模拟退火算法
模拟退火算法

Keynote:尤志强
背景
模拟退火算法是Kirkpatrick提出,应组合优化问题而产生的,主要解决的是NP-hard问题。 优化问题可以分为:函数优化问题和组合优化问题两大类
1、函数优化问题: 可以描述为:令S为上的有界子集(即变量的定义域),f:S—>R为n维实值函数,所谓函数f在S域上全局最 小化就是寻求点XminS使得f(Xmin)在S域上全局最小,即X S:f(Xmin)<=f(X)
pr exp[(E j Ei ) / kt]
大于[0,1)区间内的随机数则仍旧接受新状态j为当前状态,若不成立则保留i为当前状态,其中k为 Boltzmann常数。 这种重要性采样过程在高温下可接受与当前状态能量差较大的新状态,而在低温下基本只接受与当 前能量差较小的新状态,而且当温度趋于零时,就不能接受比当前状态能量高的新状态。
背景
计算复杂度
由于某些优化算法所需的计算时间和存储空间难以承受,因此算法可解的问题在实践中不 一定可解。如TSP问题,可能的路径有n!,暴力求解显然是不行的。所以只有了解了研究 问题的复杂性,才能有针对性地设计算法,进而提高优化效率。
算法的时间和空间复杂性对计算机求解非常重要。问题的时间复杂性是指求解该问题的所 有算法中时间复杂性最小的算法的时间复杂性,同理,空间复杂性也有类似定义。这样, 按照计算复杂性理论研究问题求解的难易程度,可把问题分为P类、NP类和NP完全类。
背景
4、基于系统动态演化算法
将优化过程转化为系统动态的演化过程,基于系统动态的演化来实现优化,如神经网络和混沌 搜索等。
5、混合型算法 上述算法从结果或者操作上相混合而产生的各类算法
模拟退火

模拟退火算法什么是模拟退火算法模拟退火算法(Simulate Anneal Arithmetic,SAA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解。
模拟退火是S.Kirkpatrick, C.D.Gela tt和M.P.Vecchi在1983年所发明。
而V.Černý在1985年也独立发明此演算法。
模拟退火算法是解决TSP问题的有效方法之一。
模拟退火来自冶金学的专有名词退火。
退火是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
模拟退火的原理也和金属退火的原理近似:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火算法的模型[1]模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:o(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数Lo(2) 对k=1,……,L做第(3)至第6步:o(3) 产生新解S′o(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数o(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.o(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
o(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:o第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法

