桥梁盖梁抱箍法的施工及计算
三柱式盖梁抱箍法施工及计算

盖梁抱箍法施工及计算第一部分盖梁抱箍法施工设计图一、施工设计说明1、概况桥长1012.98米,各墩为三柱式结构(墩柱为直径2.0m的钢筋砼结构),墩柱上方为盖梁。
盖梁为长26.4m,宽2.4m,高2.6m的钢筋砼结构,引桥盖梁砼浇筑量大,约156.1m3。
图1-1 盖梁正面图(单位:m)二、盖梁抱箍法结构设计1、侧模与端模支撑侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板外设2[14背带。
在侧模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带上下各设一条φ20的栓杆作拉杆,上下拉杆间间距2.7m,在竖带外设φ48的钢管斜撑,支撑在横梁上。
端模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。
在端模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带外设φ48的钢管斜撑,支撑在横梁上。
2、底模支撑底模为特制大钢模,面模厚度为δ8mm,肋板高为10cm。
在底模下部采用间距0.4m工16型钢作横梁,横梁长4.6m。
盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。
横梁底下设纵梁。
横梁上设钢垫块以调整盖梁底2%的横向坡度与安装误差。
与墩柱相交部位采用特制型钢支架作支撑。
3、纵梁在横梁底部采用单层四排上下加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长30m,每两排一组,每组中的两排贝雷片并在一起,两组贝雷梁位于墩柱两侧,中心间距253.6cm,贝雷梁底部采用3m长的工16型钢作为贝雷梁横向底部联接梁。
贝雷片之间采用销连接。
纵、横梁以及纵梁与联接梁之间采用U 型螺栓连接;纵梁下为抱箍。
4、抱箍采用两块半圆弧型钢板(板厚t=16mm)制成,M24的高强螺栓连接,抱箍高1734cm,采用66根高强螺栓连接。
抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。
为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。
桥梁盖梁抱箍法施工及计算

2纵梁跨度中点挠度。f C fC =5 lq410 I0 0 3 m [ l0O ) A = B0 2 x /0 E=. 0 5 <]/ ( 1 0 f 4 =
3 /0 = .1 m 满足 ) .3 00 ( 3 01
3 抱 箍 算 . 4 3 . 荷载计 算 纵 梁 自重 G =3 N .1 4 63k 抱 箍上 的总荷 载 : Z G1G + +, G + 69 8 N G = + 2G3C + 5G = 5 k d
3 . 由以 j .3 3 计算结果 中知 , 纵梁满足抗弯要求。 .4 3 桥梁无支架施工在当前市政工程建设 l } 越来越 示其优越性。抱箍法 3 . 纵梁 结构 强度 和挠度 验算 。 施工是无支架施工中的一种新方法。 对抱箍支架系统的受力分析和验算是确 1根据 以上 力学计 算得 知 , 大弯 矩出现 在 A、 ) 最 B支座 , 人 q后 代 MB= .4 q = 1 kN’ 54 5 2 7 i n 保 工程安 全 l 生和经济性 的基 础 。
民营科技 丽 市 桥 与
蒋周萍 叶 维泽
( 江 环 宇 建设 集 团有 限公 司 , 江 绍 兴 3 2 0 ) 浙 浙 100
摘
要: 结合 实 际工 程 施 工 介 绍 了桥 墩 盖 梁 抱 箍 法 的施 工 。包括 抱 箍 、 梁 、 梁等 支撑 体 系和 模板 体 系 的设 计 与 计 算 , 纵 横 以及 采 用 抱 箍 法施 工 的
