湍流模型简述
湍流模型简介以及k-ε模型详解

内燃机缸内湍流流动的特点
实验和理论计算表明,缸内湍流的主要来源是 进气射流通过气阀时产生的强烈剪切层以及射 流与缸壁的碰撞。在进气冲程中期,即进气进 行最猛烈时,缸内湍流度达到其峰值。此时湍 流分布很不均匀,而且是各向异性的,主要可 分为射流内的高湍流度区和其余部分的低湍流 度区。随着平均流速的减小,湍流开始衰减。 同时,由于对流和扩散作用,整个缸内湍流趋 向于均匀化和各向同性化。在压缩冲程中,尽 管进气产生的主涡流还残留在缸内,但已经很 弱并且继续衰减。活塞压缩产生的正应力和缸 壁的剪切应力对湍流的生成虽有一定的贡献, 但由于耗散大于生产,故总的效果详解
北京理工大学12级车辆硕
湍流的基本概念
层流和湍流是两种不同的基本流态。它们的区 分变化可以用雷诺数来量化。雷诺数较小时 (小于2000),黏滞力对流场的影响大于惯性 力,流场中流速的扰动会因黏滞力而衰减,流 体流动稳定,为层流;反之,若雷诺数较大时, 惯性力对流场的影响大于黏滞力,流体流动较 不稳定,流速的微小变化容易发展、增强,形 成紊乱、不规则的湍流流场。
3,k-ε模型的强旋流修正
总结
k -ε模型是目前应用最广泛的两方程紊流模型。 大量的工程应用实践表明,该模型可以计算比 较复杂的紊流,比如它可以较好地预测无浮力 的平面射流,平壁边界层流动,管流,通道流 动,喷管内的流动,以及二维和三级无旋和弱 旋加流流动等。但从定量结果来看,它还没有 比代数模型表现在出更明显的优势。随着空化 流动理论和计算方法的发展,数值计算逐渐成 为空化现象研究的有力手段。对于空化流动这 种复杂的湍流进行模拟,湍流模型是一个重要 方面。最初,人们广泛采用了标准的k -ε模型, 由于空化流动中汽泡的生成和溃灭过程对湍流 发展的影响,引起空化流动中湍动能产生项和弥
四种湍流模型介绍知识讲解

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
湍流模型介绍

湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。
这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。
基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。
另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。
大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。
大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。
大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。
这些对涡旋的认识基础就导致了大涡模拟方法的产生。
Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。
大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。
LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。
应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。
第三章_湍流模型

第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图Direct Numerical Simulation包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models第二节 平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。
对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。
湍流模型和用法

两个输运方程求解k与w。对于有界壁面和低雷诺数流动性能较好,尤其是绕流问题;包含转捩。自由剪切和压缩性选项
SST k-w
标准k-w模型的变形。使用混合函数将标准k-e模型与k-w模型结合起来,包含了转捩和剪切选项
Reynolds Stress
直接使用输运方程来解出雷诺应力,避免了其它模型的粘性假设,模拟强旋流相比其它模型有明显优势
RNG k-e
能模拟射流撞击、分离流、二次流和旋流等中等复杂流动
受到涡旋粘性同性假设限制
除强旋流过程无法精确预测外,其它流动都可以使用此模型
Realizable k-e
和RNG基本一致,还可以更好的模拟圆形射流
受到涡旋粘性同性假设限制
除强旋流过程无法精确预测外,其它流动都可以使用此模型
Stand k-w
2、湍流模型的选择
模型
用法
Spalart Allmaras
计算量小,对一定复杂的边界层问题有较好的效果
计算结果没有被广泛的测试,缺少子模型
典型的应用场合为航空领域的绕流模拟
Standard k-e
应用多,计算量适中,有较多数据积累和比较高的精度
对于曲率较大和压力梯度较强等复杂流动模拟效果欠佳
一般工程计算都使用此模型,其收敛性和计算精度能满足一般的工程计算要求,但模拟旋流和绕流时有缺陷
本文内容摘自《精通CFD工程仿真与案例实战》。实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。
FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。这里只针对最常用的模型。1、Βιβλιοθήκη 流模型描述模型描述
Spalart-Allmaras
单方程模型,直接解出修正过的湍流粘性,用于有界壁面流动的航空领域(需要较好的近壁面网格)尤其是绕流过程;该模型也可用于粗网格。
2湍流流动的数学模型

