)若方程组{2x+y=1−3k①x+2y=2②的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.不能确定10.(3分)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→CD̂→DO的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB的度数为y度,则下列图象中表示y(度)与t(s)之间的函数关系最恰当的是()A.B.C.D.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)分式方程2x−3=3x−2的解是x= . 12.(3分)分解因式:a 3﹣9a= .13.(3分)一组数据2,3,x ,5,7的平均数是5,则这组数据的中位数是 .14.(3分)若a 、b 、c 为三角形的三边,且a 、b 满足√a −9+(b ﹣2)2=0,第三边c 为奇数,则c= .15.(3分)已知x=1是一元二次方程x 2+ax +b=0的一个根,则a 2+2ab +b 2的值为 .16.(3分)如图,E 是?ABCD 边BC 上一点,且AB=BE ,连结AE ,并延长AE 与DC 的延长线交于点F ,∠F=70°,则∠D= 度.17.(3分)如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC :S △ABC = .18.(3分)若一个圆锥的侧面展开图是半径为12cm 的半圆,则这个圆锥的底面半径是 cm .19.(3分)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…请你将发现的规律用含自然数n (n ≥1)的代数式表达出来 .20.(3分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,且抛物线的解析式为y=x 2﹣2x ﹣3,则半圆圆心M 的坐标为 .三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)计算:2sin60°﹣(π﹣)0+|1﹣√3|+(12)﹣1.22.(5分)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.23.(6分)先化简,再求值:(x2−y2x−2xy+y﹣xx−y)÷y2x−xy,其中x=2y(xy≠0).24.(8分)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为;(3)画出△ABC关于点O的中心对称图形△A2B2C2.25.(10分)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A、B、C、D四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.A B C D等级人数类别农村a16018080县镇200182160b城市240c12248(注:等级A,B,C,D分别代表优秀、良好、合格、不合格)(1)请算出表中的a,b,c(直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A等级的百分率是多少?(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D等级的大约有多少人?Array26.(8分)如图,两座建筑物AD与BC,其地面距离CD为60cm,从AD的顶点A测得BC顶部B的仰角α=30°,测得其底部C的俯角β=45°,求建筑物BC的高(结果保留根号)27.(6分)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.28.(10分)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求FCAD的值.29.(10分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.30.(10分)如图,一次函数y=kx+b与反比例函数y=4x(x>0)的图象交于A(m,0),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣4x>0中x的取值范围;(3)求△AOB的面积.31.(12分)如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,√3)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D 为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.2017年四川省巴中市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)(2017?巴中)﹣2017的相反数是()A.﹣2017B.﹣12017C.2017D.12017【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣2017的相反数是:2017.故选:C.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)(2017?巴中)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田子,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017?巴中)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.×107B.×106C.×102D.×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将593万用科学记数法表示为:×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017?巴中)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=,S乙2=,则乙的射击成绩较稳定【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W7:方差;X1:随机事件.【分析】分别利用概率的意义以及抽样调查的意义以及方差的意义分别分析得出答案.【解答】解:A、“打开电视机,正在播放体育节目”是随机事件,故此选项错误;B、了解夏季冷饮市场上冰淇淋的质量情况应该采用抽样调查的方式,故此选项错误;C、抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12;正确;D、甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分2=,S乙2=,则甲的射击成绩较稳定,错误.别是S甲故选:C.【点评】此题主要考查了概率的意义以及抽样调查的意义以及方差的意义,正确把握相关定义是解题关键.中自变量x的取值范围是()5.(3分)(2017?巴中)函数y=√3−xA.x<3B.x≥3C.x≤3D.x≠3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,3﹣x>0,解得x<3.故选A.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017?巴中)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】K7:三角形内角和定理.【分析】利用三角形内角和定理判断即可确定出三角形形状.【解答】解:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D【点评】此题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解本题的关键.7.(3分)(2017?巴中)下列运算正确的是()A.a2?a3=a6B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a6【考点】4I:整式的混合运算;78:二次根式的加减法.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a5,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a6,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)(2017?巴中)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠3=∠1,内错角相等可得∠4=∠2,然后根据∠ABC=∠3+∠4计算即可得解.【解答】解:∵l1∥l2∥l3,∴∠3=∠1=72°,∠4=∠2=48°,∴∠ABC=∠3+∠4=72°+48°=120°.故选:B.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.(3分)(2017?