第七章、统计热力学基础习题和答案

合集下载

第七章 统计热力学

第七章  统计热力学

298 800 2000 ()11/V m C He J K mol --g g , 12.48 12.48 12.48 ()112/V m C H J K mol --g g , 20.81 23.12 27.68 ()112/V m C Cl J K mol --g g , 25.53 28.89 29.99 ()112/V m C CO J K mol --g g ,28.8143.1152.02【解析】(1)单原子气体V m C ,值不随T 地升高而变化,多原子气体对于随T 地升高而增大;(2)同温下,分子中原子数越多,V m C ,越大;(3)分子中原子数越多,V m C ,值随温度地升高变化越明显。

10.在同温,同压下,根据下面的表值判断:那种气体的S m ,t 了;了最大?那种气体的S m.r 最大?那种分子的振动频率最小?分 子r M/r K Θ/v K Θ2H2 87.5 5976 HBr81 12.2 3682 2N 28 2.89 3353 2Cl710.35801能级能量 12h ν 32h ν 52h ν 72h ν 92h ν 112h ν 微态数()i t方式1 1 2 3 方式2 1 1 1 6 方式3 2 1 3 方式4213能级上的微粒数0N 1N 2N 3N 4N 5N15i it Ω==∑11mol -g222H I HI(g )+(g )= (g ) 已知298K 时,22HI H I 、、的有关数据如下:物质(),011/m T m KG H TJ K molθ---g g,(),011/m T m KH H TJ K molθ---g g,11f m THJ K molθ--∆g g,2H-101.34 29.099 0 2I-226.61 33.827 62.438 HI-177.67 29.101 26.5222H D HD (g)+(g)= (g)物理量2HHD2D()21/10cm σ--⨯4.371 3.786 3.092 ()472/10I kg m ⨯g0.4850.6130.919物理量H 2O (g ) CO (g ) CO 2(g ) CH 4(g ) H 2(g ) (),011/m Tm K G H TJ K molθ----g g ,155.56168.41182.26152.55102.1711f m H J K molθ--∆g g ,0-238.9 113.81 -393.17 -66.90 0函 数CO (g )H 2O (g ) CO 2(g ) H 2(g )11f m TH J K molθ--∆g g ,-110.52-241.83-393.51(),011/m Tm K HU TJ K mol θθ---g g ,29.09 33.20 31.41 28.48(),011/m Tm K G U TJ K molθ----g g ,168.82 155.53 182.23 102.19分子 ()1/M kg mol -g/r K Θ/v K ΘH 2(g ) I 2(g ) 2.0R ×10-3 253.8×10-3 -385.4 0.054 6100 310【解析】对N 2对N :()()323323232333433214102 3.14 1.381050008.31450006.02106.626101013251.42610N B t m k T RTq h p θθπ---=⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪⨯⎝⎭=⨯⨯=⨯ 4e q θ=33331.426104 5.7010N t e q q q θθθ==⨯⨯=⨯()3233708.3510148.314500036235.710 1.868107.27106.0210e -⨯-⨯⨯==⨯⨯⨯⨯。

热力学统计物理课后习题答案

热力学统计物理课后习题答案

第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的能。

上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

注:(4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式(4)中的U 仅指平动能。

7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222zy x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lczy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

第七章 统计热力学基础

第七章 统计热力学基础

第七章统计热力学基础一、选择题1、统计热力学主要研究()。

(A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热力学函数值无影响:( )(A) U (B) S (C) G (D) H4、统计热力学研究的主要对象是:()(A) 微观粒子的各种变化规律(B) 宏观体系的各种性质(C) 微观粒子的运动规律(D) 宏观系统的平衡性质5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:()(A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理6、以0到9这十个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:()(A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系(C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系9、对于定域子体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒子的能级 1, 2, ....., i一定,但简并度g1, g2, ....., g i及总微观状态数 不确定。