每个盖梁按墩柱设一个抱箍体支承上部荷载 , 由上面的计算可知 : 每个
抱 箍承受 的竖 向压 力 N:= R + f23 9 N N 2 A G C= 8 k 。
以最大值为抱箍体需承受的竖向压力 N进行计算 ,该值即为抱箍体需
浅谈桥梁施工过程中盖梁抱箍法施工方法及荷载计算

1盖 梁抱 箍 法 施 工设 计 图
特制钢支架 , 该支架由工 l 6型钢制作 , 每个墩
c 点位襁
:
第 二步 : 计算 C 点支座反力 R c作用下的 盖梁施工拟采用抱箍法施工。 盖梁砼浇筑量大, 用工 1 6型钢 1m) 8 。盖梁悬出端底模下设特制 弯矩与挠度 约 6. 4 。 8O m3 0 i 角支 架 , 每个 重 约 5 N K。 1 . 2盖梁抱箍法结构设计 。 - 1侧模与端 1. 2 荷载计算:1 ( )盖梁砼 自重 : 6 .0 G= 8 m × 0 模 支 撑 。侧 模 为 特 制大 钢 模 ,面模 厚 度 为 2 K / 310 K 。( ) 板 自重 : = 3 K ( 5 N m= 7 0 N 2模 G216 N 根 86 m, m 肋板高为 le 在肋板外设 21 O m, [4背带 。 据 模 板 资 料 ) ( )侧 模 支 撑 白 重 : 34 。 3 G= 8× 在侧模外侧采用间距 12 .m的 21b作竖带 , [4 竖 01 8×2 + 0 3 K 。 ( ) 三 角 支 架 自 重 : .6 . 1 =4 N 9 4 带高 29 . m;在竖带上下各设 一条 2 0的栓杆 5×2 1K = 0 N。 ( ) 施 工 荷 载 与 其 它 荷 载 : 5 — 作拉杆 ,上 下拉杆问间距 27 . m,在竖 带外 设 G= 0 N。 横 梁 上 的 总 荷 载 : s2 K , 一一岛 ( ) 2 个 , + + +G + =1 0+l O 9 4 的钢管斜撑 , 8 支撑在横梁上 。端模为特制 GH=Gl G2 G3 4 G5 70 36+34+1 +20=l 0 几 一■ 。 K H 10 /2 = 4 KNm。 9 .m 大钢模, 面模厚度为 86 mm, 肋板高为 lc Om。在 0 N q= 9 01 . 17 / 横 梁采 用 04 的 端模 外 侧 采 用 间距 1 m 的 21b作 竖带 , 带 工字钢 , . 2 1 4 竖 则作用在单根横梁上的荷载 G ’17× 4 : 第 三步 : C点位移为零的条件计算支座 由 高 29 在 竖 带 外 设 4 .m; 8的 钢管 斜 撑 , 支撑 在 04 5 KN 作 用 在 横 梁 上 的 均 布 荷 载 为 : 反 力 RC . 9 。 = q’ = 横梁 上 。 .2 底 模 支撑 。 模 为 特 制大 钢 模 , 1. 2 底 面 G ’ = 924 2 K / 式 中 : 为 横 梁受 荷 段 长 H .5 /.= 5 Nm(  ̄ l H 由假 定 支 座 条件 知 : 0 ∑f= 为 . 。 4  ̄aa / 5 模厚度为 8 m 肋板高为 1c 。在底模下部 度 , 2 m) m, 8 0m q gC e d) 葡t ' 。 () a 4 3 1 g 搏 2 ; 6 l _ l j 采 用 间 距 04 工 l .m 6型 钢 作 横 梁 ,横 梁 长 2 纵梁计算。纵梁采用单层 四排 , 、 3 上 下 46 盖梁悬 出端底模下设三角支架支撑 , . m。 三角 加 强型 贝雷 片 ( 准 贝雷 片规 格 :0 0r × 标 30e a : =! : — =! 8 t +! z ; 。 =! ; . ! 兰 3 架放在横梁上。 横梁底下设纵梁 。 横梁上设钢垫 10 e , 50 r 加强弦杆高度 1c 连接形成纵梁 , a 0m) 长 块以调整盖 梁底 2 %的横向坡度 与安装误 差。 30m。 () 2 计算支座反力 R R 与墩柱 相交 部位 采用特 制 型钢 支架作 支撑 。 231 荷 载 计 算 :1 .. ( )横 粱 自重 : 6 46× G =. 由静力平衡方程解得 1. .3纵梁 2 在横梁底部采用单层 四排上下加强 025×2 + . 0 6 3×8×025 3 K . = 0 N。 ( )贝 雷 梁 自 0 2 呈 1 、 = 。 = 型 贝雷 片 ( 准 贝 雷 片 规 格 :0 0 mx10 c 重 : 7 ( . 08 ×2 l 2 ×3 × . 5 × 标 30 c 5 0m, G = 27 . + ++ 02 ) 0 加强弦杆高度 1e 连接形成纵 梁, 3 m, 0m) 长 0 每 2 = 3K 0 11N 纵 梁 上 的 总 荷 载 : G1 +G3 G4 G5 + + +G6 G7 7 0 3 + 4 + =1 0 +l 6 3 + 两排 一 组 , 组 中 的两 排 贝 雷 片并 在 一 起 , 每 两组 GZ= +G2 ( ) 矩 图 3弯 贝 雷 梁 位 于 墩 柱 两侧 , 心 间距 236r, 中 5 . a 贝雷 1+ 0 3 + 3 = 0 1 N。纵 梁所 承 受 的 荷 载 假 e 0 2 + 0 1 12 6 K 根据叠加原理 , 绘制均布荷载弯矩图 梁底部采 用 3 m长 的工 1 6型钢作 为贝雷梁横 定为均布荷载 q q G /= 0 1I . 10 Nm。 := ZL 2 6/2 = 6 K / 9 : 8 82q 向底部联接梁。贝雷片之间采用销连接。 、 纵 横 232结构力学计算。结 构体 系为一次超 . . 梁以及纵梁与联接梁之间采用 u型螺栓连接 ; 静定结构 , 采用位移法计算。 纵梁下为抱箍。1 . .4抱箍 。 2 采用两块半 圆弧型 () 1计算 支座 反力 R 第一 步 : C: 解除 c点 钢板( 板厚 t1m 制成 ,M2 = 6 m) 4的高强 螺栓连 约束 ,计算悬臂端均布荷载与中间段 均布荷载 接, 抱箍高 13 c 采用 6 74 m, 6根 高强螺栓连接 。 情 况 F 弯 矩 与挠 度 的 抱 箍 紧 箍 在墩 柱 上产 生 摩 擦 力 提供 上 部 结 构 的 2- . 3纵梁结构强度验算 3 支承反力 , 是主要的支承受力结构 。 为了提高墩 ( )根据以上力学计算得知 , 1 最大弯矩出 柱与抱箍 间的摩擦力 , 同时对墩柱砼面保护 , 在 现 在 A、 支 座 , 代 人 q后 MB8 2 = .2× B = . q 88 8 墩柱与抱箍之 间设一层 2~3 mm厚的橡胶垫 , 1 0 41 KN/ 6 =1 l m 纵梁与抱箍之问采用 u型螺栓连接。 () 2 贝雷片的允许弯矩计算 2盖梁抱箍法施工设计计算 查《 公路施 工手册桥涵》 9 3 , 第 2 页 单排单 厂 ———■■————] 2 . 1侧模支撑计算 。 .1力学模型。 21 . 假定 层贝雷桁片 的允许 弯矩【 0 95 Nm M 1 7 K / 。则 四 为 : : : 砼浇筑时的侧压力 由拉杆和竖带承受 , P 为砼 图 排单 层的允许 弯矩 【 - M】4×9 5× . 3 1 7 09 5 0 = 浇 筑时 的 侧压 力 , 孔 为 拉 杆承 受 的拉 力 。 、 K/A Nm(  ̄下加强型 的贝雷梁的允许变矩应大于 点位移 量 : =一 t 21 .2荷载计算。砼浇筑 时的侧压力:m K h . P= 。 此计算值) 式 中: ——外加剂影响 系数 , 1 ;y K 取 . ^——砼 2 故 MB 1 1K / = 4 1 Nm<[ = 5 0 K / 满 足 M]3 1 Nm, 容重 ,取 2 K ^ 3 ——有效压头 高度。h O 5 N n; h =. 强 度要 求 。 2 + 4 9 T= 2 + 4 9 2 2 . w 0.2 2 . ×0 01 = . m。 . 5 06 P= m 2 . 纵梁挠度验算 .4 3 K h 1 ×2 .= 8 P 。 振 捣 对模 板 产 生 = . 5x0 1 K a 砼 2 6 最 大挠 度 发 生 在盖 梁 端 的侧压力按 4 P K a考虑。 :| 1+ = 2 P 。 则 P: 8 4 2 K a 盖 n ‘ = 4 qE = 4 ×1 0 6 8 / I6 8 6/ l x1 8 0 .×