巴中)若方程组{2x+y=1−3k①x+2y=2②的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.不能确定【考点】97:二元一次方程组的解.【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二次元一次方程组的解,利用等式的性质是解题关键.10.(3分)(2017?巴中)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→CD̂→DO的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB的度数为y度,则下列图象中表示y(度)与t(s)之间的函数关系最恰当的是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据圆周角定理以及动点移动的位置即可判断【解答】解:由于点P有一段是在CD̂上移动,此时∠APB=12∠AOB,∴此时y是定值,故图象是平行于x轴的一条线段,点P在CO上移动时,此时∠APB从90°一直减少,同理,点P在DO上移动时,此时∠APB不断增大,直至90°,故选(B)【点评】本题考查动点图象问题,解题的关键是熟练运用圆周角定理,本题属于基础中等题型.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)(2017?巴中)分式方程2x−3=3x−2的解是x=5.【考点】B3:解分式方程.【分析】直接去分母进而解分式方程进而得出答案.【解答】解:∵2x−3=3x−2,去分母得:2(x﹣2)=3(x﹣3),解得:x=5,检验:当x=5时,(x﹣3)(x﹣2)≠0,故x=5是原方程的根.故答案为:5.【点评】此题主要考查了解分式方程,正确掌握解分式方程的方法是解题关键.12.(3分)(2017?巴中)分解因式:a3﹣9a=a(a+3)(a﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2017?巴中)一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是5.【考点】W4:中位数;W1:算术平均数.【分析】求出x的值,然后将数据按照从小到大依次排列即可求出中位数.【解答】解:x=5×5﹣2﹣3﹣5﹣7=8,这组数据为2,3,5,7,8,故中位数为5.【点评】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.14.(3分)(2017?巴中)若a、b、c为三角形的三边,且a、b满足√a−9+(b ﹣2)2=0,第三边c为奇数,则c=9.【考点】K6:三角形三边关系;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【解答】解:∵a、b满足√a−9+(b﹣2)2=0,∴a=9,b=2,∵a、b、c为三角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为9.【点评】本题主要考查了三角形三边关系以及非负数的性质,解题的关键是求出a和b的值,此题难度不大.15.(3分)(2017?巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为1.【考点】A3:一元二次方程的解.【分析】由x=1是一元二次方程x2+ax+b=0的一个根,可得1+a+b=0,推出a+b=﹣1,可得a2+2ab+b2=(a+b)2=1.【解答】解:∵x=1是一元二次方程x2+ax+b=0的一个根,∴1+a+b=0,∴a+b=﹣1,∴a2+2ab+b2=(a+b)2=1.故答案为1.【点评】本题考查一元二次方程的解,完全平方公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(3分)(2017?巴中)如图,E是?ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D=40度.【考点】L5:平行四边形的性质.【分析】利用平行四边形的性质以及平行线的性质得出∠1=∠2,进而得出其度数,利用平行四边形对角相等得出即可.【解答】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠F=70°.∵AB=BE,∴∠1=∠3=70°,∴∠B=40°,∴∠D=40°.故答案是:40.【点评】此题主要考查了平行四边形的性质以及平行线的性质等知识,熟练应用平行四边形的性质得出是解题关键.17.(3分)(2017?巴中)如图,在△ABC中,AD,BE是两条中线,则S△EDC:S =1:4.△ABC【考点】K3:三角形的面积.【分析】利用三角中位线的性质得出DE =∥12AB ,进而求出即可.【解答】解:∵在△ABC 中,AD ,BE 是两条中线,∴DE =∥12AB ,∴S △CED S △ABC =14, 故答案为:1:4.【点评】此题主要考查了三角形中位线的性质以及相似三角形的性质,得出DE =∥12AB 是解题关键.18.(3分)(2017?巴中)若一个圆锥的侧面展开图是半径为12cm 的半圆,则这个圆锥的底面半径是 6 cm . 【考点】MP :圆锥的计算.【分析】设该圆锥的底面半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=π?12,然后解一次方程即可. 【解答】解:设该圆锥的底面半径为r , 根据题意得2πr=π?12, 解得r=6(cm ). 故答案为6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.(3分)(2017?巴中)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15= 4√15…请你将发现的规律用含自然数n(n≥1)的代数式表达出来√n+1n+2= (n+1)√1n+2(n≥1).【考点】37:规律型:数字的变化类.【分析】观察分析可得:√1+11+2=(1+1)√11+2;√2+12+2=(2+1)√12+2;…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵√1+11+2=(1+1)√11+2;√2+12+2=(2+1)√12+2;∴√n+1n+2=(n+1)√1n+2(n≥1).故答案为:√n+1n+2=(n+1)√1n+2(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到√n+1n+2=(n+1)√1n+2(n≥1).20.(3分)(2017?巴中)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为(1,0).【考点】HA:抛物线与x轴的交点.【分析】直接求出抛物线与x轴的交点,进而得出其中点位置.【解答】解:当y=0时,0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).故答案为:(1,0).【点评】此题主要考查了抛物线与x轴的交点,正确得出A,B点坐标是解题关键.三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)(2017?巴中)计算:2sin60°﹣(π﹣)0+|1﹣√3|+(12)﹣1.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=√3﹣1+√3﹣1+2=2√3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(5分)(2017?巴中)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:{x3−1<0①x−1≤3(x+1)②,解不等式①得,x<3,解不等式②得,x≥﹣2,所以,不等式组的解集是﹣2≤x<3在数轴上表示如下:【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(6分)(2017?巴中)先化简,再求值:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy,其中x=2y(xy≠0).【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x=2y代入即可解答本题.【解答】解:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy=x2−y2−x(x−y)(x−y)2?x(x−y)y2=x2−y2−x2+xy(x−y)?x(x−y)y=y(x−y)(x−y)2?x(x−y)y2=x y ,当x=2y时,原式=2yy=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.24.(8分)(2017?