统计热力学基础练习题一答案

统计热力学基础练习题一答案

物理化学试卷 答案一、选择题 ( 共10题 20分 )1. 2 分 (1546) [答] (D)2. 2 分 (1369) [答] (B)3. 2 分 (1551) [答] (B)4. 2 分 (1476) [答] (C)Θv = hc v/k = 308.5 K 5. 2 分 (1513) [答] A (2分)因对CO, σ=1 对N 2, σ=2 6. 2 分 (1433) [答] B)/e x p ()/e x p ()/e x p (,e 1,e 00,e 11,e 01kT g g kT g kT g N N εεε∆-=--= (1分) =0.184 (1分) 7. 2 分 (1680) [答] A (2分)8. 2 分 (1548) [答] (A) S r,m = R [ln T /σΘ r +1]σ (CO) = 1;σ (N 2) = 2 则S m (CO) > S m (N 2)9. 2 分 (1304) [答] (D) *. 2 分 (1540) [答] (D)二、填空题 ( 共10题 20分 ) 11. 2 分 (1368)[答] N i = (N /q )×g i exp(-εi /kT ) (1分) 近独立粒子体系,且为处于热力学平衡态的孤立体系 (1分) 12. 2 分 (0093)[答] ΔH +g ΔZ +12ΔU 2=Q -W 轴 (1分)稳流过程中的敞开体系 (1分) 13. 2 分 (1676)[答] N 1/N 0=g r,1exp(-εr,1/kT )/g r,0exp(-εr,0/kT )=3exp(-0.1) (1分) K 152/K 3001.02/1.0r =⨯==T Θ (1分) 14. 2 分 (1681)[答] m,v v v v (298.15K)ln[1exp(/)][/]/[exp(/)1]S R ΘT RΘT ΘT =---+-$(1分) =11mol K J 0014.0--⋅⋅ (1分)15. 2 分 (1512)[答] A h mkT q ⨯=)/π2(2d 2,t (2分) 16. 2 分 (1439)[答] )~exp()exp(1212kTvhc kT g g N N -=-=ε (1分)=exp[-143.98/(T /K)]=exp(-143.98/100)=0.2370 (1分)17. 2 分 (1468)[答] F = -kT ln q N (0.5分) F = -kT ln q N /N ! (0.5分) F = -kT ln Z (1分) 18. 2 分 (1675)[答] kvhc Θ~v ==308.5 K (2分)19. 2 分 (1366)[答] N i+1/N i = exp(-Δε/kT ) = 0.35220. 2 分 (1421)[答] )/exp()/exp(221121kT g kT g N N εε--= (1分) =0.595 (1分) 三、计算题 ( 共 5题 40分 ) 21. 10 分 (1390)[答] (a) q e = g 1exp(-ε1/kT ) + g 2exp(-ε2/kT ) + g 3exp(-ε3/kT )= 1 + 3exp(-100/200) + 5exp(-300/200) = 3.9353 (4分) (b) N 2= (N A /q e )g 2exp(-ε2/kT ) = 2.784×1023 mol -1 (3分) (c) N 1: N 2: N 3= g 1: g 2: g 3= 1 : 3 : 5 ( T → ∞) (3分)22. 10 分 (1387)[答] 因为 ν= 1/λ = ν/c = h ν/hc =ε/hc 所以 q e = g 0exp(-ε0/kT ) + g 1exp(-ε1/kT ) + g 2exp(-ε2/kT )= 5.118 (4分) 电子在基态上分布分数为: N 0/N = g 0/q e = 0.782 (2分) 电子分配在第一激发态上分布分数为:N 1/N = [g 1exp(-ε1/kT )]/q e= 0.218 (2分) 电子分配在第二激发态的分布分数为:N 2/N = [g 2exp(-ε2/kT )]/q e≈ 0 (2分)23. 10 分 (1397)[答] 在转动能级上 Boltzmann 分布为:P = N i /N = [g i exp(-εi ,r /kT )]/q r= [(2J +1)exp{-J (J +1)h 2/(8π2IkT )}/q γ(3分) 能级分布数最多的 J 值应为: d P /d J = 0 而q r 为常数不是 J 的函数 (2分) d P /d J = (1/q r )[2exp(-J (J +1)Θr /T ) - (2J +1)2×(Θr /T )×exp(-J (J +1) Θr /T )] = 0 2 - (2J +1)2Θr /T = 0 J = (T /2Θr )1/2 - 1/2 (2分) 当 T = 270 K , Θr = 2.8 K 时, J = 6.4 ≈ 6 (3分)24. 5 分 (1406)[答] ε0=0 ε1=ε ε2=2 ε3=3分布 g 0=1 g 1= 3 g 2= 4 g 3= 6 (1分) (1) 2 0 0 1 因只有一个量子态,故该分布不可能。