模拟退⽕算法模拟退⽕(SA)物理过程由以下三个部分组成1.加温过程问题的初始解2.等温过程对应算法的Metropolis抽样的过程3.冷却过程控制参数的下降默认的模拟退⽕是⼀个求最⼩值的过程,其中Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis准则以⼀定的概率接受恶化解,这样就使算法跳离局部最优的陷进1.模拟退⽕算法求解⼀元函数最值问题使⽤simulannealbnd - Simulated annealing algorithm⼯具箱求y=sin(10*pi*x)./x;在[1,2]的最值下图是⽤画图法求出最值的x=1:0.01:2;y=sin(10*pi*x)./x;figurehold onplot(x,y,'linewidth',1.5);ylim([-1.5,1.5]);xlabel('x');ylabel('y');title('y=sin(10*\pi*x)/x');[maxVal,maxIndex]=max(y);plot(x(maxIndex),maxVal,'r*');text(x(maxIndex),maxVal,{['x:' num2str(x(maxIndex))],['y:' num2str(maxVal)]});[minVal,minIndex]=min(y);plot(x(minIndex),minVal,'ro');text(x(minIndex),minVal,{['x:' num2str(x(minIndex))],['y:' num2str(minVal)]});hold off;⽤模拟退⽕⼯具箱来找最值求最⼩值function fitness=fitnessfun(x)fitness=sin(10*pi*x)./x;end求最⼤值function fitness=fitnessfun(x)fitness=-sin(10*pi*x)./x;endOptimization running.Objective function value: -0.9527670052175917Maximum number of iterations exceeded: increase options.MaxIterations.⽤⼯具箱求得的最⼤值为0.95276700521759172.⼆元函数优化[x,y]=meshgrid(-5:0.1:5,-5:0.1:5);z=x.^2+y.^2-10*cos(2*pi*x)-10*cos(2*pi*y)+20;figuremesh(x,y,z);hold onxlabel('x');ylabel('y');zlabel('z');title('z=x^2+y^2-10*cos(2*\pi*x)-10*cos(2*\pi*y)+20');maxVal=max(z(:));[maxIndexX,maxIndexY]=find(z==maxVal);%返回z==maxVal时,x和y的索引for i=1:length(maxIndexX)plot3(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,'r*');text(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,{['x:' num2str(x(maxIndexX(i)))] ['y:' num2str(y(maxIndexY(i)))] ['z:' num2str(maxVal)] }); endhold off;function fitness=fitnessfun(x)fitness=-(x(1).^2+x(2).^2-10*cos(2*pi*x(1))-10*cos(2*pi*x(2))+20);endOptimization running.Objective function value: -80.50038894455415Maximum number of iterations exceeded: increase options.MaxIterations.找到的最⼤值:80.500388944554153.解TSP问题(⽤的数据和前⼏天⽤遗传算法写TSP问题的数据⼀致,但是结果⽐遗传算法算出来效果差很多,不知道是不是我写错了,怀疑⼈⽣_(:з」∠)_中。
五大常用算法 模拟退火算法

五大常用算法模拟退火算法
模拟退火算法是一种常用的求解优化问题的算法,它可以用于解决各种实际问题。
本文将介绍模拟退火算法及其应用,同时还会介绍其他四种常用的算法。
一、模拟退火算法
模拟退火算法是一种启发式算法,适用于求解复杂的优化问题。
它源于固体物理学中的退火过程,通过模拟退火过程来寻求最优解。
模拟退火算法通过随机跳出局部最优解的过程,寻找全局最优解。
二、其他四种常用算法
1.遗传算法
遗传算法是一种模拟自然进化过程的优化方法。
它通过对可行解进行适应度评价、选择、交叉和变异等操作,将优秀的个体遗传给下一代,从而不断优化解的质量。
2.蚁群算法
蚁群算法是一种模拟蚂蚁寻找食物的行为而发展出来的算法。
它通过模拟蚂蚁在搜索过程中的信息素沉积和信息素挥发,不断优化搜索路径,从而找到最优解。
3.粒子群算法
粒子群算法是一种模拟粒子在空间中移动的算法。
它通过模拟粒子在搜索空间中的移动和互相协作,不断优化搜索路径,从而找到最优解。
4.人工神经网络
人工神经网络是一种模拟人脑神经元工作原理的算法。
它通过构建神经元之间的连接和权重来实现对输入信息的处理和输出结果的预测,可以用于分类、回归等问题的求解。
三、总结
以上介绍了五种常用的算法,它们都可以用于解决不同类型的优化问题。
在实际应用中,需要根据具体问题的特点选择合适的算法。
模拟退火算法是其中一种常用算法,具有较为广泛的应用。
模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。
它通常被用于离散的搜索空间中,例如,旅行商问题。
特别地,对于确定的问题,模拟退火算法一般是优于穷举法。
这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。
退火一词来源于冶金学。
退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。
而 V . Černý 在1985年也独立发明了此算法。
1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。
寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。
2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
模拟退火算法详解

