两配对样本非参数检验..

合集下载

Mann-Whitney检验

Mann-Whitney检验

Mann-Whitney检验How the Mann-Whitney test worksMann-Whitney检验⼜叫做秩和检验,是⽐较没有配对的两个独⽴样本的⾮参数检验。

思想是这样的:假定要检验两组数据之间有没有差异。

⾸先,不管分组把所有数据排序。

按照数值⼤⼩给定⼀个值叫做秩。

最⼩的值秩为1,最⼤的为N(假定两个样本总共有N个观察值)。

如果有相同的值,就得到相同的秩。

相同的值的秩是他们的秩的平均值。

如果两组的秩的和差距⽐较⼤,就会得出较⼩的p值,认为这两组间有显著差异。

软件:,只要输⼊数据,选择合适的参数,就可以很快得到结果。

How to think about the results of a Mann-Whitney test样本量太⼩的话效度会很低。

⽐如,如果总的数据只有7个或者更少的话,p值总是⼤于5%的。

Is the Mann-Whitney test the right test for these data?分析之前要先看⼀下,Mann-Whitney 检验是否适合⼿头的问题。

问题解释“误差”是独⽴的吗?“误差”指的是每个值和中位数的差异。

仅当误差的分布是随机的时候Mann-Whitney 检验的结果才有意义。

⼀般要保证独⽴样本。

样本不独⽴可能会导致误差不随机。

数据是配对的吗?如果数据是配对的,应该⽤Wilcoxon成对检验。

是只⽐较两组数据吗?Mann-Whitney 检验只⽤于两组数据的⽐较。

如果要⽐较多组数据,可以⽤ Kruskal-Wallis 检验。

⽤⼏次 Mann-Whitney 检验来⽐较多个组间的差异是不适合的,就如同ANOVA 不能⽤多次t检验代替⼀样。

两个分布的形状是相同的吗?Mann-Whitney 检验不需要假定数据符合某种分布,但是要求两个分布是相同的。

如果两组的分布差异⽐较⼤,可能需要数据转换使之相近。

是否⽐较中位数?Mann-Whitney 检验⽐较的是两组的中位数。

两组非参数检验方法

两组非参数检验方法

两组非参数检验方法非参数统计方法是指对总体分布形式不作任何假设的一类统计检验方法。

相对于参数统计方法而言,非参数统计方法在总体参数未知或者总体分布不满足特定假设条件的情况下更能适用。

本文将介绍两组常用的非参数检验方法:符号检验和Wilcoxon秩和检验。

第一组非参数检验方法是符号检验。

符号检验是对两个独立样本进行的一种非参数假设检验方法。

它的基本原理是比较两个样本中大于(或小于)某个特定值的样本数量是否具有显著差异。

首先,我们需要定义一个零假设(H0)和一个备择假设(H1)。

然后,计算两个样本对应数据的差值。

对于差值为正的样本,给予“+”符号;对于差值为负的样本,给予“-”符号;对于差值为零的样本,可以省略不计。

最后,通过比较“+”和“-”符号的数量,使用二项分布来计算出p值。

第二组非参数检验方法是Wilcoxon秩和检验。

这是一种用于比较两个相关样本的非参数假设检验方法。

它的思想是先将两个样本进行相互配对,然后对两个样本的差异值按大小进行排列,并赋予秩次。

然后,计算出正向差异和负向差异的秩和,并取较小值作为检验统计量。

最后,根据理论分布进行显著性检验,得到p值。

这两组非参数检验方法都有自己的适用范围和优势。

符号检验适用于样本容量较小、样本分布不满足正态分布假设的情况下,对两个独立样本差异进行显著性检验。

Wilcoxon秩和检验适用于比较两个相关样本之间的差异,如前后两次测量、配对样本的差异等。

与参数检验方法相比,这两个非参数方法更加鲁棒,能够在总体分布未知或偏离正态分布的情况下给出可靠的结果。

总结起来,非参数检验方法是一类不依赖与总体参数分布假设的统计方法,常用于小样本或总体分布不明确的情况下。

符号检验和Wilcoxon秩和检验是其中两组常用的方法。

符号检验适用于比较两个独立样本的差异,通过比较“+”和“-”符号的数量来判断差异的显著性;Wilcoxon秩和检验适用于比较两个相关样本的差异,通过对差异值按大小排列,并计算秩和来判断差异的显著性。

