第七章统计热力学基础优秀课件

合集下载

热力学统计 第七章玻尔兹曼统计

热力学统计 第七章玻尔兹曼统计

al !
al lal ln ln N ! N ln N al ln al ! l l l x 1 ln x ! x ln x x S k ln S
0
设=1时,S=0 S0=0
ln Z S Nk (ln Z )
2.内能U与广义力Y的统计表达式
2.1 内能U的统计表达式
N N l U al l ll e Z Z l l N Z ln Z N Z
e l l
N al l e l Z Z l e l
配分函数Z :
l
Z l e l
l
分布在能级l 的粒子数:
N al l e l Z
已知(l, l),可求Z——并不容易!
经典粒子: 配分函数Z :
Z l e l
l
Z e
( q . p )
dqdp e D( )d r h
积分因子:
如果 X ( x, y )dx Y ( x, y )dy 不是全微分,但存在函数 ( x, y ) ,使得
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy 为全微分, 即
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy ds ( x, y )
S k ln
满足经典极限的非定域系统:
ln
l
la
l
al !
al S k N ln N al ln l l
S0
lal al ln ln N ln N al ln ln N ! l l al ! l

《统计热力学》课件

《统计热力学》课件
《统计热力学》PPT课件
欢迎来到《统计热力学》PPT课件!本课程将探索统计热力学的定义、原理、 应用领域,以及数学基础和研究方法。让我们开始这个精彩的学习之旅!
概述
介绍统计热力学的基本概念和作用。了解热力学与统计力学的关系以及统计热力学在物理、化学和生物等领域 的重要性。
定义
探索统计热力学的准确定义,包括如何描述微观粒子的状态、能量分布和统计规律。理解宏观热力学参数与微 观粒子行为之间的关系。
生物化学
探索统计热力学在生物大分子结构和功能研究中的重要性。
能源研究
研究统计热力学在能源转化、储存和优化中的应用及挑战。
数学基础
了解统计热力学所需的数学基础,包括概率论、统计学和微积分。探索数学 模型和统计方法在统计热力学中的应用。
研究方法
了解统计热力学的研究方法,包括计算模拟、实验技术和数据分析。探索如 何收集、处理和解释实验和模拟数据。
未来发展
展望统计热力学的未来发展方向,包括新的应用领域、研究技术和理论突破。让我们一起探索统计热力学的无 限可能!基本原理 Nhomakorabea1
统计力学
了解统计力学的基本原理,包括概率分布、平衡态和非平衡态,以及微正则、正 则和巨正则系综。
2
热力学基本定律
探索统计热力学与热力学基本定律的关系,包括熵增原理和热力学基本方程。
3
统计热力学的统一性
理解统计热力学与热力学之间的统一性,揭示宏观现象的微观基础。
应用领域
材料科学
了解统计热力学在材料制备、相变和材料性能预测中的应用。

物理化学第七章统计热力学基础

物理化学第七章统计热力学基础

热力学第二定律的实质是揭示了热量 传递和机械能转化之间的方向性。
VS
它指出,热量传递和机械能转化的过 程是有方向的,即热量只能自发地从 高温物体传向低温物体,而机械能只 能通过消耗其他形式的能量才能转化 为内能。
热力学第二定律的应用
在能源利用领域,热力学第二定律指导我们合理利用能源,提高能源利用效率。
优势
统计热力学从微观角度出发,通过统计方法描述微观粒子的运动状态和相互作用,能够 更深入地揭示热现象的本质和内在规律。
局限性
统计热力学涉及到大量的微观粒子,计算较为复杂,需要借助计算机模拟等技术手段。
统计热力学与宏观热力学的关系
统计热力学和宏观热力学是相互补充的 关系,宏观热力学提供整体的、宏观的 视角,而统计热力学提供更微观、更具 体的视角。
03
热力学第一定律
热力学第一定律的表述
热力学第一定律的表述为
能量不能无中生出,也不能消失,只能从一种形式转化为另一种 形式。
也可以表述为
封闭系统中,热和功的总和是守恒的,即Q+W=ΔU。其中Q表示传 给系统的热量,W表示系统对外做的功,ΔU表示系统内能的变化。
热力学第一定律的实质
热力学第一定律实质是能量守恒定律在封闭系统中的具体表现。 它表明了在能量转化和传递过程中,能量的总量保持不变,即能 量守恒。
掌握理想气体和实际气 体的统计描述,理解气 体定律的微观解释。
了解相变和化学反应的 统计热力学基础,理解 热力学第二定律和熵的 概念。
02
统计热力学基础概念
统计热力学简介
统计热力学是研究热力学系统 在平衡态和近平衡态时微观粒 子运动状态和宏观性质之间关 系的学科。
它基于微观粒子的运动状态和 相互作用,通过统计方法来描 述系统的宏观性质,揭示了微 观结构和宏观性质之间的联系 。