第七章、统计热力学基础习题和答案

第七章、统计热力学基础习题和答案

统计热力学基础一、选择题1. 下面有关统计热力学的描述,正确的是:( )A. 统计热力学研究的是大量分子的微观平衡体系B. 统计热力学研究的是大量分子的宏观平衡体系C. 统计热力学是热力学的理论基础D. 统计热力学和热力学是相互独立互不相关的两门学科 B2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑ni = N,∑niεi= U,这是因为所研究的体系是:( )A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的C. 体系是孤立的,粒子是独立的D. 体系是封闭的,粒子是相依的 C3.假定某种分子的许可能级是 0、ε、2ε和 3ε,简并度分别为 1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( )A. 40B. 24C. 20D. 28 A4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数 N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式C. 忽略了粒子之间的相互作用D. 应用拉氏待定乘因子法 A5.对于玻尔兹曼分布定律ni =(N/q)·gi·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,ni总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C6.对于分布在某一能级εi 上的粒子数ni,下列说法中正确是:( )A. ni 与能级的简并度无关 B. εi值越小,ni值就越大C. ni 称为一种分布 D.任何分布的ni都可以用波尔兹曼分布公式求出 B7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度gi= 2gj,则εj和εi上分布的粒子数之比为:( )A. 0.5exp(εj /2kT) B. 2exp(- εj/2kT)C. 0.5exp( -εj /kT) D. 2exp( 2εj/kT) C8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( )A. 306 KB. 443 KC. 760 KD. 556 K B9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( )A. S、G、F、Cv B. U、H、P、CvC. G、F、H、UD. S、U、H、G B10. 分子运动的振动特征温度Θv是物质的重要性质之一,下列正确的说法是:( )A.Θv越高,表示温度越高B.Θv越高,表示分子振动能越小C. Θv越高,表示分子处于激发态的百分数越小D. Θv越高,表示分子处于基态的百分数越小 C11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的: ( )A. 转动运动B. 电子运动C. 振动运动D. 平动运动 D12.三维平动子的平动能为εt= 7h2 /(4mV2/3 ),能级的简并度为:( )A. 1B. 3C. 6D. 2 C13.O2 的转动惯量J = 19.3×10 -47 kg·m2,则O2的转动特征温度是:( )A. 10 KB. 5 KC. 2.07 KD. 8 K C14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:( )A. 不变B. 增多C. 减少D. 不能确定 C15.在相同条件下,对于 He 与 Ne 单原子分子,近似认为它们的电子配分函数相同且等于1,则He 与Ne 单原子分子的摩尔熵是:( )A. Sm (He) > Sm(Ne) B. Sm(He) = Sm(Ne)C. Sm (He) < S m(Ne)D. 以上答案均不成立 C二、填空题1.某双原子分子 AB 取振动基态能量为零,在 T 时的振动配分函数为 1.02,则粒子分布在 v = 0 的基态上的分布数 N/N 应为 1/1.022.已知CO的转动惯量 I=1.45×10-26 kg·m2,则CO 的转动特征温度为: 2.78K3. 双原子分子以平衡位置为能量零点,其振动的零点能等于0.5hv4. 双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为 15. 2molCO2的转动能 Ur为 2RT6. NH3分子的平动自由度为转动自由度为振动自由度为 3 ,3 ,6 7. 300K 时,分布在 J=1 转动能级上的分子数是 J=0 能级上的 3exp(-0.1)倍,则分子转动特征温度是15K8. H2O 分子气体在室温下振动运动时 Cv,m的贡献可以忽略不计。

第七章 统计热力学基础答

第七章 统计热力学基础答

第七章 统计热力学基础答一、选择题二、判断题 三、计算题 1、解:(1)CO 分子有三个自由度,因此,2123338.314273.15 5.65710J22 6.02210R T Lε-⨯⨯===⨯⨯⨯(2)由三维势箱中粒子的能级公式()(){}22222232232222222321233426208888828.0104 5.6571018.314273.15101.325106.626110 6.022103.81110xy zx y z hnn n m am a m Vm nRT n n n hhh p εεεε-=++⎛⎫∴++=== ⎪⎝⎭⨯⨯⨯⨯⨯⎛⎫=⎪⨯⎝⎭⨯⨯⨯=⨯2、解:假设该分子可用刚性转子描述,其能级公式为()()J10077.31045.1810626.61220 ,81224623422---⨯=⨯⨯⨯⨯-=∆+=πεπεIhJ J J22210429.710233807.130010077.3--⨯=⨯⨯⨯=∆kT ε3、解:根据Boltzmann 分布(){}{}003329.01.011exp exp g g kT kT g g kT g g n n =⨯-=--=εε基态的统计权重10=g ,能级()14222=++z y x n n n 的统计权重6=g (量子数1,2,3),因此997.163329.00=⨯=n n4、解:谐振子的能级为非简并的,且为等间隔分布的()⎩⎨⎧⨯=∆-=-+271I for 0.3553HClfor 10409.5exp kT n n jj ε5、解:分子的平动配分函数表示为()()()3133342323233323323109632.21050400314.82106260755.640010380658.1100221367.610142π2π2π2⨯=⨯⨯⨯⨯⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯⨯⨯⨯===---pnRT hmkT V hmkT q t6、解:分子的振动特征温度为K5.308,=∆===∆kk h Θh v εννε分子的振动配分函数为9307.01ee130025.30830025.30822=-=-=⨯-⨯-eeq TΘTΘv v v()()557.130025.308exp 9307.02exp 0=⨯==v r v q T Θq557.10==v v q f7、解:正则系综特征函数()T V N Q kT A ,,ln -=,对理想气体()()!ln ln ln !ln ln !ln,,ln N k q q q q NkT q NkT N kT q NkT N qkT T V N Q kT A n e v r t N+--=+-=-=-=只有平动配分函数与体积有关,且与体积的一次方程正比,因此: NkTpV V NkT V q NkT V A T t T =∴-=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ ln8、解:根据计算可知,x n 、yn 和z n 只有分别取2,4,5时上式成立。

