数学物理方法12格林函数
数学物理方法第十二章格林函数解的积分公式

证明过程中可能需要使用到实变函数、复变函数、 偏微分方程等数学工具。
证明难度
格林函数的积分公式证明比较复杂,需要深入理 解数学物理方法和偏微分方程的基本原理。
04
格林函数在物理问题中的 应用
在波动方程中的应用
波动方程是描述波动现象的基本方程,如声波、光波和水波 等。格林函数在求解波动方程中发挥了重要作用,能够给出 波函数的精确解或近似解。
要点三
应用实例
为了更好地理解格林函数解的积分公 式,我们通过几个具体的物理问题进 行了应用。这些例子包括波动方程、 热传导方程等,通过这些例子,我们 可以看到格林函数解的积分公式的实 用性和广泛性。
对未来研究的展望
进一步探索格林函数 的性质和应用
尽管我们已经对格林函数的性质和应 用有了一定的了解,但仍有许多未知 领域值得我们去探索。例如,我们可 以研究格林函数在不同物理问题中的 应用,或者探索格林函数在其他数学 领域中的性质和应用。
积分公式的推广和应 用
在本章中,我们得到了格林函数解的 积分公式,但这个公式可能还有其他 的推广和应用方式。例如,我们可以 尝试将这个公式应用到其他类型的偏 微分方程中,或者尝试将这个公式应 用到其他领域的问题中。
与其他数学物理方法 的结合
数学物理方法中的其他方法,如分离 变量法、变分法等,也可以与格林函 数解的积分公式相结合,以解决更复 杂的物理问题。未来研究可以探索如 何将这些方法有效地结合起来,以更 好地解决实际问题。
03
不同类型的格林函数在求解偏 微分方程时具有不同的应用范 围和特点。
03
格林函数的积分公式
公式推导
公式推导
01
通过求解偏微分方程,将格林函数表示为积分形式,利用边界
格林函数方法)

第七章 格林函数方法
第一节 前言
从五十年代开始,量子场论中的格林函数方法被用于研究统计物理学中的 问题。到六十年代后期,格林函数理论在固体物理等多个领域得到了进一步的拓 展,被认为是一种强有力的数学工具[1]。例如,对许多准粒子问题,只需知道相 互作用过程中少数粒子的初态与末态间的跃迁振幅(相应的格林函数),就能得 到体系的一些特征,而对于固体物理中的很多问题,只有对应于费米能量附近的 系统格林函数与我们要研究的性质有关。这样,格林函数方法就成为研究系统性 质的直接有效的方法。 但是在很多的实际问题中,如一些较复杂的有限尺寸量子系统,要得出其格 林函数的解析表达式是很困难的,因此必须要通过数值计算来解决。格点格林函 数方法[2-17]是通过把系统分离成一些格点,然后通过计算这些格点及格点间的格 林函数,进而得出整个体系的格林函数的一种有效数值计算方法。它与其他的一 些数值方法如有限元法[18]、转移矩阵法[19,20]、散射矩阵法[21]、模式匹配法[22]等相 比较,格点格林函数方法能够很方便的处理磁场和无序(掺杂)等问题。在系统 的某个区域加入磁场时,只需要考虑一个 Peierls 相位因子。当系统的自由度很 大时, 用一般的格点格林函数方法求解系统的格林函数就对应一个很大维数的矩 阵计算。虽然计算机技术飞速发展,但是计算机的容量仍然制约着我们所能直接 处理的矩阵的维数。在这种情况下,迭代技术已经被越来越广泛地应用于处理这 一类问题。 递归格林函数方法也在这种要求下得到了很大的发展。 Lee、 Fisher[2,3] 和 MacKinnon[7]等作了开创性的工作,然后人们又发展了各种递归格林函数方法 来处理一些具体的结构或边界条件下的尺寸效应和多终端效应。 如 Soles[5,6]等用 递归格林函数方法计算了有 T-型突起的量子线的电子输运性质, Ando[9]则考虑了 在磁场调制下的量子点接触的电导。 在量子物理中,格林函数常常被定义为 v v v v v [ E − H (r )]G (r , r ' ; E ) = δ (r − r ' ) 其中 E 是复变量,H 是一个厄米的含时算符。 如果 E − H 的本征值是非零的,我们可以写出格林函数的等价定义式: 1 G= (2-2) E−H 如果 H 的本征函数ψ n 是正交完备的,且 λ n 是其相应的本征值,则
格林函数

§2.4 格林函数法 解的积分公式在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。