巴中)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为(a,b﹣5);(3)画出△ABC关于点O的中心对称图形△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用平移规律进而得出答案;(3)直接利用关于点对称的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)∵点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,∴点M1的坐标为:(a,b﹣5);故答案为:(a,b﹣5);(3)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.25.(10分)(2017?巴中)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A、B、C、D四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.A B C D等级人数类别农村a16018080县镇200182160b城市240c12248(注:等级A,B,C,D分别代表优秀、良好、合格、不合格)(1)请算出表中的a,b,c(直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A等级的百分率是多少?(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D等级的大约有多少人?【考点】VB :扇形统计图;V5:用样本估计总体;VA :统计表.【分析】(1)分别求出农村、县镇、城市三类群体的学生的总人数,结合表格中的数据即可解决问题;(2)根据百分率的定义计算即可. (3)用样本估计总体的思想解决问题;【解答】解:(1)a=2000×30%﹣180﹣160﹣80=180, b=2000×30%﹣200﹣182﹣160=58, c=2000×40%﹣240﹣122﹣48=190.(2)A 等级的百分率=180+200+2402000×100%=31%.答:此次抽取的2000名学生的科学测试成绩为A 等级的百分率是31%.(3)估计抽查的农村学生科学测试成绩为D 等级的大约有80800×16000=1600(人),答:估计抽查的农村学生科学测试成绩为D 等级的大约有1600人.【点评】本题考查扇形统计图、统计表、样本估计总体、百分率等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.26.(8分)(2017?巴中)如图,两座建筑物AD 与BC ,其地面距离CD 为60cm ,从AD 的顶点A 测得BC 顶部B 的仰角α=30°,测得其底部C 的俯角β=45°,求建筑物BC 的高(结果保留根号)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】由题意得AE ⊥BC ,AE=CD=60,然后在Rt △ACE 和Rt △AEB 中解答. 【解答】解:由题意得AE ⊥BC ,AE=CD=60,在Rt △ACE 中,∠β=45°,AE=60°,tan45°=CE60,∴CE=60×1=60,在Rt △AEB 中,∠α=30°,AE=60,tan30°=BE60,∴BE=60×√33=20√3,∴BC=BE +CE=(60+20√3)m .答:建筑物BC 的高为(60+20√3)m .【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解决问题的关键是抽象出直角三角形,然后解直角三角形.27.(6分)(2017?巴中)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率. 【考点】AD :一元二次方程的应用.【分析】设平均每次下调的百分率为x ,根据调价前后的价格,即可得出关于x 的一元二次方程,解之取小于1的正值即可得出结论. 【解答】解:设平均每次下调的百分率为x ,根据题意得:5000(1﹣x)2=4050,解得:x1==10%,x2=(不合题意,舍去).答:平均每次下调的百分率为10%.【点评】本题考查了一元二次方程的应用,根据调价前后的价格,列出关于x的一元二次方程是解题的关键.28.(10分)(2017?巴中)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求FCAD的值.【考点】S9:相似三角形的判定与性质;LB:矩形的性质;ME:切线的判定与性质.【分析】(1)连接OE,证明FG是⊙O的切线,只要证明∠OEF=90°即可;(2)先根据角平分线的性质得出EF=BE=6,再证明△ADF∽△FCE,根据相似三角形对应边成比例得出FCAD=EFAF=12.【解答】(1)证明:如图,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线;(2)解:∵四边形ABCD是矩形,∴EB⊥AB,∵EF⊥AF,AE平分∠FAH,∴EF=BE=6,又∵四边形ABCD是矩形,∴∠D=∠C=90°,∴∠DAF+∠AFD=90°,又∵AF⊥FG,∴∠AFG=90°,∴∠AFD+∠CFE=90°,∴∠DAF=∠CFE,又∵∠D=∠C,∴△ADF∽△FCE,∴FCAD =EF AF,又∵AF=12,EF=6,∴FCAD =612=12.【点评】本题考查的是切线的判定,解决本题的关键是要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质,矩形的性质.29.(10分)(2017?巴中)如图,在矩形ABCD中,对角线AC的垂直平分线EF 分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.【考点】LB:矩形的性质;KG:线段垂直平分线的性质;LA:菱形的判定与性质.【分析】(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=3﹣x,在Rt△ABF中,由勾股定理得出方程62+(8﹣x)2=x2,求出即可.【解答】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,{∠EAO=∠FCO AO=CO∠AOE=∠COF,∴△AEO≌△CFO(ASA);∴OE=OF又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC∴平行四边形AECF是菱形;(2)解:设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得x=5.∴AF=5,∴菱形AECF的周长为20.【点评】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.30.(10分)(2017?巴中)如图,一次函数y=kx+b与反比例函数y=4x(x>0)的图象交于A(m,0),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx +b ﹣4x>0中x 的取值范围;(3)求△AOB 的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A 、点B 的坐标分别代入解析式即可求出m 、n 的值,从而求出两点坐标; (2)由图直接解答;(3)将△AOB 的面积转化为S △AON ﹣S △BON 的面积即可.【解答】解:(1)∵点A 在反比例函数y=4x上,∴4m =4,解得m=1, ∴点A 的坐标为(1,4), 又∵点B 也在反比例函数y=4x上,∴42=n ,解得n=2, ∴点B 的坐标为(2,2), 又∵点A 、B 在y=kx +b 的图象上, ∴{k +b =42k +b =2,解得{k =−2b =6,∴一次函数的解析式为y=﹣2x +6. (2)x 的取值范围为1<x <2;(3)∵直线y=﹣2x +6与x 轴的交点为N , ∴点N 的坐标为(3,0),S △AOB =S △AON ﹣S △BON =12×3×4﹣12×3×2=3.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.31.(12分)(2017?巴中)如图,已知两直线l 1,l 2分别经过点A (1,0),点B(﹣3,0),且两条直线相交于y 轴的正半轴上的点C ,当点C 的坐标为(0,√3)时,恰好有l 1⊥l 2,经过点A 、B 、C 的抛物线的对称轴与l 1、l 2、x 轴分别交于点G 、E 、F ,D 为抛物线的顶点. (1)求抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,请直接写出点M 的坐标.【考点】HF :二次函数综合题.【分析】(1)设抛物线的函数解析式为y=ax 2+bx +c .将点A 、B 、C 的坐标代入,得到关于a 、b 、c 的方程组,解方程求出a 、b 、c 的值,进而得到抛物线的解析式;(2)利用待定系数法分别求出直线l 1、直线l 2的解析式,再求出G 、D 、E 的坐标,计算得出DG=DE=2√33;(3)当△MCG 为等腰三角形时,分三种情况:①GM=GC ;②CM=CG ;③MC=MG . 【解答】解:(1)设抛物线的函数解析式为y=ax 2+bx +c . ∵点A (1,0),点B (﹣3,0),点C (0,√3)在抛物线上, ∴{a +b +c =09a −3b +c =0c =√3,解得{a =−√33b =−2√33c =√3,。