两配对样本非参数检验

两配对样本非参数检验
相伴概率值为0.125,应该 认为训练前后学生成绩没有 变化
Wilcoxon检验结果如下两表所示。
出现了一个差值等于零的个案,删除此个 案,于是样本容量从10变成了9。符号为 正的有9个,秩和为45,符号为负的有0个, 秩和为0。这样,统计量W=0,构造的 Z=-2.673,近似相伴概率值p=Pr{|Z| >=-2.673}=0.008,(Z服从标准正态分 布。)因而拒绝原假设,认为训练前后学 生的成绩有显著性差异。
训练后成绩
70.00 71.00 65.00 68.00 50.00 55.00 75.00 70.00 65.00 70.00
实验步骤
图10-23 在菜单中选择“2 Related Samples”命令
图10-24 “TwoRelatedSamples Tests” 对话框
设置配对 的样本
配对样本的几种检验方法,(其 中Marginal Homogeneity检 验是McNemar检验针对多取值 有序数据的推广方法)
01
按照符号检验的方法,将 第二组样本的各个观察值 减去第一组样本对应的观 察值,如果得到差值是一 个正数,则记为正号;差 值为负数,则记为负号。 (出现差值等于0时,删 除此个案,样本数n相应 地减少。)
02
保留差值数据。根据差值 数据的绝对值大小按升序 排序,并求出相应的秩。
03
分别计算符号为正号的秩 和 W+、负号秩总合 W− 以及正号平均秩、 负号平均秩。
SPSS中有以下3种两配对样本非参数检验方法。
1.两配对样本的McNemar(麦克尼马尔)变化显著性检验
1 McNemar变化显著性检验以研究对象自身为对 照,检验其两组样本变化是否显著。 原假设:样本来自的两配对总体分布无显著差异。

【统计分析】非参数检验

【统计分析】非参数检验
α=0.05 2. 计算统计量: T+=62.5,T-=3.5
3. 查表与结论 查T界值表,T0.05(11)=10~56,T=3.5,在界 值范围外,P<0.05,拒绝H0。
符号检验(Sign test)
z n n 1 n
二、两样本比较的秩和检验 (Wilcoxon法)
适用条件:完全随机设计的两个样本比较,若不满足参数 检验的应用条件,则用本法;两个等级资料比较。
-0.45
-1
13
15.20
5.50
9.70
11
14
16.50
9.00
7.50
8.5
步骤
1. 建立假设:H0:差值的总体中位数=0, H1:差值的总体中位数0;
=0.05 2. 计算统计量
计算差值d,由小到大的顺序编秩次,并冠以原d 的正负号,然后分别求正负秩和,得到T+=73, T-=5,取秩和较小者作为检验统计量T=5 3. 查表及结论
1.0
2.5
4
17.00
6.50
10.50
12
5
13.00
5.50
7.50
8.5
6
18.00
13.50
4.50
5
7
17.50
10.00
7.50
8.5
8
10.20
10.20
0.00
-
9
10.00
10.00
0.00
-
10
10.50
9.50
1.00
2.5
11
13.80
6.80
7.00
6
12
3.03
3.48