07章_统计热力学基础 课件

07章_统计热力学基础 课件
临沂大学化学化工学院
t3 = C41 C31
= 4!/(2!1!1!)
= 12
24
=4
2019/3/31
一、定位系统的最概然分布
N! ti Ni !
i
这是一种分布的微态数,在满足这两个条 件下,可以有各种不同的分布,则总微观状态 数为: N! ti Ni N Ni N N i ! i i i N U N U ii ii
i
t — 分布方法数 N — 总粒子数 Ni — 分布于各能级上的粒子数
2019/3/31
临沂大学化学化工学院
23
一、定位系统的最概然分布
例 4个不同粒子(可分辨),在不同能级上分布, 体系总能量3h,分布如下:
ε3 = 3hν
ε2 = 2hν
ε1 = hν
ε0 = 0 t1 = C41 = 4!/(1!3!) t2 = C43 = 4!/(3!1!) =4
N! tm N i!
i
ln tm N ln N N Ni* ln Ni* Ni*
-----Stirling公式 * * * S k N ln N N Ni ln Ni Ni i i
2019/3/31
临沂大学化学化工学院
1.定位系统的微观状态数 一个由 N 个可区分的独立粒子组成的宏观 系统(U,V,N为定值),在量子化的能级上可
以有多种不同的分配方式。
设其分配方式为:
能级: 1, 2 , 3 , , i 一种分布方式: N1,N 2,N 3 , ,N i
' ' 另一种分布方式: N1' ,N 2 ,N 3 , ,N i'

统计热力学

统计热力学

第七章统计热力学基础热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。

但是,热力学本身无法确定体系的状态方程,需借助实验。

很显然,体系的宏观热力学性质取决于其微观运动状态,是大量粒子微观运动的统计平均结果。

热力学宏观性质体系的微观运动状态统计热力学统计热力学:基础:微观粒子普遍遵循的(量子)力学定律对象:大量粒子所构成的体系的微观运动状态工具:统计力学原理目的:大量粒子某一性质的微观统计平均的结果(值)与系统的热力学宏观性质相关联。

7.1概述统计热力学是宏观热力学与量子化学相关联的桥梁。

通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。

微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。

由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。

这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。

Boltzmann给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:S k=Ω。

ln热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。

因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。

因此,有了数学上完全容许的lnΩ≈ln W D,max。

所以,S=k ln W D,max这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。

第七章 热力学基础

第七章 热力学基础

p1 m RT ln 由 Q =W = T T M p2

QT = WT = 246J
mi R(T2 − T1 ) 得 由 QV = E2 − E1 = M2 mi QV = Ed − Ec = R(Td − Tc ) M2 i = ( pdVd − pcVc ) 2 3 2 = (1× 3 − 2 × 3) ×1.013 ×10 J = −456J 2
dW = pdV,W = p(V2 −V1 )
■ 热力学第一定律的形式
(dQ ) p = dE + pdV m RdT = dE + M
热源
■ 有限等压过程 对等压过程,气体从状态Ⅰ(p、V1、T1) 对等压过程, 变到状态Ⅱ (p、V2、T2)时:
m R(T2 − T1 ) Wp = ∫ pdV = p(V2 −V1 ) = V1 M
pbVb 3.039 ×105 Pa × 2 5 pc = = = 2.026 ×10 Pa 3 Vc
在状态d 压强为p 1.013× Pa,体积为V 在状态d,压强为pd=1.013×105Pa,体积为Vd= 3L
在全过程中内能的变化△E 为末状态内能减去 初状态内能,有理想气体内能公式及理想气体状态 初状态内能,有理想气体内能公式及理想气体状态 方程得: 方程得: ∆E = Ed − Ea
E = E(T,V )
二、热与功的等效性 如图: 如图:温度都由 T1→ T2 状态发生了相同的变化。 状态发生了相同的变化。 等效 传热 —— 作功 加热 搅拌作功
因为功是能量传递的一种形式, 因为功是能量传递的一种形式,是系统能量变 化的一种量度。 所以热量也是能量传递的一种形式, 化的一种量度。 所以热量也是能量传递的一种形式, 是系统能量变化的一种量度。 是系统能量变化的一种量度。