四川巴中市中考数学试题及答案

四川巴中市中考数学试题及答案

四川巴中市中考数学试题及答案试卷一:一、选择题(本大题共10小题,每小题4分,共40分。

每小题选出答案后,请将其对应答案代号填入答题卡相应位置)1. 设函数f(x) = 2x + 3, g(x) = 3x - 1,则f(2) + 2g(1)的值为()A) 7 B) 8 C) 9 D) 102. 已知直线y = kx + 3与x轴交于点A(2, 0),与y轴交于点B(0, 3),则k的值为()A) -1 B) 0 C) 1 D) 23.(以下省略正文部分)试卷二:一、填空题(本大题共5小题,每小题4分,共20分。

大题前有对应题号,将答案填入括号内)1. 设集合A = {1, 2, 3, 4},则集合A的幂集共有()个元素。

(答案:16)2. 若r是一个有理数,且r ≠ 0,则二次根式的值等于()。

(答案:±√r²)(以下省略正文部分)二、解答题(本大题共5小题,每小题16分,共80分。

请将答案写在答题卡相应位置)1. 已知a + b = 8.5,ab = 15.5,求a² + b²的值。

解:由题意得:a² + 2ab + b² = (a + b)²代入已知条件,得:a² + 2ab + b² = 8.5²a² + 2(15.5) + b² = 72.25a² + b² = 72.25 - 31a² + b² = 41.252.(以下省略正文部分)答案:试卷一答案:1. D2. C4. B5. C6. D7. A8. B9. C10. D试卷二答案:1. 162. ±√r²3. 44. (7, 10)5. 1/3以上是四川巴中市中考数学试题及答案的相关内容。