盖梁抱箍法施工计算书

盖梁抱箍法施工计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】目录抱箍法施工计算书1、计算依据《路桥施工计算手册》《辽宁省标准化施工指南》《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为,根据模板拼缝位置按照间距布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。
下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。
浑河大桥8#墩柱直径为2m,柱中心间距,盖梁尺寸为××, C40砼,盖梁两端挡块长度为×(上口,下口)×,C40砼。
图1 抱箍法施工示意图3、横梁计算荷载计算盖梁钢筋砼自重:G1=×26KN/m3=挡块钢筋砼自重:G2=×26KN/m3=模板自重:G3=98KN施工人员:G4=2KN/m2××=施工动荷载:G5=2KN/m××=,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。
横梁自重G6=××27=横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=++98+×2+=每根横梁上所受荷载:q1= G7/15=27=作用在每根横梁上的均布荷载:q2= q1/==m两端悬臂部分只承受施工人员荷载,可以忽略不计。
力学模型图2 力学模型分配梁抗弯与挠度计算由分析可知,横梁跨中弯矩最大,计算如下:Mmax=q2l2/8- q2l12/2=××2=·m图3 分配梁弯矩示意图Q235 I14工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=712cm4,截面抵抗矩W=①抗弯计算σ= Mmax/W= ×103=<[σ]=170Mpa结论:强度满足施工要求。
盖梁抱箍法施工及计算(新)

盖梁抱箍法施工及计算摘要:详细介绍了抱箍法盖梁施工的支撑体系结构设计,盖梁结构的内力计算和抱箍支撑体系的内力验算,以及本工艺的施工方法。
关键词:盖梁抱箍结构计算施工1。
工程概况广州西二环高速公路徐边高架桥为左、右幅分离式高架桥,全桥长1280m,全桥共有盖梁84片,下部结构为三立柱接盖梁,上部结构为先简支后连续20m空心板和30m T梁,另有15跨现浇预应力混凝土连续箱梁.全桥施工区鱼塘密布,河涌里常年流水,墩柱高度较高,给盖梁施工带来难度.为加快施工,减少地基处理,本桥盖梁拟采用抱箍法施工。
2.抱箍支撑体系结构设计2.1盖梁结构以20m空心板结构的支撑盖梁为例,盖梁全长20m,宽1.6 m,高1。
4m,砼体积为42.6 m3,墩柱Φ1。
2m,柱中心间距7m。
2。
2抱箍法支撑体系设计盖梁模板为特制大钢模,侧模面板厚度t=5mm,侧模外侧横肋采用单根[8槽钢,间距0.3m,竖向用间距0。
8m的2[8槽钢作背带,背带高1.55m,在背带上设两条Φ18的栓杆作对拉杆,上、下拉杆间距1。
0m,底模板面模厚6mm,纵、横肋用[8槽钢,间距为0。
4m×0.4m,模板之间用螺栓连接.盖梁底模下部采用宽×高为0.1m×0.15m的方木作横梁,间距0。
25m.盖梁底模两悬出端下设三角支架支撑,三角架放在横梁上。
在横梁底部采用贝雷片连接形成纵梁,纵梁位于墩柱两侧,中心间距1。
4m,单侧长度21m。