格林函数,又称点源影响函数,是数学物理中的一个重要概念。
格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。
知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。
一、 泊松方程的格林函数法为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。
设u (r )和v (r )在区域 T 及其边界 ∑ 上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分⎰⎰∑⋅∇Sd v u ϖ化成体积积分.)(⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∇⋅∇+∆=∇⋅∇=⋅∇∑TTTvdV u vdV u dV v u S d v u ϖ(12-1-1)这叫作第一格林公式。
同理,又有.⎰⎰⎰⎰⎰⎰⎰⎰∇⋅∇+∆=⋅∇∑TTvdV u udV v S d u v ϖ(12-1-2)(12-1-1)与(12-1-2)两式相减,得,)()(⎰⎰⎰⎰⎰∆-∆=⋅∇-∇∑TdV u v v u S d u v v u ϖ亦即.)(⎰⎰⎰⎰⎰∆-∆=⎪⎭⎫ ⎝⎛∂∂-∂∂∑T dV u v v u dS n u v n vu(12-1-3)n ∂∂表示沿边界 ∑ 的外法向求导数。
(12-1-3)叫作第二格林公式。
现在讨论带有一定边界条件的泊松方程的求解问题。
泊松方程是)( ),(T r r f u ∈=∆ϖϖ(12-1-4)第一、第二、第三类边界条件可统一地表为),( M u n u ϕβα=⎥⎦⎤⎢⎣⎡+∂∂∑(12-1-5)其中 ϕ(M )是区域边界 ∑ 上的给定函数。
α=0,β ≠0为第一类边界条件,α ≠0,β=0是第二类边界条件,α、β 都不等于零是第三类边界条件。
泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。
格林函数法

为第三边值问题的积分表示式
物理意义:右边第一个积分表示区域T中分布的源在r 点产生的场的总和;第二个积分代表边界上的状况对 r点场的影响的总和;两项积分中的格林函数相同。 说明泊松方程的格林函数是点源在一定的边界条件下 所产生的场。
对于拉普拉斯方程,f(r0)=0,因此可得拉普拉斯 方程第一边值问题的解
因此,我们可设想一个等效的点电荷,它位 于球外M1处,且在球面产生的电势与球内点电荷 在球面产生的电势相反。由物理学知识可知,该 设想的点电荷必位于OM0处的延长线上,如图所 示,并记:
OM r, OM0 r0
在∑ε 上的解,该解表示位于球心r=r0处的电量为ε0的 点电荷在半径为ε的球面上产生的电势,根据电磁学 知识,该电势为:
1
G(r, r0 ) 4
因此我们可得∑ε面上的积分
Ò
u(r)
G n
G
u(r) n
dS
Ò
u(r
)
n
(1
4
)
1
4
u(r) n
dS
Ò
u(
r
)
n
(1
4
)
1
4
u(r n
)
2d
(r r0 ) (x x0) ( y y0) (z z0)
格林函数的物理意义:在物体内部(T内)处放置 一个单位点电荷(或热源),而该物体的界面保持 电位为零(或温度为零), 那么该点电荷(或该点 热源)在物体内产生的电势分布(或稳定温度分 布),就是上述定解问题的解――格林函数。
格林函数互易定理: 格林函数代表r0处的点源在r处 所产生的影响,系统不变,则该影响等同于将移至r 处的该点源在r0处产生影响。故格林函数遵守如下 的互易定理:
梁昆淼 第12章 数学物理方法

1
G0 4 | r r0 |
所以,可以给出无界空间格林函数
G0 (r , r0 )
4
|
1 r
r0
|
在二维极坐标系下,可以给出
下面具体推导一下:
G0 (r , r0 )
1
2
ln
|
r
1 r0
|
23
第二十三页,共47页。
三维球对称
对于三维球对称情形,先选取 r0 0 即点源位于坐标原点处
对于拉普拉斯方程 f (r0 ) 0
第一边值问题的解为
u(r )
(r0
)
G(r , n0
r0
)
dS0
(12.1.21)
第三边值问题的解为