希望对你有所帮助。

川省巴中市中考数学试卷含答案解析版

川省巴中市中考数学试卷含答案解析版

川省巴中市中考数学试卷含答案解析版集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]2017年四川省巴中市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)﹣2017的相反数是()A.﹣2017 B.﹣12017C.2017 D.120172.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.3.(3分)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.×107B.×106C.×102D.×1074.(3分)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=,S乙2=,则乙的射击成绩较稳定5.(3分)函数y=1√3−x中自变量x的取值范围是()A.x<3 B.x≥3 C.x≤3 D.x≠36.(3分)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形7.(3分)下列运算正确的是()A.a2a3=a6B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a68.(3分)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°9.(3分)若方程组{2x+x=1−3x①x+2x=2②的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定10.(3分)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→xx̂→DO的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB的度数为y度,则下列图象中表示y(度)与t(s)之间的函数关系最恰当的是()A. B.C. D.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)分式方程2x−3=3x−2的解是x= .12.(3分)分解因式:a3﹣9a= .13.(3分)一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是.14.(3分)若a、b、c为三角形的三边,且a、b满足√x−9+(b﹣2)2=0,第三边c为奇数,则c= .15.(3分)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为.16.(3分)如图,E是ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D= 度.17.(3分)如图,在△ABC中,AD,BE是两条中线,则S△EDC :S△ABC= .18.(3分)若一个圆锥的侧面展开图是半径为12cm的半圆,则这个圆锥的底面半径是cm.19.(3分)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…请你将发现的规律用含自然数n(n≥1)的代数式表达出来.20.(3分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为.三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)计算:2sin60°﹣(π﹣)0+|1﹣√3|+(12)﹣1.22.(5分)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.23.(6分)先化简,再求值:(x2−x2x−2xx+x﹣xx−x)÷x2x−xx,其中x=2y(xy≠0).24.(8分)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为;(3)画出△ABC关于点O的中心对称图形△A2B2C2.25.(10分)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A 、B 、C 、D 四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.等级 人数 类别 A B C D 农村 a 160 180 80 县镇 200 182 160 b 城市 240 c 122 48 (注:等级A ,B ,C ,D 分别代表优秀、良好、合格、不合格) (1)请算出表中的a ,b ,c (直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A 等级的百分率是多少(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D 等级的大约有多少人26.(8分)如图,两座建筑物AD 与BC ,其地面距离CD 为60cm ,从AD 的顶点A 测得BC 顶部B 的仰角α=30°,测得其底部C 的俯角β=45°,求建筑物BC 的高(结果保留根号)27.(6分)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.28.(10分)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC 和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求xxxx的值.29.(10分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.30.(10分)如图,一次函数y=kx+b与反比例函数y=4x(x>0)的图象交于A(m,0),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣4x>0中x的取值范围;(3)求△AOB的面积.31.(12分)如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,√3)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.2017年四川省巴中市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)(2017巴中)﹣2017的相反数是()A.﹣2017 B.﹣12017C.2017 D.12017【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣2017的相反数是:2017.故选:C.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)(2017巴中)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田子,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017巴中)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.×107B.×106C.×102D.×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将593万用科学记数法表示为:×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017巴中)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=,S乙2=,则乙的射击成绩较稳定【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W7:方差;X1:随机事件.【分析】分别利用概率的意义以及抽样调查的意义以及方差的意义分别分析得出答案.【解答】解:A、“打开电视机,正在播放体育节目”是随机事件,故此选项错误;B、了解夏季冷饮市场上冰淇淋的质量情况应该采用抽样调查的方式,故此选项错误;C、抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12;正确;D、甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=,S乙2=,则甲的射击成绩较稳定,错误.故选:C.【点评】此题主要考查了概率的意义以及抽样调查的意义以及方差的意义,正确把握相关定义是解题关键.5.(3分)(2017巴中)函数y=1√3−x中自变量x的取值范围是()A.x<3 B.x≥3 C.x≤3 D.x≠3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,3﹣x>0,解得x<3.故选A.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017巴中)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】K7:三角形内角和定理.【分析】利用三角形内角和定理判断即可确定出三角形形状.【解答】解:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D【点评】此题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解本题的关键.7.(3分)(2017巴中)下列运算正确的是()A.a2a3=a6B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a6【考点】4I:整式的混合运算;78:二次根式的加减法.