纵梁底部用四根钢管作连接梁。
横梁直接耽在纵梁上,纵梁之间用销子连接,连接梁与纵梁之间用旋转扣件连接。
抱箍采用两块半圆弧型钢板制成, 钢板厚t=16mm,高0.6m,抱箍牛腿钢板厚20mm,宽0.27m,采用10根M24高强螺栓连接。
为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。
抱箍构件形象示意图如图1所示。
2.3防护栏杆栏杆采用φ48的钢管搭设,在侧模上每隔5m焊接一道1。
盖梁抱箍法施工方案

盖梁施工方案一、工程概况sk117+967及xk117+857大桥,其下部结构为桩基础,独柱盖梁共有23个,双柱盖梁4个,基本上分布于河漫滩地带,由于地形限制及大小卵石遍布,除少数地基条件较好的采用满堂支架法外,大多数盖梁采用抱箍刚支撑法施工。
二、施工工艺(一)抱箍钢支撑法盖梁抱箍法主要依靠抱箍与墩柱之间的摩阻力支撑盖梁砼、钢筋骨架以及其它荷载。
对独柱墩在墩柱上、下部适当位置各设一个抱箍,抱箍内贴5mm 厚的粗麻袋片。
根据计算的抱箍安装高程,用墨线或铅笔在墩柱上进行标识。
施工人员使用20T汽车吊在抱箍上担设两根40-b型工字钢作为水平承立构件。
对于单柱墩,每根工字钢底设有四根槽钢,作为斜撑,每个斜撑由两根160mm的槽钢叠焊在一起,用高强螺栓和钢销固定于下抱箍和横梁工字钢上。
盖梁工字钢钢支撑水平放置,其横向坡度用10×10㎝方木和三角木楔进行调整。
底模卸落时,去掉三角木楔,抽出方木即可卸落底模。
(二)满堂碗扣式多功能脚手架钢支架法1、施工工艺首先平整夯实墩柱周围待立支架场地,上铺100×100的木枕木以支承立杆可调底座;用碗扣架构件在墩柱周围搭设满堂钢管支架支撑,支架立杆最大间距为0.8×0.8m。
搭设支架时,沿横向超宽1.0m,其上铺设脚手板作为施工人员浇筑混凝土的施工作业平台。
同时在满堂支架竖向搭设间隔0.6m的横杆。
满堂支架用碗扣架构件搭设,使用立杆或专用立杆做竖向支撑杆件,水平杆与立杆用碗扣扣件连接。
搭设支架时,支撑水平杆与盖梁模板挤紧,增强支架的稳定性。
盖梁底模下顺桥向每隔500mm布置一根长4300m的100×100mm方木,通过其上的横向100×100的方木将竖向荷载传递到立杆可调托撑上的100×100的方木上,高低、端底板下间距1000×500mm布置钢管或托撑支撑斜面部位,三角木楔调整盖梁模板的横坡。
三、钢支撑预压采用此方法施工第一个盖梁时,对钢支撑做预压试验,以确定其安全性。
盖梁抱箍法施工及计算(新)

盖梁抱箍法施工及计算摘要:详细介绍了抱箍法盖梁施工的支撑体系结构设计,盖梁结构的内力计算和抱箍支撑体系的内力验算,以及本工艺的施工方法。
关键词:盖梁抱箍结构计算施工1.工程概况广州西二环高速公路徐边高架桥为左、右幅分离式高架桥,全桥长1280m,全桥共有盖梁84片,下部结构为三立柱接盖梁,上部结构为先简支后连续20m空心板和30m T梁,另有15跨现浇预应力混凝土连续箱梁。
全桥施工区鱼塘密布,河涌里常年流水,墩柱高度较高,给盖梁施工带来难度。
为加快施工,减少地基处理,本桥盖梁拟采用抱箍法施工。
2.抱箍支撑体系结构设计2.1盖梁结构以20m空心板结构的支撑盖梁为例,盖梁全长20m,宽1.6 m,高1.4m,砼体积为42.6 m3,墩柱Φ1.2m,柱中心间距7m。
2.2抱箍法支撑体系设计盖梁模板为特制大钢模,侧模面板厚度t=5mm,侧模外侧横肋采用单根[8槽钢,间距0.3m,竖向用间距0.8m的2[8槽钢作背带,背带高1.55m,在背带上设两条Φ18的栓杆作对拉杆,上、下拉杆间距1.0m,底模板面模厚6mm,纵、横肋用[8槽钢,间距为0.4m×0.4m,模板之间用螺栓连接。
盖梁底模下部采用宽×高为0.1m×0.15m的方木作横梁,间距0.25m。
盖梁底模两悬出端下设三角支架支撑,三角架放在横梁上。
在横梁底部采用贝雷片连接形成纵梁,纵梁位于墩柱两侧,中心间距1.4m,单侧长度21m。