u(r ) 1
G(r , r0 )(r0 )dS0
(12.1.22)
21
第二十一页,共47页。
§12.2 用电像法求格林函数
一 无界区域的格林函数
1 一般边值问题的格林函数G的处理:
两者之一。因此,还不能利用上式解决三类边值问题。
怎样解决?让Green函数受边界条件的影响
12
第十二页,共47页。
四 泊松方程解的简化:
——具有实际意义的解
令格林函数满足一定的边界条件
(1) G(r , r0 )满足第一类齐次边界条件:
G 0
u(r ) f (r )
u
|
(r
)
相应的格林函数 G(r , r0 )是下列问题的解:
G(r , r0 )(r0 )dS0
(12.1.20)
20
第二十页,共47页。
对于泊松方程
u(r )
T
数学物理方法格林函数

演化问题的格林函数
演化问题的格林函数也可以用冲量定理法得到 问题 等价问题
Gt a 2 G 0 G |x 0 G |x L 0 G | t 0 ( x )
Gtt a 2 G 0 G |x 0 G |x L 0 G |t 0 0 G | t t 0 ( x )
演化问题的基本解
无界输运问题的求解
2 ut a u xx f ( x, t ) u |t 0 0
f ( x, t ) d d f ( , ) ( x ) (t )
0
t
2 Gt a G ( x ) (t ) G |t 0 0
2 ( x ) t exp 2 4a (t ) u d d f ( , ) 2a ( t ) 0
u( x, t ) d d f ( , )G( x, ; t, )
0
t
( x ) 2 exp 2 4 a ( t ) G 2a ( t )
应用(求解数学物理方程的格林函数法)
稳定问题的基本解
稳定问题的基本解可以利用静电场类比法得到 原问题 方程
u f ( r )
点源问题
G ( r r ' )
点电荷电场
V q (r r ' ) / 0
解
u
f (r ' )d ' 1 q G V 4 | r r ' | 4 | r r ' | 4 0 | r r ' |
数学物理方法--格林函数法

G(r , r0)r(r )dV T
1
4
f
G(r , r0 ) dS. n
第二边值问题(诺依曼问题)
u(r , r ')
u n
f
第二边值问 题格林函数
G(r , r ')ห้องสมุดไป่ตู้n
0
u(r0 )
1
4
G(r , r0)(r )dV T
(u
v n
v
u )dS n
T
(uv
vu)dV
法向导数
5
3. 边值问题 边界条件
泊松方程
u
[
u n
u]
()
() 定义在
0, 0 0, 0
第一类边界条件 第二类边界条件
0, 0 第三类边界条件
3
感应电荷 是边界问题
2. 格林公式
第一格林公式:
区域 T,边界
定解=通解+边界条件 求通解=积分
定解=积分+边界条件 (格林函数法)
T
设 u(r ) 和 v(r ) 在 T 中具有连续二阶导数,
在 上有连续一阶导数。由高斯定理
uv dS (uv)dV
p
M (r)
o
M0 (r0 )
如右图,当导体外 M1 处有电荷 40q 时,镜像电荷
将在球内M0 处。
M1(r1)
像电荷的大小以及位置:
4 0 q
a r1
格林函数法 数学物理方程

格林函数法
若L 一个带平滑系数的线性微分算子,当求解形如()L u f =的微分方程时,若对于任意的向量y 都存在广义函数()G x,y ,使得
[]()()L G δ=x x,y x-y
(此处下标x 表示L 作用于()G x,y 时将其当做以x 为自变量的广义函数,而y 为参数) 若再令
()()()d u G f =⎰x x,y y y
将上式代入()L u f =则有
[]()()d ()()d ()()d ()L G f L G f f f δ⎡⎤===⎣⎦
⎰⎰⎰x x,y y y x,y y y x -y y y x 故此时()u x 是微分方程()L u f =的解。
采用上述方法求解微分方程的方法称为格林函数法,广义函数()G x,y 也称为格林函数。
数学物理方法知识体系
数学物理方法所要解决的问题:求解(偏)微分方程
本学期学过的求解方法:变量分离法、积分变换法、格林函数法