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a5,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a6,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)(2017巴中)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l 2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠3=∠1,内错角相等可得∠4=∠2,然后根据∠ABC=∠3+∠4计算即可得解.【解答】解:∵l1∥l2∥l3,∴∠3=∠1=72°,∠4=∠2=48°,∴∠ABC=∠3+∠4=72°+48°=120°.故选:B.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.(3分)(2017巴中)若方程组{2x+x=1−3x①x+2x=2②的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【考点】97:二元一次方程组的解.【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二次元一次方程组的解,利用等式的性质是解题关键.10.(3分)(2017巴中)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→xx̂→DO的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB的度数为y度,则下列图象中表示y(度)与t (s)之间的函数关系最恰当的是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据圆周角定理以及动点移动的位置即可判断【解答】解:由于点P有一段是在xx̂上移动,此时∠APB=12∠AOB,∴此时y是定值,故图象是平行于x轴的一条线段,点P在CO上移动时,此时∠APB从90°一直减少,同理,点P在DO上移动时,此时∠APB不断增大,直至90°,故选(B)【点评】本题考查动点图象问题,解题的关键是熟练运用圆周角定理,本题属于基础中等题型.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)(2017巴中)分式方程2x−3=3x−2的解是x= 5 .【考点】B3:解分式方程.【分析】直接去分母进而解分式方程进而得出答案.【解答】解:∵2x−3=3x−2,去分母得:2(x﹣2)=3(x﹣3),解得:x=5,检验:当x=5时,(x﹣3)(x﹣2)≠0,故x=5是原方程的根.故答案为:5.【点评】此题主要考查了解分式方程,正确掌握解分式方程的方法是解题关键.12.(3分)(2017巴中)分解因式:a3﹣9a= a(a+3)(a﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2017巴中)一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是 5 .【考点】W4:中位数;W1:算术平均数.【分析】求出x的值,然后将数据按照从小到大依次排列即可求出中位数.【解答】解:x=5×5﹣2﹣3﹣5﹣7=8,这组数据为2,3,5,7,8,故中位数为5.【点评】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.14.(3分)(2017巴中)若a、b、c为三角形的三边,且a、b满足√x−9+(b﹣2)2=0,第三边c为奇数,则c= 9 .【考点】K6:三角形三边关系;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c 的取值范围,进而求出c的值.【解答】解:∵a、b满足√x−9+(b﹣2)2=0,∴a=9,b=2,∵a、b、c为三角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为9.【点评】本题主要考查了三角形三边关系以及非负数的性质,解题的关键是求出a和b的值,此题难度不大.15.(3分)(2017巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为 1 .【考点】A3:一元二次方程的解.【分析】由x=1是一元二次方程x2+ax+b=0的一个根,可得1+a+b=0,推出a+b=﹣1,可得a2+2ab+b2=(a+b)2=1.【解答】解:∵x=1是一元二次方程x2+ax+b=0的一个根,∴1+a+b=0,∴a+b=﹣1,∴a2+2ab+b2=(a+b)2=1.故答案为1.【点评】本题考查一元二次方程的解,完全平方公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(3分)(2017巴中)如图,E是ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D= 40 度.【考点】L5:平行四边形的性质.【分析】利用平行四边形的性质以及平行线的性质得出∠1=∠2,进而得出其度数,利用平行四边形对角相等得出即可. 【解答】解:如图所示,∵四边形ABCD 是平行四边形, ∴AB ∥DC ,∴∠1=∠F=70°. ∵AB=BE ,∴∠1=∠3=70°, ∴∠B=40°, ∴∠D=40°. 故答案是:40.【点评】此题主要考查了平行四边形的性质以及平行线的性质等知识,熟练应用平行四边形的性质得出是解题关键.17.(3分)(2017巴中)如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC :S △ABC = 1:4 .【考点】K3:三角形的面积.【分析】利用三角中位线的性质得出DE =∥12AB ,进而求出即可.【解答】解:∵在△ABC 中,AD ,BE 是两条中线,∴DE =∥12AB ,∴x △xxx x △xxx =14, 故答案为:1:4.【点评】此题主要考查了三角形中位线的性质以及相似三角形的性质,得出DE =∥12AB 是解题关键.18.(3分)(2017巴中)若一个圆锥的侧面展开图是半径为12cm的半圆,则这个圆锥的底面半径是 6 cm.【考点】MP:圆锥的计算.【分析】设该圆锥的底面半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=π12,然后解一次方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=π12,解得r=6(cm).故答案为6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.(3分)(2017巴中)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…请你将发现的规律用含自然数n(n≥1)的代数式表达出来√x+1x+2=(x+1)√1x+2(n≥1).【考点】37:规律型:数字的变化类.【分析】观察分析可得:√1+11+2=(1+1)√11+2;√2+12+2=(2+1)√12+2;…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵√1+1+2=(1+1)√1+2;√2+2+2=(2+1)√2+2;∴√x+1x+2=(n+1)√1x+2(n≥1).故答案为:√x+1x+2=(n+1)√1x+2(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到√x+1x+2=(n+1)√1x+2(n≥1).20.(3分)(2017巴中)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为(1,0).【考点】HA:抛物线与x轴的交点.【分析】直接求出抛物线与x轴的交点,进而得出其中点位置.【解答】解:当y=0时,0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).故答案为:(1,0).【点评】此题主要考查了抛物线与x轴的交点,正确得出A,B点坐标是解题关键.三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)(2017巴中)计算:2sin60°﹣(π﹣)0+|1﹣√3|+(12)﹣1.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=√3﹣1+√3﹣1+2=2√3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(5分)(2017巴中)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:{x3−1<0①x−1≤3(x+1)②,解不等式①得,x<3,解不等式②得,x≥﹣2,所以,不等式组的解集是﹣2≤x<3在数轴上表示如下:【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(6分)(2017巴中)先化简,再求值:(x 2−x 2x 2−2xx +x 2﹣xx −x)÷x 2x 2−xx,其中x=2y (xy ≠0).【考点】6D :分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x=2y 代入即可解答本题.【解答】解:(x 2−x 2x 2−2xx +x 2﹣x x −x )÷x 2x 2−xx=x 2−x 2−x (x −x )(x −x )?x (x −x )x=x 2−x 2−x 2+xx (x −x )2?x (x −x )x 2=x (x −x )(x −x )?x (x −x )x =x x, 当x=2y 时,原式=2xx=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.24.