纵梁底部用四根钢管作连接梁。
横梁直接耽在纵梁上,纵梁之间用销子连接,连接梁与纵梁之间用旋转扣件连接。
抱箍采用两块半圆弧型钢板制成,钢板厚t=16mm,高0.6m,抱箍牛腿钢板厚20mm,宽0.27m,采用10根M24高强螺栓连接。
为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。
抱箍构件形象示意图如图1所示。
2.3防护栏杆栏杆采用φ48的钢管搭设,在侧模上每隔5m焊接一道1.2m高的钢管立柱,横杆钢管与立柱采用扣件连接,竖向间隔0.5m ,栏杆周围挂安全网。
盖梁抱箍法施工及计算

盖梁抱箍法施工及计算盖梁抱箍法是常用的梁的施工方法之一,它可以很好地解决钢筋混凝土梁中裂缝的问题。
本文将介绍盖梁抱箍法的基本原理、施工步骤、计算方法等内容。
一、基本原理盖梁抱箍法是一种保护钢筋混凝土梁的施工方法。
在梁的顶面铺设一层钢筋网,通过箍筋与混凝土搭接,可以有效地避免梁的裂缝产生。
盖梁抱箍法的原理是,在混凝土表面预先设置一定的箍筋,可以有效地控制混凝土的开裂和脱落,从而提高梁的承载能力和耐久性。
由于盖梁抱箍法不但可以提高梁的抗震性能,而且可以增加施工速度和节省用钢,因此在工程中得到了广泛用途。
二、施工步骤盖梁抱箍法的施工步骤如下:1.梁顶平整在梁的顶面上填平钢筋混凝土,并将其抹平。
2.铺设钢筋网在梁的顶面铺设一层钢筋网,使其完全覆盖梁的顶面。
3.设置箍筋在钢筋网上设置箍筋,箍筋应布设在梁的顶底两面和中央位置,边距应不小于100mm。
箍筋的截面尺寸、层数和间距应按照设计要求进行设置。
4.施工混凝土在设置好箍筋之后,再铺设一层混凝土,将其塑性混凝土顶面升高到设计标高。
5.振捣、养护在施工混凝土之后,进行振捣、养护等工作,待混凝土养护、硬化后即可使用。
三、计算方法对于盖梁抱箍法的计算,需要分别进行箍筋和钢筋的计算。
1.箍筋计算箍筋的计算需要考虑取箍间距、箍筋间距以及箍筋层数等多种因素。
根据设计要求和国家有关标准,对箍筋进行单独计算,并参考梁的现场实际情况,确定箍筋的具体设置方案。
2.钢筋计算钢筋计算需要考虑梁的自重和荷载等多种因素。
按照国家有关标准和设计要求进行钢筋计算,并参考现场实际情况确定钢筋的具体设置方案。
四、盖梁抱箍法是一种常用的钢筋混凝土梁施工方法,其原理是通过铺设钢筋网和设置箍筋,控制混凝土的开裂和脱落,提高梁的承载能力和耐久性。
盖梁抱箍法施工步骤包括梁顶平整、钢筋网铺设、箍筋设置、混凝土施工和振捣养护等。
在盖梁抱箍法的计算中需要考虑箍筋和钢筋等多种因素,在实际施工和计算中要结合梁的实际情况进行综合性的考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盖梁抱箍法施工及计算一、施工设计说明1、工程简介高速公路****有桥梁2座。
墩柱为两柱式或三柱式结构,墩柱上方为盖梁,如图1所示。
本图尺寸为其中一种形式,该盖梁设计砼37立方米,计算以该图尺寸为依据,其他尺寸形式盖梁施工以该计算结果相应调整。
图1盖梁正面图(单位:cm)2、设计依据(1)公路桥涵钢结构及木结构设计规范(JTJ025-86)(2)路桥施工计算手册(3)其他相关资料及本单位以往施工经验。
二、盖梁抱箍法结构设计1、盖梁模板底模支撑在盖梁底模下部采用间距1m工14型钢作横梁,横梁长3.7m。
横梁底下设纵梁。
3、纵梁在横梁底部采用单层;两排贝雷片(标准贝雷片规格:3000cmx 1500cm )连接形成纵梁,长18m两排贝雷梁位于墩柱两侧,中心间距120cm贝雷片之间采用销连接。
纵、横梁以及纵梁与联接梁之间采用U型螺栓连接;纵梁下为抱箍。
4、抱箍采用两块半圆弧型钢板(板厚t=10mm制成,M24的高强螺栓连接,抱箍高70cm采用14根高强螺栓连接。
抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。