车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适
模拟退火算法公式

模拟退火算法公式模拟退火算法是一种基于物理退火过程的优化算法,最早由美国物理学家,冯·诺依曼奖得主,以及诺贝尔物理学奖得主南部-安丘因于1953年提出。
它模拟了固体物质退火时的行为,通过对潜在解空间的搜索,寻找全局最优解。
在固体退火过程中,物质从高温到低温逐渐冷却,通过不断调控温度,使系统的能量逐渐减少。
模拟退火算法的核心思想正是基于这一过程,通过一系列接受概率较低的状态转移,来跳出局部最优解,最终找到全局最优解。
模拟退火算法具体流程如下:1. 随机初始化初始解,并设定初始温度和终止温度。
2. 在每个温度下,通过随机扰动当前解,产生一个新解。
3. 计算新解的函数值和当前解的函数值之差△E。
4. 如果△E ≤ 0,则接受新解作为当前解。
5. 如果△E > 0,则以一定概率接受新解。
该概率由Metropolis 准则决定,概率公式为 P = e^(-△E/T)。
6. 逐渐降低温度,根据设定的降温速率进行迭代搜索,直到达到终止温度。
值得注意的是,温度决定了接受不良解的概率,随着退火过程的进行,温度逐渐降低,接受不良解的概率减小,使得算法更加倾向于收敛到全局最优解。
模拟退火算法在全局优化问题中有着广泛的应用。
例如,在旅行商问题中,通过模拟退火算法可以找到最优的旅行路径,从而使得旅行商的行程最短。
在网络设计中,模拟退火算法可以优化网络拓扑结构,提高数据传输效率。
在机器学习中,模拟退火算法可以用于参数调优,帮助优化模型的性能。
然而,模拟退火算法也存在着一定的局限性。
首先,算法的运行时间较长,需要大量的迭代次数和计算资源。
其次,在应对高维问题和非凸问题时,算法可能会陷入局部最优解,无法得到全局最优解。
因此,在实际应用中,我们需要根据问题的特点选择合适的算法,并结合其他优化方法来提高解的质量。
综上所述,模拟退火算法是一种具有指导意义的全局优化算法。
通过模拟退火过程,可以在搜索解空间时避免陷入局部最优解,并找到全局最优解。
模拟退火算法