第七章SPSS非参数检验

第七章SPSS非参数检验
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验

两配对样本非参数检验

两配对样本非参数检验

两配对样本非参数检验在统计学中,非参数检验是一种用于比较两个或多个独立样本之间差异的方法,它不依赖于数据的分布假设。

相比之下,参数检验需要对数据的分布做出假设,例如正态分布。

非参数检验的优点是更加灵活,在不确定数据的分布情况下更能有效地进行统计推断。

以下将介绍两种常见的非参数检验方法:Wilcoxon秩和检验和Mann-Whitney U检验。

Wilcoxon秩和检验又称为Wilcoxon符号秩检验、Wilcoxon配对差异检验等,它用于比较两个配对样本的差异。

该检验的原假设是,在两个配对样本中,两两配对的差异具有相同的分布。

而备择假设是两个配对样本之间存在差异。

Wilcoxon秩和检验的步骤如下:1.给出两个配对样本,分别记作X和Y。

2.对所有配对差异进行排序,并为每个差异分配一个秩次,然后计算秩和W+和W-。

3.根据秩和W+和W-的大小,查找对应的临界值。

4.比较秩和W+和W-与临界值,如果大于等于临界值,则拒绝原假设,否则接受原假设。

Mann-Whitney U检验用于比较两个独立样本的差异,它的原假设是两个样本来自同一个总体,而备择假设是两个样本来自不同的总体。

Mann-Whitney U检验的步骤如下:1.给出两个独立样本,分别记作X和Y。

2.对两个样本的所有观测值进行排列,并为每个观测值计算秩次。

3.根据秩次,计算U值。

4.利用U值和样本量的关系,查找对应的临界值。

5.比较U值与临界值,如果小于等于临界值,则拒绝原假设,否则接受原假设。

需要注意的是,在使用非参数检验时,样本量越大,结果的准确性越高。

此外,当样本量较小时,非参数检验的效果可能会受到影响,建议使用参数检验。

综上所述,非参数检验是一种灵活、无需分布假设的统计推断方法,其中Wilcoxon秩和检验和Mann-Whitney U检验用于比较两个独立样本或配对样本之间的差异。

它们的应用范围广泛,并在实际问题中得到广泛应用。

第13章 有序分类变量的统计推断——非参数检验


13.3.1 Mann-Whitney

U检验

记X和Y的秩和分别为WX和WY,满足 WX+WY=N(N+1)/2。 当X的样本全部排在Y的样本前面时, WX达到最小m(m+1)/2,定义统计量

U= WX -m(m+1)/2

当原假设成立时,两个样本交错出现, 分布均匀,U不会太小或者太大。反之, 如果U偏小或者偏大,则原假设不成立。
13.3.2 分析实例
例13.2
一家权威的房屋建筑协会 提供了最流行的家居装修工程的 成本数据,能否得出厨房的装修 成本与主卧室的装修成本存在差 异呢? 数据见npara2.sav
13.3.2 分析实例

AnalyzeNonparametric Tests 2 independent Samples
第13章计推断非参数检验有序分类变量的统第13章有序分类变量的统计推断非参数检验?131非参数检验概述?132两个配对样本的非参数检验?133两个独立样本的非参数检验131非参数检验概述?1311非参数检验的意义?1312非参数检验预备知识1311非参数检验的意义?非参数检验nonparametrictesting是指在总体不服从正态分布且分布情况不明时用来检验数据资料是否来自同一个总体假设的一类检验方法
13.3.1 Mann-Whitney

U检验
SPSS中提供了四种方法: Mann-Whitney U法(曼-惠特尼U检 验):

通过对平均秩的研究来实现推断的。 类似单样本检验的K-S法,通过对分布的 研究来实现推断。

Kolmogorov-Smirnov Z法:

13.3.1 Mann-Whitney

抽样检验方案的类型有哪些

抽样检验方案的类型有哪些抽样检验方案的类型有哪些摘要:抽样检验是统计学中常用的一种方法,用于判断一个总体是否具有某种特征。

在实际应用中,根据研究目的和数据特点的不同,可以选择不同类型的抽样检验方案。

本文将介绍六种常见的抽样检验方案类型:单样本检验、双样本检验、配对样本检验、方差分析、相关分析和非参数检验,并对每种类型的方案进行详细的叙述和讨论。

关键词:抽样检验,类型,单样本检验,双样本检验,配对样本检验,方差分析,相关分析,非参数检验一、单样本检验单样本检验是指在抽样过程中,只有一个样本参与检验的方法。

它适用于总体参数已知的情况下,通过对样本数据进行统计推断,判断总体是否满足某种特征。

常用的单样本检验方法包括:单样本均值检验、单样本比例检验和单样本方差检验。

单样本检验的步骤包括:建立假设、选择显著性水平、计算统计量和判断决策。

二、双样本检验双样本检验是指在抽样过程中,同时有两个样本参与检验的方法。

它适用于对比两个总体是否相同或不同的情况。

双样本检验常用的方法包括:独立样本 t 检验、配对样本 t 检验和 Mann-Whitney U 检验。

独立样本 t 检验适用于两个独立样本的均值比较,配对样本 t 检验适用于两个相关样本的均值比较,Mann-Whitney U 检验适用于两个独立样本的中位数比较。