高中物理竞赛课件 第七章 热力学基础 (共67张PPT)


E i RT dE i RdT
2
2
CP
dQP dT
dQP
dE
PdV
i 2
RdT
RdT
PV RT d(PV) PdV VdP PdV RdT
14
单原子:i 3 双原子:i 5 多原子:i 6 二、三种等值过程
5
3
7
5
8
6
1.等容过程 特征:dV 0 dA 0
p
过程方程:
(1)状态d的体积Vd; (2)整个过程对外所做的功;
(3)整个过程吸收的热量.
p
2p1
c
解: (1)由绝热过程方程:
TcVc 1 TdVd 1
p1
ab
d
1
得:Vd
Tc Td
1
Vc
根据题意:
Td
Ta
p1V1 R
o v1 2v1
v
Vc 2V1
Tc
pcVc R
4 p1V1 R
4Ta
5
3
27
(2)整个过程对外所做的功;
真空
T
T0
2V0
∵绝热过程
(E E0) A 0
而 A=0
V0 1T0 (2V0) 1T T P0V0 P(2V0) P
E E0 (T T0)
始末两态满足 P0V0 P(2V0)
状态方程
T0
T
P
1 2
P0
26
例7-4 1mol单原子理想气体,由状态a(p1,V1)先等压加热至体积增大1倍,再等体加热至压 力增大1倍,最后再经绝热膨胀,使其温度降至初始温度,如图所示,试求:
i 2 1
1
i

统计热力学 ppt课件


简并度(degeneration)
例如,气体分子平动能的公式为:
t 8mhV22/3(nx2ny2nz2)
m--分子质量;V--容器体积;
h--Planck常数;
nx,ny,nz分别是x,y,z 轴方向的平动量子数, =1,2,3……

t
h2 8mV 2/ 3
3

nx1,ny1,nz1, 只有一种
最早是由玻兹曼(Boltzmann)以经典力学为 基础建立的统计方法,称为经典统计热力学。
1900年Planck提出了量子论,Maxwell将能 量量子化的概念引入统计热力学,发展成为目前 的Boltzmann统计。
三种统计方法
1924年以后有了量子力学,使统计力学中力 学的基础发生改变,随之统计的方法也有改进, 从而形成了Bose-Einstein统计和Fermi-Dirac统计, 分别适用于不同系统。
定位系统的微态数
一个由 N 个可区分的独立粒子组成的宏观 系统,在量子化的能级上可以有多种不同的分 配方式。设其中的一种分配方式为:
能 级 : 1 , 2, , i
一 种 分 配 方 式 :N 1, N 2, , N i
无论哪种分配都必须满足: Ni N i Nii U i
定位系统的微态数
统计系统的分类
定位系统(定域子系统) 粒子彼此可以分辨 如固体 非定位系统(离域子系统) 粒子之间不可区分 如气液体
近独立粒子系统(独立粒子系统) 粒子间相互作用可忽略
如理想气体
非独立粒子系统 (相依粒子系统) 粒子间相互作用不能忽略
如非理想气体
近独立粒子系统是本章主要的研究对象。
三种统计方法
一种是Maxwell--Boltzmann统计,通常称 为Boltzmann统计。