模拟退火算法(Simulated Annealing)是一种随机优化算法,其基本思想是将问题转化为能量最小化问题,在解空间中以概率形式进行搜索空间,从而达到全局优化的目的。
一、算法原理的原理源于冶金学中的“模拟退火”过程。
在冶金学中,模拟退火是一种将材料加热到足够高的温度,使得原子以无序方式排列,并随着温度逐渐下降,原子逐渐重新排列成为有序状态的过程。
类似地,在算法中,模拟退火过程由三个参数组成:初始温度、降温速率和停止温度。
算法从一个初始解开始,随机产生新解,并计算新解与当前解之间的能量差。
如果新解的能量小于当前解的能量,则直接接受新解,如果新解的能量大于当前解的能量,则以一定的概率接受新解,以避免过早陷入局部最优解。
通过不断降温的过程,在搜索空间中进行随机跳跃,并慢慢收敛到全局最优解。
二、算法流程的流程如下:1. 设定初始温度、降温速率和停止温度。
2. 随机生成一个初始解,并计算其能量。
3. 生成一个新解,并计算新解与当前解之间的能量差。
4. 如果新解的能量小于当前解的能量,则接受新解。
5. 如果新解的能量大于当前解的能量,则以一定的概率接受新解。
6. 降温,更新温度。
7. 判断算法是否收敛,如果未收敛则返回步骤2。
三、应用场景广泛应用于组合优化问题、图论问题、生产调度问题等领域。
例如:1. 旅行商问题:在旅行商问题中,可以通过搜索空间中随机跳跃的方式找到最短路径,从而达到全局最优解。
2. 排课问题:在学校的排课问题中,可以帮助学校最优化考虑不同的课程安排,得到最优化的课程表。
3. 生产调度问题:在生产调度问题中,可以帮助生产企业在限制资源的条件下找到最优化的生产方案,提高生产效率。
四、优缺点作为一种优化算法,具有以下优点:1. 全局搜索能力强:能够在搜索空间中进行全局搜索,并趋向于全局最优解。
2. 算法收敛性好:在算法搜索到解后,能够很快地达到最优解,收敛速度较快。
3. 收敛到局部最优解的可能性较小:由于算法在跳跃过程中具有随机性,因此收敛到局部最优解的可能性较小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
【算法】数学建模常用算法简介——模拟退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达
到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e- E/(kT) ,其中 E 为温度 T 时的内能, E 为其改变量, k 为 Boltzmann
常数。
用固体退火模拟组合优化问题,将内能 E 模拟为目标函数值 f ,温度 T 演化成控制参
数 t ,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前
解重复“产生新解→计算目标函数差→ 接受或舍弃”的迭代,并逐步衰减t值,算法终止时的
当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表 (Cooling Schedule) 控制,包括控制参数的初值 t 及其衰减因子 t 、每个 t 值时
的迭代次数 L 和停止条件 S。
模拟退火算法的模型
模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:
(1)初始化:初始温度 T( 充分大 ) ,初始解状态 S( 是算法迭代的起点 ) ,每个 T 值的迭
代次数 L
(2)对 k=1,,L做第(3)至第6步:
(3)产生新解 S′
(4)计算增量 t ′=C(S′)-C(S) ,其中 C(S) 为评价函数
(5) 若t ′<0 则接受 S′作为新的当前解,否则以概率exp(-t ′/T) 接受 S′作为新的当前解.
(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7)T 逐渐减少,且 T->0 ,然后转第 2 步。
模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和
接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解
的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因
而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。
因为目标函数差仅由变换部分产生,所以
目标函数差的计算最好按增量计算。
事实表明,对大多数应用而言,这是计算目标函数差的最
快方法。
第三步是判断新解是否被接受 , 判断的依据是一个接受准则,最常用的接受准则是 Metropo1is 准则 : 若 t ′<0 则接受 S′作为新的当前解 S,否则以概率 exp(- t ′/T) 接受 S′作为新的当前解 S。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新
解时的变换部分予以实现,同时修正目标函数值即可。
此时,当前解实现了一次迭代。
可在此基础上开始下一轮试验。
而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试。
验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S( 是算法迭代的起点 ) 无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优
化算法;模拟退火算法具有并行性。
模拟退火算法的简单应用(2003 年县官访问村庄的问题或者tsp 问题的优化)
作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有 n 个城市,用数码 1, ,n 代表。
城市 i 和城市 j 之间的距离为d(i ,j) i, j=1,,n .TSP 问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短. 。
求解 TSP的模拟退火算法模型可描述如下:
解空间解空间S是遍访每个城市恰好一次的所有回路,是{1 ,,n}的所有循环排列的
集合, S 中的成员记为 (w1,w2 , wn),并记 wn+1= w1。
初始解可选为 (1 ,,n) 目标函数此时
的目标函数即为访问所有城市的路径总长度或称为代价函数:
我们要求此代价函数的最小值。
新解的产生随机产生 1 和 n 之间的两相异数k 和 m,若 k<m,则将
(w1, w2 ,, wk , wk+1 ,, wm , , wn)
变为:
(w1, w2 ,, wm , wm-1 ,, wk+1 , wk ,, wn).
如果是 k>m,则将
(w1, w2 ,, wk , wk+1 ,, wm , , wn)
变为:
(wm, wm-1 , , w1 , wm+1 ,,wk-1 ,wn , wn-1 ,, wk).
上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。
代价函数差设将(w1, w2 ,,wn)变换为(u1, u2,,un),则代价函数差为:
根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:
Procedure TSPSA:
begin
init-of-T; { T为初始温度}
S={1 ,, n}; {S为初始值}
termination=false;
while termination=false
begin
for i=1 to L do
begin
generate(S ′form S); {从当前回路S 产生新回路S′}
t:=f(S′))-f(S);{f(S)为路径总长}
IF( t<0) OR (EXP(-t/T)>Random-of-[0,1])
S=S′;
IF the-halt-condition-is-TRUE THEN
termination=true;
End;
T_lower;
End;
End
模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem) 、0-1背包问题 (Zero One
Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem) 等等。