三、配对样本检验配对样本检验是指在抽样过程中,每个样本中的观测值之间存在相关关系的方法。

它适用于在相同样本上进行两次观测,比较观测值前后的差异是否显著。

常用的配对样本检验方法包括:配对样本 t 检验和符号检验。

配对样本 t 检验适用于样本差异服从正态分布的情况,符号检验适用于样本差异不服从正态分布的情况。

四、方差分析方差分析是一种用于比较两个以上样本均值是否存在显著差异的方法。

它适用于多个不同总体均值之间的比较。

方差分析常用的方法包括:单因素方差分析和多因素方差分析。

单因素方差分析用于比较一个因素下不同水平之间的均值差异,多因素方差分析用于比较多个因素的交互作用对均值的影响。

两配对样本非参数检验详解演示文稿

两配对样本的Wilcoxon符号平均秩检验考 虑了这方面的因素。
原假设为:样本来自的两配对样本总体的 分布无显著差异。
检验步骤:
1.按照符号检验的方法,将第二组样本的 各个观察值减去第一组样本对应的观察值,如果 得到差值是一个正数,则记为正号;差值为负数, 则记为负号。(出现差值等于0时,删除此个案, 样本数n相应地减少。)
McNemar变化显著性检验以研究对象自身 为对照,检验其两组样本变化是否显著。
原假设:样本来自的两配对总体分布无显 著差异。
McNemar变化显著性检验要求待检验的两 组样本的观察值是二分类数据,在实际分析中 有一定的局限性。
McNemar变化显著性检验基本方法采用二 项分布检验。它通过对两组样本前后变化的频 率,计算二项分布的概率值。
5.根据检验统计量计算相伴概率值,与 设定的显著性水平进行比较作出检验判断。
10.7.2 SPSS中实现过程
研究问题 分析10个学生接受某种方法进行训练的效
果,收集到这些学生在训练前、后的成绩,如 表10-9所示。表格的每一行表示一个学生的4 个成绩。其中第一列表示,训练前的成绩是否 合格,0表示不合格,1表示合格;第二列表示 训练后的成绩是否合格,0表示不合格,1表示 合格;第三列表示训练前学生的具体成绩;第 四列表示训练后学生的具体成绩。问训练前后 学生的成绩是否存在显著差异?
如果得到的概率值小于或等于用户的显著 性水平,则应拒绝零假设H0,认为两配对样 本来自的总体分布有显著差异;如果概率值大 于显著性水平,则不能拒绝零假设H0,认为两 配对样本来自的2
3.两配对样本的Wilcoxon符号平均秩 检验
两配对样本的符号检验考虑了总体数据变 化的性质,但没有考虑两组样本变化的程度。