3)经验常数的适应性:每种模型所包括的经验常数有一定的适
用范围。(c1,c2,cμ)
4)在近壁区域内的适用性:低雷诺数时,系数cμ与湍流雷诺数有 关, Κ及ε方程要做相应修改。因为Κ-ε模型适合于高雷诺数模型 。采用高雷诺数Κ-ε模型计算流体与固体表面换热时,对壁面附 近的区域可采用壁面函数法。
思考题
K 是单位质量流体湍流脉动动能 k 1 (u2 v2 w2 ) 2
3)为确定μt,则必须求出脉动动能k(引出一方程模型)及长度标 尺l(引出Κ-ε两方程模型)。
2、湍流脉动动能方程(k方程)
思路:根据k的定义
1 2
uiui
出发,通过瞬态N-S方程及其
时均形式作一系列的运算而得出。经过一系列的近似处理,
2)雷诺时均方程法 雷诺时均方程是不封闭的,必须引入雷诺应力的封闭模
型才可能解出平均流场。雷诺应力的主要贡献来自大尺度脉 动,而大尺度脉动的性质和流动的边界条件密切相关。因此, 雷诺应力的封闭模式不可能是普遍适应的,就是说不存在对 一切复杂流动都适用的统一封闭模式。
3)大涡模拟 该方法是介于以上两种方法之间的模拟方法。其基本思
使方程封闭,简化后可得k的偏微分方程,即:kt Nhomakorabeauj
k x j
x
j
[(
t k
)
k x j
]
t
u j ( ui xi xj
u j xi
)
CD
k3/2 l
非稳态项
对流项
扩散项
产生项
耗散项
其中:
k 称为脉动动能的Prandtl数。 (一般为常数,取为1.0) (2)
注:耗散过程是分子粘性起作用的过程,它直接耗散的是湍流动能而非均流动能,故耗散项不应与均 流场有直接联系。
湍流模型介绍

湍流模型介绍
湍流模型是数学模型的一种,用于描述液体或气体中的湍流运动。
湍流是一种不规律的、难以预测的流体运动,通常是由于速度、密度或温度的不规则分布引起的。
湍流模型通过使用一系列方程,描述流体的速度、压力和密度等参数之间的相互作用,以预测和模拟流体的复杂运动行为。
湍流模型主要分为两类:基于雷诺平均的模型(如k-ε模型、k-ω模型)和直接数值模拟(DNS)。
每种模型都有其适用的范围和局限性,需要根据具体问题的特性选择合适的模型。
湍流模型在气象、水文、工程、航空航天等领域中得到了广泛应用。
湍流模型介绍