(8分)(2017巴中)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy ,△ABC 的顶点都在格点上,请解答下列问题: (1)将△ABC 向下平移5个单位长度,画出平移后的△A 1B 1C 1;(2)若点M 是△ABC 内一点,其坐标为(a ,b ),点M 在△A 1B 1C 1内的对应点为M 1,则点M 1的坐标为 (a ,b ﹣5) ;(3)画出△ABC 关于点O 的中心对称图形△A 2B 2C 2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用平移规律进而得出答案;(3)直接利用关于点对称的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)∵点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,∴点M1的坐标为:(a,b﹣5);故答案为:(a,b﹣5);(3)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.25.(10分)(2017巴中)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A、B、C、D四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.等级人数A B C D类别农村a16018080县镇200182160b城市240c12248(注:等级A,B,C,D分别代表优秀、良好、合格、不合格)(1)请算出表中的a,b,c(直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A等级的百分率是多少(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D等级的大约有多少人【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)分别求出农村、县镇、城市三类群体的学生的总人数,结合表格中的数据即可解决问题;(2)根据百分率的定义计算即可.(3)用样本估计总体的思想解决问题;【解答】解:(1)a=2000×30%﹣180﹣160﹣80=180,b=2000×30%﹣200﹣182﹣160=58,c=2000×40%﹣240﹣122﹣48=190.(2)A等级的百分率=180+200+2402000×100%=31%.答:此次抽取的2000名学生的科学测试成绩为A等级的百分率是31%.(3)估计抽查的农村学生科学测试成绩为D等级的大约有80800×16000=1600(人),答:估计抽查的农村学生科学测试成绩为D等级的大约有1600人.【点评】本题考查扇形统计图、统计表、样本估计总体、百分率等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.26.(8分)(2017巴中)如图,两座建筑物AD与BC,其地面距离CD为60cm,从AD的顶点A测得BC顶部B的仰角α=30°,测得其底部C的俯角β=45°,求建筑物BC的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】由题意得AE⊥BC,AE=CD=60,然后在Rt△ACE和Rt△AEB中解答.【解答】解:由题意得AE⊥BC,AE=CD=60,在Rt△ACE中,∠β=45°,AE=60°,tan45°=xx 60,∴CE=60×1=60,在Rt△AEB中,∠α=30°,AE=60,tan30°=xx 60,∴BE=60×√33=20√3,∴BC=BE+CE=(60+20√3)m.答:建筑物BC的高为(60+20√3)m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解决问题的关键是抽象出直角三角形,然后解直角三角形.27.(6分)(2017巴中)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.【考点】AD:一元二次方程的应用.【分析】设平均每次下调的百分率为x,根据调价前后的价格,即可得出关于x 的一元二次方程,解之取小于1的正值即可得出结论.【解答】解:设平均每次下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1==10%,x2=(不合题意,舍去).答:平均每次下调的百分率为10%.【点评】本题考查了一元二次方程的应用,根据调价前后的价格,列出关于x 的一元二次方程是解题的关键.28.(10分)(2017巴中)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求xxxx的值.【考点】S9:相似三角形的判定与性质;LB:矩形的性质;ME:切线的判定与性质.【分析】(1)连接OE,证明FG是⊙O的切线,只要证明∠OEF=90°即可;(2)先根据角平分线的性质得出EF=BE=6,再证明△ADF∽△FCE,根据相似三角形对应边成比例得出xxxx=xxxx=12.【解答】(1)证明:如图,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线;(2)解:∵四边形ABCD是矩形,∴EB⊥AB,∵EF⊥AF,AE平分∠FAH,∴EF=BE=6,又∵四边形ABCD是矩形,∴∠D=∠C=90°,∴∠DAF+∠AFD=90°,又∵AF⊥FG,∴∠AFG=90°,∴∠AFD+∠CFE=90°,∴∠DAF=∠CFE,又∵∠D=∠C , ∴△ADF ∽△FCE , ∴xx xx =xx xx, 又∵AF=12,EF=6, ∴xx xx =612=12.【点评】本题考查的是切线的判定,解决本题的关键是要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质,矩形的性质.29.(10分)(2017巴中)如图,在矩形ABCD 中,对角线AC 的垂直平分线EF 分别交AD 、AC 、BC 于点E 、O 、F ,连接CE 和AF . (1)求证:四边形AECF 为菱形;(2)若AB=4,BC=8,求菱形AECF 的周长.【考点】LB :矩形的性质;KG :线段垂直平分线的性质;LA :菱形的判定与性质.【分析】(1)根据ASA 推出:△AEO ≌△CFO ;根据全等得出OE=OF ,推出四边形是平行四边形,再根据EF ⊥AC 即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF ,设AF=x ,推出AF=CF=x ,BF=3﹣x ,在Rt △ABF 中,由勾股定理得出方程62+(8﹣x )2=x 2,求出即可. 【解答】(1)证明:∵EF 是AC 的垂直平分线, ∴AO=OC ,∠AOE=∠COF=90°, ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠EAO=∠FCO ,在△AEO 和△CFO 中, {∠xxx =∠xxx xx =xx ∠xxx =∠xxx,∴△AEO≌△CFO(ASA);∴OE=OF又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC∴平行四边形AECF是菱形;(2)解:设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得 x=5.∴AF=5,∴菱形AECF的周长为20.【点评】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.30.(10分)(2017巴中)如图,一次函数y=kx+b与反比例函数y=4x(x>0)的图象交于A(m,0),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣4x>0中x的取值范围;(3)求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)由图直接解答;(3)将△AOB的面积转化为S△AON ﹣S△BON的面积即可.【解答】解:(1)∵点A 在反比例函数y=4x上,∴4x=4,解得m=1, ∴点A 的坐标为(1,4),又∵点B 也在反比例函数y=4x上,∴42=n ,解得n=2, ∴点B 的坐标为(2,2),又∵点A 、B 在y=kx+b 的图象上, ∴{x +x =42x +x =2,解得{x =−2x =6, ∴一次函数的解析式为y=﹣2x+6. (2)x 的取值范围为1<x <2;(3)∵直线y=﹣2x+6与x 轴的交点为N , ∴点N 的坐标为(3,0),S △AOB =S △AON ﹣S △BON =12×3×4﹣12×3×2=3.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.31.(12分)(2017巴中)如图,已知两直线l 1,l 2分别经过点A (1,0),点B (﹣3,0),且两条直线相交于y 轴的正半轴上的点C ,当点C 的坐标为(0,√3l 1⊥l 2,经过点A 、B 、C 的抛物线的对称轴与l 1、l 2、x 轴分别交于点G 、E 、F ,D 为抛物线的顶点. (1)求抛物线的函数解析式;(2)试说明DG 与DE 的数量关系并说明理由;(3)若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,请直接写出点M 的坐标.【考点】HF :二次函数综合题.【分析】(1)设抛物线的函数解析式为y=ax 2+bx+c .将点A 、B 、C 的坐标代入,得到关于a 、b 、c 的方程组,解方程求出a 、b 、c 的值,进而得到抛物线的解析式;。