变量分离法涉及知识点:傅里叶级数、函数的正交系、贝塞尔函数(Chap.2~Chap.5) 积分变换法涉及知识点:傅里叶变换、拉普拉斯变换、广义函数(Chap.7~Chap.9) 格林函数法涉及知识点:格林函数(Chap.10)
例题数量统计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、格林函数的引入及其物理意义
引入:为了求解泊松方程的定解问题,我们必须定 义一个与此定解问题相应的格林函数 G(r, r0 ) 它满足如下定解问题,边值条件可以是第一、二、三类 条件:
G (r , r0 ) (r r0 ) G [ G ] 0 n
1 u (r ) 4
T
f (r0 ) dV r r0
上式正是我们所熟知的静电场的电位表达式
二维轴对称情形
用单位长的圆柱体来代替球.积分在单位长的圆柱体内进行,即
G(r ,0)dV (r )dV
T T
因为
(r )dV 1
T
G(r,0)dV G(r,0)dV
由公式可得第二类边值问题解
u (r ) G(r , r0 ) f (r0 )dV0 (r )G(r , r0 )dS 0
T
u (r0 ) G(r , r0 ) u (r ) G(r , r0 ) f (r0 )dV0 [G(r , r0 ) n0 u(r0 ) n 0 ]dS0 T 3.第三类边值问题
T T T
以上用到公式
(uv) u v uv
称上式为第一格林公式.同理有
vu dS (vu )dV vudV v udV
T T T
上述两式相减得到
(uv vu ) dS (uv vu )dV
T
G (r , r0 ) u (r) u(r ) ]dS n n
称为泊松方程的基本积分公式. 格林函数满足互易定理 并利用格林函数的对称性则得到
u (r ) G(r , r0 ) f (r0 )dV0 [G(r , r0 )
T
u (r0 ) G(r , r0 ) u(r0 ) ]dS0 n0 n 0
u (r ) G(r , r0 ) f (r0 )dV0
T0
选取 u (r ) 和 G(r , r0 ) 分别满足下列方程
u(r ) f (r )
G(r , r0 ) (r - r0 )
三维球对称
对于三维球对称情形,我们选取 对上式两边在球内积分
r0 0
(14.3.4) (14.3.5)
u ( r )和v ( r ) 在区域 T
及其边界
上具有连续一阶导数,
T
中具有连续二阶导数,应用矢量分析的高斯定理
A dS AdV =
T
T
divAdV
(12.1.1)
将对曲面
的积分化为体积分
uv dS (uv )dV uvdV u vdV
1 1 ln c 2 r
1 1 ln 2 r
因此二维轴对称情形的格林函数为
G(r ,0) 1 1 ln 2 r r0
将(14.3.9)代入式(14.3.1)得到二维无界区域的解为
1 1 u (r ) f (r0 )ln dS0 S 2π 0 | r r0 |
用电像法确定格林函数
T
1
(r0 )G(r , r0 )dS0
这就是第三边值问题解的积分表示式.
右边第一个积分表示区域
T
中分布的源 f (r0 ) 在
r
r
点产生的场的总和. 第二个积分则代表边界上的状况对
点场的影响的总和.两项积分中的格林函数相同.这说明 泊松方程的格林函数是点源在一定的边界条件下所产生的 场.
u (r ) G(r , r0 ) f (r0 )dV0 [G(r , r0 )
T
u (r0 ) G(r , r0 ) u(r0 ) ]dS0 n0 n 0
考虑格林函数所满足的边界条件讨论如下: 1.第一类边值问题:
G(r , r0 ) (r - r0 ) 相应的格林函数 G(r, r0 ) 是下列问题的解: G(r , r0 ) | 0
G ( x, y | x0 , y0 )
(14.4.2)
( x x0 ) 2 ( y y0 ) 2 1 ln[ ] 4π ( x x0 ) 2 ( y y0 ) 2
T
u (r0 ) G(r , r0 ) u(r0 ) ]dS0 n0 n 0
2.第二类边值问题
u (r ) f ( r ) u | (rp ) n
相应的格林函数 G(r , r0 ) 是下列问题的解:
G (r , r0 ) (r - r0 ) G (r , r0 ) | 0 n
边值条件
(r )
是区域边界
上给定的函数.