湍流模型介绍因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。
在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。
FLUENT 中采用的湍流模拟方法包括Spalart-Allmaras模型、standard(标准)k −ε模型、RNG(重整化群)k −ε模型、Realizable(现实)k −ε模型、v2 −f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。
7.2.1 雷诺平均与大涡模拟的对比因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。
这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。
雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。
湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。
在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。
根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。
FLUENT 中使用的三种k −ε模型、Spalart-Allmaras 模型、k −ω模型及雷诺应力模型RSM)等都属于湍流模式理论。
大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容量和CPU时间,未能广泛应用于工程应用。
RANS将非稳态控制方程对时间作平均,即 N
1 n U i x , t lim ui x , t N N n 1
ui x, t Ui x, t uix, t
u y
一方程模型
/ t C k 1/ 2l
零方程模型和单方程模型适用于简单的流动;对于复杂流 动,系数很难给定,无通用性,故应用较少。
11
两方程模型
由求解湍流特征参数的微分方程来确定湍流粘性。包括k-ε 、 k-ω、 kτ、 k-l 模型等 。其中,应用最普遍的是 k-ε模型。
One-Equation Models
Spalart-Allmaras
RANS-based models
Two-Equation Models
Standard k-e RNG k-e Realizable k-e Standard k-w SST k-w Increase in Computational Cost Per Iteration
代数应力模型
1.紊流粘性模型(Eddy-Viscosity Models ,EVM)
引入Boussinesq涡粘性假设,认为雷诺应力与平均速 度梯度成正比,即将Reynolds应力项表示为
U i U j ij u iu j t x xi j
26
• 气固两相数值模拟
27
气 固 两 相 流 计 算 方 法
Euler-Lagrange方法:
把流体作为连续介质,而将颗粒看作离散体系,在 Euler坐标系下考察流体相的运动,在Lagrange 坐标系 下研究颗粒群的运动,即颗粒轨道模型
Euler-Euler方法:
将流体作为连续介质外,把颗粒也作为拟连续介质或 拟流体,设其在空间有连续的速度和温度分布及等价 的输运性质(粘性、扩散、导热等),两相都在Euler 坐标系下处理,即连续介质模型
fluent
报 告 人: 报告时间: 许伟伟 2009-10-19
• 气相数值模拟
2
主要 内容
一、湍流现象 二、湍流的数值模拟方法 三、湍流模型具体介绍 四、不同湍流模型在旋风分离器模拟中的应用
3
CFD求解流程
涉及 湍流模型 选取
4
1. 湍流现象(Turbulent)
湍流是一种高度复杂的三维非稳态、带旋转的不 规则流动。流体的各种物理参数,如速度、压力、温 度等都随时间和空间发生随机的变化。 UL ReL
从文献报道来看,LES大涡模型模拟的结果更可靠,更相信。 但RSM目前是工程应用中比较有效的湍流模型。
24
边界条件中湍流参数的设置问题
常 用
【1】 【2】
充分发展的湍流
【1】邹宽,杨荣等.水力旋流器湍流流动的数值模拟.工程热物理学报,2004
25
(a)切向速度 (b)轴向速度 (c)径向速度 (d)静压力 图 旋风分离器
近壁处理
其余的湍流选项
19
4. 不同湍流模型在旋风分离器模拟中的应用
A.J.Hoekstra
RSM的模拟结果更接 近真实情况 。
20
60 50 40 30 20 10 0 -180 -150 -120 -90 -60 -30 0
Vt (m/s)
实验值 RNG k-e RSM
29
2.颗粒之间碰撞模型
对于浓度非常低的气固两相流动,颗粒间的碰撞可以忽略不 计。当颗粒浓度较高时,颗粒之间的碰撞会对流动过程产生影响 ,为考虑颗粒之间的碰撞问题,因此发展了此模型。 颗粒之间碰撞模型可分为 硬球模型
软球模型
(1)硬球模型
硬球模型把颗粒之间的碰撞看成是瞬时的、二元的弹性 碰撞,直接用冲量定理完成碰撞过程。该方法完全适应稀 薄气固两相的情况,并且不受颗粒粒径的限制。主要问题 是一次只能计算一对颗粒之间的碰撞,代表的方法有蒙特 卡洛方法(DSMC)【1】
22
RSM和LES计算结果比较