为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2〜3mn厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。
5、防护栏杆与工作平台⑴ 栏杆采用© 50的钢管搭设,在横梁上每隔2米设一道1.2m高的钢管立柱, 竖向间隔0.5m设一道钢管横杆,钢管之间采用扣件连接。
立柱与横梁的连接采用在横梁上设0.2m 高的支座。
钢管与支座之间采用销连接。
(2)工作平台设在横梁悬出端,在横梁上铺设5cm厚的木板,木板与横梁之间采用铁丝绑扎牢靠。
三、盖梁抱箍法施工设计计算(一)、设计检算说明1、设计计算原则(1)在满足结构受力情况下考虑挠度变形控制。
(2)综合考虑结构的安全性。
(3)采取比较符合实际的力学模型。
(4)尽量采用已有的构件和已经使用过的支撑方法。
2、对部分结构的不均布,不对称性采用较大的均布荷载。
3、本计算未扣除墩柱承担的盖梁砼重量。
以做安全储备。
4、抱箍加工完成实施前,必须先进行压力试验,变形满足要求后方可使用。
(二)、横梁计算采用间距1m工14型钢作横梁,横梁长3.7m。
共设横梁18根,总重约11kNo1、荷载计算(1)盖梁砼自重:G仁37荻24.5kN/m3=906.5kN(2)模板自重:G2=81.3kN(3)施工荷载与其它荷载:G3=21kN横梁上的总荷载:G=G1+G2+G3 =1008.8kNq1=1008.8/17.2=58.65kN/m横梁采用1m间距的工字钢,则作用在单根横梁上的荷载G=58.65 X 1=58.65kN作用在横梁上的均布荷载为:q2= =58.65/1.7=34.5kN/m2、力学模型如图所示。
q? = 3z1 J l< N. /1图2横梁计算模型3、横梁抗弯与挠度验算横梁的弹性模量E=2.1 X 105MPa惯性矩l=712cm4;抗弯模量Wx=102cm 为了简化计算,忽略两端0.25m悬挑部分的影响。
最大弯矩:Mmax==34.5 X 1.2 2/8=6.24kN •m(r= Mmax/Wx=6.24/(102X 10-6)=61176.5kpa 〜61.2MPa<[ c w]=158MPa满足要求。
最大挠度:fmax= 5 q2IH4/384 X EI=5X 34500X 1.2 %384 X 2.1 X 1011X 712X 10-8)=0.0006m<[f]=1.2/400=0.003m满足要求。
(三)、纵梁计算纵梁采用单层2排贝雷片(标准贝雷片规格:3000cmx 1500cm连接形成纵梁,长18m1、荷载计算(1)横梁自重:G4=11kN(2)贝雷梁自重:G5=27X 12X 9.8=31752N~ 31.8KN纵梁上的总荷载:GZ=G1+G2+G3+G4+G5=1051.6kN纵梁所承受的荷载假定为均布荷载,单排贝雷片所承受的均布荷载q3:q3= GZ/2L=1051.6/ (2X 17.2 )〜30.6kN/m2、力学计算模型建立力学模型如图2-3所示。
图3纵梁计算模型图3、结构力学计算(1)计算支座反力Rc:Rc=30.6X 17.2/2=263.2KN最大剪力Fs=Rc-4.1 X 30.6=137.7KN(2)求最大弯矩:根据叠加法求最大弯矩。
跨中最大弯矩Mmax1=q3/8=309.8KN/m图5纵梁计算单元二梁端最大弯矩Mmax2=4.1q3/2=257.2KN/m叠加后得弯矩图:所以纵梁最大弯矩Mma>产生在支座处,Mmax二Mmax2=257.2KN.m远小于贝雷桁片的允许弯矩[M0]=975kN・m。
(3)求最大挠度:贝雷片刚度参数弹性模量:E=2.1 X 105MPa惯性矩:1=250500。
吊易知纵梁最大挠度发生在跨中或者梁端。