《统计热力学基础》课件


分布函数的定义
分布函数是描述系统微观状态分布的函数,它表示在某一时刻, 系统中的粒子在各个状态上的概率分布情况。
微观状态数的概念
微观状态数是描述系统内部可能的状态数量的一个概念,它与系统 的宏观状态和微观状态有关。
分布函数的应用
通过分析分布函数,可以了解系统的微观结构和性质,从而更好地 理解系统的宏观行为和变化规律。
02
概率分布
概率分布用于描述粒子集合中不同微观状态的概率分布情况。最常见的
概率分布有玻尔兹曼分布和麦克斯韦-玻尔兹通过概率分布可以计算各种物理量的平均值,如粒子的平均速度和平均
动能。同时,涨落描述了粒子集合中物理量的偏离平均值的情况。
统计热力学的发展历程
早期发展
经典统计热力学
统计热力学的重要性
在科学研究和工程应用中,统计热力学提供了理解和预测物质性质、能量转换 和热力学过程的基础理论框架。它对于化学工程、材料科学、环境科学等领域 具有重要意义。
统计热力学的基本概念
01
微观状态和宏观状态
微观状态是指单个粒子的状态,如位置和速度;宏观状态是指大量粒子
集合的整体状态,如温度、压力和体积。
05
02
详细描述
热力学的第二定律指出,在一个封闭系统中 ,自发过程总是向着熵增加的方向进行,即 熵总是向着增加的方向变化。
04
详细描述
根据热力学的第二定律,热机的效率 不可能达到百分之百,因为总会有一 些能量以热的形式散失到环境中。
06
详细描述
热力学的第二定律还排除了第二类永动机的存 在,即不能从单一热源吸收热量并将其完全转 化为机械功而不产生其他影响。
熵的概念和性质
1 2
熵的定义

热力学与统计物理 第七章 玻尔兹曼统计


e Z1 r dq1 dqr dp1 dpr h0
粒子自由度为3
e Z1 3 dxdydzdpx dp y dpz h0
15
Z1
V Z1 3 h0
方法一:
e

2 2 px p2 y pz
2m
h
3 0
dxdydzdp x dp y dp z
ln Z1 S Nk ln Z1
7
ln Z1 S Nk ln Z1 ln Z1 Nk ln Z1 T Nk ln Z1 自由能 F U TS N kT F NkT ln Z1
l l Z1 r e h0
体积元 l 取得足够小时,
l d dq1 dqr dp1 dpr
l l Z1 r e h0
Z1
e

h
r 0
dq1 dqr dp1 dpr
14
§7.2
理想气体的物态方程
N ln Z1 p V
Z1 l e l
Z1 l ln Z1 U N
l e l