是第一、第二、第三类边界条件的统一描述
典型的泊松方程(三维稳定分布)边值问题
u (r ) f (r ) u [ u ] (r ) n
表示边界面 n
上沿界面外法线方向的偏导数
泊 松 方 程
第一类边界条件:第一边值问题(狄里希利问题) 第二类边界条件:第二边值问题(诺依曼问题) 第三类边界条件:第三边值问题
G
u G[ u ] 函数
u
得
G u[ G ] 0 n
相减得到
u G [G u ] G n n
代入(14.2.9)得到第三类边值问题的解
u (r ) G(r , r0 ) f (r0 )dV0
u (r ) (r r0 )dV G (r , r0 ) f (r )dV
T T
根据 函数性质有:
u(r ) (r r )]dV u(r )
T 0 0
故有
u (r0 ) G (r , r0 ) f (r )dV [G(r , r0 )
格林函数互易定理:因为格林函数 处的点源在
G(r , r0 ) 代表 r0
r
处所产生的影响(或所产生的场),
所以它只能是距离| r r0 | 的函数, 故它应该遵守如下的互易定理:
G(r , r0 ) G(r0 , r )
u (r ) f (r ) u [ u ] (r ) n
u (r ) f (r ) u [ u ] (rp ) n
相应的格林函数 G(r, r0 ) 是下列问题的解:
G(r , r0 ) (r - r0 ) G(r , r0 ) [ G ] 0 n
泊松方程的边值条件,两边同乘以格林函
T T
S
G(r ,0) dS
由于
G
G er , G r
只是垂直于轴,且向外的分量,所以上式在
圆柱体上、下底的面积分为零,只剩下沿侧面的积分,即
G rddz 1 r S
选取的圆柱的高度为单位长,则很容易得到下面的结果
G 1 r 2r
令积分常数为0,得到
G (r ,0) G (r ,0)
G (r , r0 ) (r r0 ) G [ G ] 0 n
v u (u n v n )dS T (uv vu)dV
根据格林第二公式
令 v G(r , r0 ) 得到
G u(r ) (u(r ) n G n )dS T (u(r )G Gu(r ))dV
G(r,0)dV (r )dV
T T
(r )dV 1
T
利用高斯定理(14.1.1)得到
T
G(r ,0)dV G(r ,0)dV G(r,0) dS
T S
G 2 r sin d d S r
(r r0 ) 代表三维空间变量的 函数,在直角坐标系中其形式为
(r r0 ) ( x x0 ) ( y y0 ) ( z z0 )
格林函数的物理意义:
在区域T内部 r0 处放置一个点源,而在该区域T的界 面上为零的条件下, 那么该点点源在区域T内r处产生 的场,由此可以进一步理解通常人们为什么称格林函 数为点源函数.
(14.3.6)
故有
使上式恒成立,有
G 4r 1 r 1 G c 4r
2
G 2 r sin dd 1 r s
r , G 0
因此
c0
,故得到
1 G 4r
对于三维无界球对称情形的格林函数可以选取为 1 G(r , r0 ) 为电量为- 0的点电荷所产生的场 4 r r0 代入 (14.3.1)得到三维无界区域问题的解为
第十二章
格林函数法
格林(Green)函数,又称为点源影响函数,是数学物理中
的一个重要概念.格林函数代表一个点源在一定的边界条件下和 初始条件下所产生的场.知道了点源的场,就可以用叠加的方法 计算出任意源所产生的场.
格林函数法是解数学物理方程的常用方法之一.
12.1 泊松方程的格林函数法
一、 格林公式
上半平面区域第一边值问题的格林函数构建 拉普拉斯方程的第一边值问题求解 物理模型:若在
M 0 ( x0 , y0 ) 处放置一正单位点电荷
则虚设的负单位点电荷应该在 M 1 ( x0 , y0 ) 于是得到这两点电荷在 xoy 的上半平面的电位分 布.也就是本问题的格林函数,即为
G (r , r0 ) 1 1 1 1 ln ln 2π | r r0 | 2π | r r1 | 1 1 1 1 ln ln 2π ( x x0 ) 2 ( y y0 ) 2 2π ( x x0 ) 2 ( y y0 ) 2
用格林函数法求解的主要困难还在于如何确定格林函数本身 一个具体的定解问题,需要寻找一个合适的格林函数 为了求解的方便,对一些具体问题我们给出构建格林函数的方法