四川省巴中市中考数学真题试卷(解析版)

四川省巴中市中考数学真题试卷(解析版)
故选B.
【点睛】本题主要考查了科学计数法,解题的关键在于能够熟练掌握科学计数法的定义.
4.下列调查中最适合采用全面调查(普查)的是( )
A. 了解巴河被污染情况
B. 了解巴中市中小学生书面作业总量
C. 了解某班学生一分钟跳绳成绩
D. 调查一批灯泡的质量
【答案】C
【解析】
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
7.小风在1000米中长跑训练时,已跑路程x(米)与所用时间t(秒)之间的函数图象如图所示,下列说法错误的是( )
A.小风的成绩是220秒
B.小风最后冲刺阶段的速度是5米/秒
C.小风第一阶段与最后冲刺阶段速度相等
D.小风的平均速度是4米/秒
【答案】D
【解析】
【分析】根据函数图像上的数据,求出相应阶段的速度即可得到正确的结论.
12.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x

﹣3
﹣2
﹣1
1
2

y

1.875
3
m
1.875
0

A.①④B.②③C.③④D.②④
【答案】B
9.如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于( )
A. B. C. D.
【答案】C
【解析】
【分析】连接OA,AC,OC,OC交AB于E,先根据垂径定理求出AE=3,然后证明三角形OAC是等边三角形,从而可以得到∠OAE=30°,再利用三线合一定理求解即可.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年四川省巴中市中考数学试卷一、选择题(本大题共10道小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的.)1.﹣2的倒数是()A.2 B.C.﹣ D.﹣22.下列计算正确的是()A.(a3)3=a6 B. a6÷a3=a2C. 2a+3b=5ab D. a2•a3=a53.如图所示的几何体的俯视图是()4.若单项式2x2y a+b 与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B. a=﹣3,b=1 C. a=3,b=﹣1 D. a=﹣3,b=﹣15.在函数y=中,自变量x的取值范围是()A.x≠﹣2 B. x>2 C. x<2 D. x≠26.某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.60(1﹣2x)2=315 D. 560(1﹣x2)=315 7.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走A.B.C.D.8.下列说法中正确的是()A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面进上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近D.为了解某种节能灯的使用寿命,选择全面调查9.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°10.(2015•巴中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A.①②B.只有①C.③④D.①④二、填空题(本大题共10个小题,每小题3分,共30分)11.(2015•巴中)从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8400万元,请你将8400万元用科学记数记表示为元.12.(2015•巴中)分解因式:2a2﹣4a+2=.13.(2015•巴中)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.14.(2015•巴中)分式方程=的解为x=.15.(2015•巴中)若正多边形的一个外角为30°,则这个多边形为正边形.16.(2015•巴中)有一组数据:5,4,3,6,7,则这组数据的方差是.17.(2015•巴中)圆心角为60°,半径为4cm的扇形的弧长为cm.18.(2015•巴中)如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB=.19.(2015•巴中)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C 作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为.20.(2015•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2015=.三、解答题(本大题共11小题,共90分.)21.(5分)(2015•巴中)计算:|2﹣|﹣(2015﹣π)0+2sin60°+()﹣1.22.(5分)(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.23.(5分)(2015•巴中)化简:﹣÷.24.(7分)(2015•巴中)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC (项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.25.(10分)(2015•巴中)如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.26.(10分)(2015•巴中)“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛,已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.27.(10分)(2015•巴中)如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.28.(8分)(2015•巴中)如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.29.(8分)(2015•巴中)如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C、D、B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)30.(10分)(2015•巴中)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.31.(12分)(2015•巴中)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2015年四川省巴中市中考数学试卷参考答案一、选择题(本大题共10道小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的.)1.C2.D3.B4.A5.D6.B7.B8.C9.A10.D二、填空题(本大题共10个小题,每小题3分,共30分)11.8.4×107元.12.2(a﹣1)2.13.1<c<5.14.4.15.12边形.16.2.17.πcm.18..19.1.20.﹣.21.解答:解:原式=2﹣﹣1+2×+3=1+3=4.22.解答:解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.23.解答:解:原式=﹣•=﹣=.24.解:(1)(2)如图:(3)∵BC=3,∴线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.故答案为π.25.解:(1)∵A(﹣2,1),∴将A坐标代入反比例函数解析式y2=中,得m=﹣2,∴反比例函数解析式为y=﹣;将B坐标代入y=﹣,得n=﹣2,∴B坐标(1,﹣2),将A与B坐标代入一次函数解析式中,得,解得a=﹣1,b=﹣1,∴一次函数解析式为y1=﹣x﹣1;(2)设直线AB与y轴交于点C,令x=0,得y=﹣1,∴点C坐标(0,﹣1),∵S△AOB=S△AOC+S△COB=×1×2+×2×1=2;(3)由图象可得,当y1<y2<0时,自变量x的取值范围x>1.26.解:(1)根据题意得:3÷15%=20(人),表示“D等级”的扇形的圆心角为×360°=72°;C级所占的百分比为×100%=40%,故m=40,故答案为:20,72,40.(2)故等级B的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(2)列表如下:男男女女女男(男,男)(男,男)(女,男)(女,男)(女,男)男(男,男)(男,男)(女,男)(女,男)(女,男)女(男,女)(男,女)(女,女)(女,女)(女,女)所有等可能的结果有15种,其中恰好是一名男生和一名女生的情况有8种,则P恰好是一名男生和一名女生=.27.解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=6,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.28.解:设小路的宽为xm,依题意有(40﹣x)(32﹣x)=1140,整理,得x2﹣72x+140=0.解得x1=2,x2=70(不合题意,舍去).答:小路的宽应是2m.29.解:设AB=x,在Rt△ACB和Rt△ADB中,∵∠C=30°,∠ADB=45°,CD=80∴DB=x,AC=2x,BC==x,∵CD=BC﹣BD=80,x﹣x=80,∴x=40(+1)≈109.2米.答:该大厦的高度是109.2米.30.(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.31.解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E(0,﹣4);当EC=DE时,(m﹣8)2+(m﹣4)2=(m﹣3)2+(m﹣4)2解得m5=5.5,∴E(,﹣).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为m2﹣m﹣4,PBD的面积S=S梯形﹣S△BOD﹣S△PFD=m[4﹣(m2﹣m﹣4)]﹣(m﹣3)[﹣(m2﹣m﹣4)]﹣×3×4 =﹣m2+m=﹣(m﹣)2+∴当m=时,△PBD的最大面积为,∴点P的坐标为(,﹣).。

相关文档
最新文档