l l e l l
2
三、广义力
Y 广义力
dW pdV
y
外参量
dW Ydy
Y l作用在该粒子上 当某个粒子处在 l 能级上,若有一“外力”
e

2 2 px p2 y pz
2m
dp x dp y dp z
V Z1 3 h0
4V Z1 3 h0

1 e t t 2 dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或lnNln ei
e
N e i
i
所以最概然分布公i式为:
-
1 kT
Ni* N
ei / kT ei / kT
i
max
N!
N
* i
!
i
简并度(degeneration)
3.1 概论
!统计热力学的研究方法 !统计热力学的基本任务 !定位体系和非定位体系 !独立粒子体系和相依粒子体系 !统计体系的分类 !统计热力学的基本假定
统计热力学的研究方法
物质的宏观性质本质上是微观粒子不停地运 动的客观反应。虽然每个粒子都遵守力学定律, 但是无法用力学中的微分方程去描述整个体系的 运动状态,所以必须用统计学的方法。
U n 11n22 ni i i
独立粒子体系是本章主要的研究对象
独立粒子体系和相依粒子体系
相依粒子体系(assembly of interacting particles) 相依粒子体系又称为非独立粒子体系,体系
中粒子之间的相互作用不能忽略,体系的总能量 除了包括各个粒子的能量之和外,还包括粒子之 间的相互作用的位能,即:
第七章统计热力学基础
第七章 统计热力学基础
7.1 概论 7.2 Boltzmann 统计 *7.3 Bose-Einstern统计和Fermi-Dirac统计 7.4 配分函数 7.5 各配分函数的求法及其对热力学函数的贡献 *7.6 晶体的热容问题 *7.7 分子的全配分函数 7.7 用配分函数计算 和反应的平衡常数
根据统计单位的力学性质(例如速度、动量、 位置、振动、转动等),经过统计平均推求体系 的热力学性质,将体系的微观性质与宏观性质联 系起来,这就是统计热力学的研究方法。
统计热力学的基本任务
根据对物质结构的某些基本假定,以及实 验所得的光谱数据,求得物质结构的一些基本常 数,如核间距、键角、振动频率等,从而计算分 子配分函数。再根据配分函数求出物质的热力学 性质,这就是统计热力学的基本任务。
能 级 : 1, 2, , i
一 种 分 配 方 式 :N1, N2, , Ni
定位体系的微态数
这种分配的微态数为:
i
CN N1CN N 2N1
N ! (N N 1)! N 1!(N N 1)!N 2!(N N 1N 2)!
N!
N!
(1)
N1!N2!
Ni !Biblioteka i无论哪种分配都必
分配方式有很多,总的微态数为: 须满足如下两个条件:
U nii U ( 位 能 ) i
统计体系的分类
目前,统计主要有三种: 一种是Maxwell-Boltzmann统计,通常称为 Boltzmann统计。
1900年Plonck提出了量子论,引入了能量 量子化的概念,发展成为初期的量子统计。
在这时期中,Boltzmann有很多贡献,开始 是用经典的统计方法,而后来又有发展,加以改 进,形成了目前的Boltzmann统计。
一种微观状态 P出现的数学概率都相等,即:
P 1
3.2 Boltzmann 统计
!定位体系的微态数 !定位体系的最概然分布 !简并度 !有简并度时定位体系的微态数 !非定位体系的最概然分布 !Boltzmann公式的其它形式 !熵和亥氏自由能的表示式
定位体系的微态数
一个由 N 个可区分的独立粒子组成的宏观 体系,在量子化的能级上可以有多种不同的分配 方式。设其中的一种分配方式为:
间不可区分。例如,气体的分子,总是处于混乱 运动之中,彼此无法分辨,所以气体是非定位体 系,它的微观状态数在粒子数相同的情况下要比 定位体系少得多。
独立粒子体系和相依粒子体系
独立粒子体系(assembly of independent particles) 粒子之间的相互作用非常微弱,因此可以忽
略不计,所以独立粒子体系严格讲应称为近独立 粒子体系。这种体系的总能量应等于各个粒子能 量之和,即:
就是求(1)式的条件极值的问题。即:
i
N i N i!
求 极 值 , 使N i N ,
i
i
N i i U
i
定位体系最概然分布
首先用Stiring公式将阶乘展开,再用Lagrange乘因子
法,求得最概然的分布为: Ni ei
式中 和 是Lagrange乘因子法中引进的待定因子。
用数学方法可求得:
i i i NN!i! (2)
i
Ni N i
Nii U
(3) (4)
i
定位体系的最概然分布
每种分配的 i 值各不相同,但其中有一项最 大值 m a x ,在粒子数足够多的宏观体系中,可
以近似用 m a x 来代表所有的微观数,这就是最
概然分布。
问题在于如何在两个限制条件下,找出一种
合适的分布 N i ,才能使 有极大值,在数学上
统计热力学的基本任务
该方法的优点: 将体系的微观性质与宏观性质 联系起来,对于简单分子计算结果常是令人满意 的。不需要进行复杂的低温量热实验,就能求得 相当准确的熵值。
该方法的局限性:计算时必须假定结构的模型, 而人们对物质结构的认识也在不断深化,这势必 引入一定的近似性。另外,对大的复杂分子以及 凝聚体系,计算尚有困难。
概率(probability) 指某一件事或某一种状态出现的机会大小。
热力学概率 体系在一定的宏观状态下,可能出现的微
观总数,通常用 表示。
统计热力学的基本假定
等概率假定 对于U, V 和 N 确定的某一宏观体系,任何
一个可能出现的微观状态,都有相同的数学概率, 所以这假定又称为等概率原理。
例如,某宏观体系的总微态数为 ,则每
定位体系和非定位体系
定位体系(localized system) 定位体系又称为定域子体系,这种体系中的
粒子彼此可以分辨。例如,在晶体中,粒子在固 定的晶格位置上作振动,每个位置可以想象给予 编号而加以区分,所以定位体系的微观态数是很 大的。
定位体系和非定位体系
非定位体系(non-localized system) 非定位体系又称为离域子体系,基本粒子之
统计体系的分类
1924年以后有了量子力学,使统计力学中力 学的基础发生改变,随之统计的方法也有改进, 从而形成了Bose-Einstein统计和Fermi-Dirac统计, 分别适用于不同体系。
但这两种统计在一定条件下通过适当的近似, 可与Boltzmann统计得到相同结果。
统计热力学的基本假定
相关文档
最新文档