spss参数与非参数检验实验报告

基本思路:
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.W=min( W+ , W− )
W n(n删除差值等于0的个案以后的样本 容量。 5.根据检验统计量计算相伴概率值,与 设定的显著性水平进行比较作出检验判断。
10.7.2 SPSS中实现过程
研究问题 分析10个学生接受某种方法进行训练的效 果,收集到这些学生在训练前、后的成绩,如 表10-9所示。表格的每一行表示一个学生的4 个成绩。其中第一列表示,训练前的成绩是否 合格,0表示不合格,1表示合格;第二列表示 训练后的成绩是否合格,0表示不合格,1表示 合格;第三列表示训练前学生的具体成绩;第 四列表示训练后学生的具体成绩。问训练前后 学生的成绩是否存在显著差异?
通过前两列数据可以 运用McNemar检验, 而后两列数据适合做 符号检验和Wilcoxon 符号平均秩检验
表10-9
训练前 0 1 0 0 训练后 1 1 1 1
训练前后的成绩
训练前成绩 58.00 70.00 45.00 56.00 训练后成绩 70.00 71.00 65.00 68.00
0
(2)McNemar检验结果如下两表所示。
2*2交叉列联表
相伴概率值为 0.125,应该认 为训练前后学生 成绩没有变化
(3)Wilcoxon检验结果如下两表所示。
SPSS将自动对差值正负符号序列作单样本 二项分布检验,计算出实际的相伴概率值(原 假设对应的理论概率等于0.5)。 如果得到的概率值小于或等于用户的显著 性水平,则应拒绝零假设H0,认为两配对样 本来自的总体分布有显著差异;如果概率值大 于显著性水平,则不能拒绝零假设H0,认为两 配对样本来自的总体分布无显著差异。 1 H 0 : N 、N ~ B ( n, ) 2
2.两配对样本的符号(Sign)检验
当两配对样本的观察值不是二值数据时, 无法利用前面一种检验方法,这时可以采用两 配对样本的符号(Sign)检验方法。
原假设为:样本来自的两配对样本总体的 分布无显著差异。
检验步骤:
1.将第二组样本的各个观察值减去第一组 样本对应的观察值,如果得到差值是一个正数, 则记为正号;差值为负数,则记为负号。 2.计算正号的个案数 N+ 和负号的个案数 N-。 (出现差值等于0时,删除此个案,样本 数n相应地减少。) 如果正号的个数和负号的个数大致相当,则 可以认为两配对样本数据分布差距较小;正号的 个数和负号的个数相差较多,可以分为两配对样 本数据分布差距较大。
McNemar变化显著性检验以研究对象自身 为对照,检验其两组样本变化是否显著。 原假设:样本来自的两配对总体分布无显 著差异。 McNemar变化显著性检验要求待检验的两 组样本的观察值是二分类数据,在实际分析中 有一定的局限性。
McNemar变化显著性检验基本方法采用二 项分布检验。它通过对两组样本前后变化的频 率,计算二项分布的概率值。
Table 1. 两组样本的交叉二维频数表 第二组样本 0 第 一 组 样 本 0 1 a c a+c 1 b d b+d a+b c+d total
在原假设条件下应该有 (a + b) = (a + c) 或者 (c + d) = (b + d) 即 b=c 大样本下有近似自由度 为1的卡方统计量: X2 = (b - c)2/(b + c)
0 1 1 0 1
0
0 1 1 1 1
45.00
50.00 61.00 70.00 55.00 60.00
50.00
55.00 75.00 70.00 65.00 70.00

实验步骤
图10-23 在菜单中选择“2 Related Samples”命令
设置配对的样本
配对样本的几种 检验方法,(其 中Marginal Homogeneity检 验是McNemar 检验针对多取值 有序数据的推广 方法)
图10-24 “Two-Related-Samples Tests”对话框
根据前两个 指标值进行 配对样本的 McNemar检 验
图10-25 选择两个变量配对
根据后两个指标 数据进行符号检 验和Wilcoxon 符号平均秩检验
图10-27 选择两个变量配对
10.7.3 结果和讨论
(1)描述性统计部分结果如下表所示。
SPSS 16实用教程
第10章 非参数检验
10.7 两配对样本非参数检验 10.7.1 统计学上的定义和计算公式
定义:两配对样本(2 Related Samples)非 参数检验是在对总体分布不很清楚的情况下, 对样本来自的两配对总体进行检验。
配对样本的理解: 两配对样本非参数检验一般用于同一研究对象 (或两配对对象)分别给予两种不同处理的效 果比较,以及同一研究对象(或两配对对象) 处理前后的效果比较。前者推断两种效果有无 差别,后者推断某种处理是否有效。 如:判断服用某种药品前后某项关键生理指标 值有无变化、同一个家庭夫妻两人的寿命有无 差别等等
两配对样本非参数检验的前提要求两个样 本应是配对的。在应用领域中,主要的配对资 料包括:具有年龄、性别、体重、病况等非处 理因素相同或相似者。 首先两个样本的观察数目相同,其次两样 本的观察值顺序不能随意改变。 SPSS中有以下3种两配对样本非参数检验 方法。
1.两配对样本的McNemar(麦克尼马 尔)变化显著性检验
3.两配对样本的Wilcoxon符号平均秩 检验
两配对样本的符号检验考虑了总体数据变 化的性质,但没有考虑两组样本变化的程度。 两配对样本的Wilcoxon符号平均秩检验考 虑了这方面的因素。 原假设为:样本来自的两配对样本总体的 分布无显著差异。
检验步骤:
1.按照符号检验的方法,将第二组样本的 各个观察值减去第一组样本对应的观察值,如果 得到差值是一个正数,则记为正号;差值为负数, 则记为负号。(出现差值等于0时,删除此个案, 样本数n相应地减少。) 2.保留差值数据。根据差值数据的绝对值 大小按升序排序,并求出相应的秩。 3.分别计算符号为正号的秩和 W+、负号 秩总合 W− 以及正号平均秩、负号平均秩。
相关文档
最新文档