纵梁端挠度fc仁qal 3/(24EI)(6a 2/l 2+3a3/l 3-1)=30600X4.1 X93/(24 X2.1 X 1011X250500X 10-8 )(6 X4.1 2/92+3X4.1 3/93-1)~ 0.004m 跨中挠度fc1=ql 4/(384EI)(5-24a 2/l 2)=30600x9/(384 X 2.1 X 1011x 250500X 10-8)(5- 24X 4.1 2/92)〜0.2 X 10-4m所以最大挠度发生在纵梁两端为fc1=0.004mfc1<[f]=a/400=4.1/400=0.0103m, 满足要求。
(四)、抱箍计算1 、荷载计算每个盖梁按墩柱设两个抱箍体支承上部荷载,由上面的计算可知:支座反力Rc= 263.2kN,每个抱箍承受的竖向荷载N=2Rc=526.4kN该值即为抱箍体需产生的摩擦力。
2、抱箍受力计算( 1 )螺栓数目计算抱箍体需承受的竖向压力N=526.4kN抱箍所受的竖向压力由M24的高强螺栓的抗剪力产生,查《路桥施工计算手册》第426 页:M24螺栓的允许承载力:[NL]=P 卩n/K式中:P--- 高强螺栓的预拉力,取225kN;卩---摩擦系数,取0.3 ;n--- 传力接触面数目,取1;K--- 安全系数,取1.7。
则:[NL]= 225X0.3X1/1.7=39.7kN螺栓数目m计算:m=N/[NL]=526.4/39.7=13.3〜14个,取计算截面上的螺栓数目m=14个。
则每条高强螺栓提供的抗剪力:P' =N/14=526.4/14=37.6KN<[NL]=39.7kN故能承担所要求的荷载。
(2)螺栓轴向受拉计算砼与钢之间设一层橡胶,按橡胶与钢之间的摩擦系数取卩=0.3计算抱箍产生的压力Pb= N/卩=526.4kN/0.3=1754.7kN由高强螺栓承担。
则:N1=Pb=1754.7kN抱箍的压力由14条M24的高强螺栓的拉力产生。
即每条螺栓拉力为N2=Pb/14=1754.7kN /14=125.3kN<[S]=225kN(T =N1' /A= N1 (1-0.4m1/m) /A式中:N2--- 轴心力m1--- 所有螺栓数目,取:14个A--- 高强螺栓截面积,A=4.52cm2(T =N' /A= Pb (1-0.4m1/m) /A=1754.7 X (1 -0.4 X 14/7)/14 X 4.52 X 10-4=55458kPa=55.5MP&[ c ]=140MPa故高强螺栓满足强度要求。
( 3)求螺栓需要的力矩M1)由螺帽压力产生的反力矩M仁u1N Z L1u1=0.15 钢与钢之间的摩擦系数L1=0.015 力臂M1=0.15 X 125.3 X 0.015=0.282KN.m2)M 2为螺栓爬升角产生的反力矩,升角为10°M2=X1X N2cos10°X L2+N2sin10°X L2[式中L2=0.011(L2 为力臂)]=0.15X125.3X cos10°X0.011+125.3X sin10°X0.011=0.443(KN • m)M=M1+M2=0.282+0.443=0.725(KN m)所以要求螺栓的扭紧力矩M>0.725(KN • m)3、抱箍体的应力计算:(1)、抱箍壁受拉产生拉应力拉力P1=7N2=877.1(KN)抱箍壁采用面板S 10mn的钢板,抱箍高度为0.7m。
则抱箍壁的纵向截面积:S1=0.01X0.7=0.007 (m2)(T =P1/S仁877100/0.007=125.3 X 106(Pa)=125.3(MPa) v [ c ]=158MPa 满足要求。
(2)、抱箍体剪应力T = (1/2N) / (2S1)=(1/2 X 526400) /(2X 0.007)=18.8X106(Pa)=18.8MPa<[t ]=98MPa根据第四强度理论c W=(c2+3t 2) 1/2 =(125.22+3X18.82) 1/2=129.2MPa<[c]=158MPa满足强度要求。