由上图可知,LES比RSM预测出了更多了旋涡结构,特别是外旋 流区旋涡结构非常丰富。 23
研究者
陆耀军、周力 行等 邹宽 M.D.SLAC K等 戴光清、李建 明等 禇良银,陈文 梅 刘晓敏,檀润 华
旋流器的研究工作
采用标准模型、RNG 模型和雷诺应力模式RSM模型进行模拟。结 果表明3种模型中以RSM模型的预报结果最为合理。 利用雷诺应力模型进行计算,并与修正的模型的计算结果进行了比 较,得到结果与实际结果更接近。 采用雷诺应力湍流模型和大涡模型进行模拟,实测结果与计算值吻 合。 分别采用修正模型系数的模型和各向异性模型进行模拟;计算值与 二维激光多普勒测速仪实测结果基本一致。 选择了能反映湍流各向异性的代数应力模型(ASM),用数值计 算与实验研究相结合的方法对旋流器内的湍流场进行了模拟 采用RNG k-ε模型分析了旋流场内部湍流度及相对湍流度对湍流 场流动分布、湍流脉动和分离介质所产生的影响,其预报结果是有 限的。
15
RSM模型摒弃了湍流各向同性假设,因此其计算结果比 基于“有效粘度”的两方程模型更为准确。但由于该模型相 对复杂、方程多、需确定的常数多,故计算量大。
3. 代数应力模型(Algebraic Stress Model,ASM)
主要思想是设法将应力的微分方程简化为代数表达式,以 减少RSM模型过分复杂的弱点,同时保留湍流各项异性的 基本特点。 与RSM模型相比,该模型大大削减了方程数目,对初始 条件和边界条件的要求也不像RSM模型那么严格。但是在模 拟旋流数很高的强旋流动中,由于该模型忽略了应力对流的 作用,因而会引起显著的误差。
30
60
90 120 150 180
r (mm) z=373mm切向速度对比图 (0o~180o)
k-ε模型给出的解与 试验值差别较大
Vz (m/s)
10 0 30 60 90 120 150 180 r (mm) 实验值 RNG k-e RSM
-180 -150 -120 -90 -60 -30 0 -10 -20 -30
16
湍流模型比较
模型
SpalartAllmaras 标准 k-ε
优点
计算量小,对一定复杂程度的 边界层问题有较好效果 应用多,计算量合适,有较多 数据积累和相当精度
缺点
计算结果没有被广泛测试,缺少 子模型,如考虑燃烧或浮力问题 对于流向有曲率变化,较强压力 梯度有旋问题等复杂流动模拟效 果欠缺 受到涡旋粘性各向同性假设限制 受到涡旋粘性各向同性假设限制
Reynolds-Stress Model
Detached Eddy Simulation
Available in FLUENT 6.2
Large-Eddy Simulation
Direct Numerical Simulation
18
Fluent中湍流模型面板
Define Models Viscous...
z =373mm轴向速度对比图(0o ~180o )
21
RSM和LES计算结果比较
下图为RSM和LES计算的旋风分离器内一点的瞬时切向速度随时间的 变化曲线(摘自:清华刘成文的博士论文《旋风分离器的能耗与减阻杆机 理研究》,2006.11):
RSM计算得到 的速度脉动基 本呈单一尺度
LES计算出的 速度脉动呈现 多尺度,显示 出了流场的非 定常特性
湍流粘性系数
2 U k 2 t ij k ij 3 x k 3
10
根据确定紊流粘性系数 t 的微分方程数目,又分为
零方程模型 一方程模型 两方程模型
零方程模型
•
常系数模型
t C umax umin
2 t l m
•
二维Prandtl混合长度理论
湍流粘性系数
表达式为:
12
模型参数
[1] 胡砾元,时铭显,周力行,等.旋风分离器三维强旋湍流流动的数值模拟[J].清华大学学报:自然科学版,2004,44(11):1501-1504. [2] 王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):337-343.
28
Euler-Lagrange方法
1. 离散相轨道模型 (DPM)
解决的问题 煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等稀相颗 粒流模拟;
应用范围 Fluent中的离散相模型假定第二相体积分数一般说来要小于 10-12%;不适用于模拟在连续相中无限期悬浮的颗粒流问题,
包括:搅拌釜、流化床等;
(2)为Reynolds时均方程,其中Reynolds应力 未知,使 方程不封闭。为了使方程组封闭,人们建立了各种湍流模型来 求解Reynolds应力。 湍流模型: 就是把湍流的脉动值附加项与时均值联系起来的一些 特定关系式。
9
3. 湍流模型具体介绍
基于不同的假设,湍流模型分为 紊流粘性模型
雷诺应力模型
标准 k-ε 模型只适用于高 Reynolds 数的湍流流动,不能 用于近壁区,在求解各项异性的流动时遇到较大的困难, 如强旋流、浮力流、曲壁边界层流及圆射流等。
针对不足,许多学者对标准的模型进行了修正。应用较 多的有
重整化群k-ε模型(renormalization group,RNG
model) 可实现k-ε模型(realizable k-ε model) 多尺度k-ε模型(multiscale model of turbulence)
以上介绍的模型都是基于 Boussinesq 假设,认为湍流粘性系 数各向同性,难于考虑旋转流动及流动方向表面曲率变化的影响, 不适用于复杂流动。