第七章统计热力学基础

第七章统计热力学基础
练习7.63个可别粒子分布于同一能级的两个不同量子态上时,分布方式有4种。总微观状态数为。
练习7.7一个U,N,V确定的系统,任何一种分布均不能随意的,而必须满足①与②两个条件。
练习7.8对于一定量的某气态、液态、固态物质,其微观状态数的排序是。
练习7.9最概然分布的微观状态数随粒子增加而①,该分布出现的概率随粒子数增加而②。
自测7.15转动特征温度定义为( )。
(A) (B) (C) (D)
自测7.16双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为()。
(A)0(B)1(C)<0(D)>0
自测7.17对于N个粒子构成的定位独立可辨粒子系统熵的表达式为( )。
(A) (B)
(C) (D)
自测7.18对理想气体分子的平动,下面的结果中正确的是( )。
自测7.23已知CO与N2的质量、转动特征温度基本相同,若电子运动与振动能级均未开放,则()。
(A) (B) (C) 与 无法比较(D)
自测7.241mol双原子分子理想气体,当其温度由T1升到2T1时,若其转动惯量不变,则其转动熵变将是()。
(A) 5.763J·mol1K1(B)RlnT1
(C)RlnT2(D) 11.526J·mol1K1
练习7.22一个体积为V,粒子质量为m的离域子系统,其最低平动能级和其相邻能级间隔为①。若平动能级的 ,该能级的统计权重 是②。
练习7.23NH3分子的对称数是3,BF3分子的对称数是。
练习7.24已知HI的转动惯量I为4.31×1045kg·m2,h=6.626×1034J·s,k=1.38×1023J·K1,则其转动特征温度是。
(C)它的定义是 (D)它不是状态函数
自测7.32用J代表分子具有的各独立运动项目,分子在能级i的统计权重gi为下式中的()

热力学_统计物理学答案第七章

热力学_统计物理学答案第七章
− β (ε x + ε y ) − ( pz + ) 1 2m β N( )2∫e dp x dp y dpz = ∫ f ( px , p y , p z )dp x dp y dp z 2πmkT 3

2
由条件(3)知 计算得
∫p
z
f ( p x , p y , p z ) dp x dp y dp z = Np0
co m

⎞ ⎟ ⎟ ⎠
⎛ Sk ⎞ ⎜ e −α − βε s′′ ⎟ ⎜ ⎟ S ′′ ⎝ S = S1 ⎠

⎤ ……⎥ ⎥ ⎦
)
离开正 常位置而占据图中×位置时,晶体中就出现缺位和填隙原子,晶体这种缺陷 叫做弗伦克缺陷。 (1)假设正常位置和填隙位置数都是 N,试证明由于在晶体中形成 n 个缺位和 填隙原子而具有的熵等于 S = 2k ln
S
习题 7.5 固体含有 A、B 两种原子。试证明由于原子在晶体格点的随机分布引起 的混 合熵为 S = k ㏑
ww
是A 原子的百分比, (1-x )是 B 原子的百分比。注意 x<1,上式给出的熵为正值。 证: 显然 Ω=
习题 7.6 晶体含有 N 个原子。原子在晶体中的正常位置如图中 O 所示。当原子
P = −∑ a l
∂ε l ; ∂V
co m
5
2U ,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。 3V
对极端相对论粒子 类似得
ε = cp = c P = −∑ al
l
1 2πℏ 2 ( nx + n y 2 + n z 2 ) 2 L 1 1 − ∂ 2 ( 2πℏ )( ∑ ni ) 2 V 3 ∂V 1 4 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计热力学基础
一、选择题
1. 下面有关统计热力学的描述,正确的是:( )
A. 统计热力学研究的是大量分子的微观平衡体系
B. 统计热力学研究的是大量分子的宏观平衡体系
C. 统计热力学是热力学的理论基础
D. 统计热力学和热力学是相互独立互不相关的两门学科B
2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U ,
这是因为所研究的体系是:( )
A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的
C. 体系是孤立的,粒子是独立的
D. 体系是封闭的,粒子是相依的C
3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:()
A. 40
B. 24
C. 20
D. 28 A
4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式
C. 忽略了粒子之间的相互作用
D. 应用拉氏待定乘因子法A
5. 对于玻尔兹曼分布定律n i =(N/q) • g i • exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( )
A. (1)(3)
B. (3)(4)
C. (1)(2)
D. (2)(4) C
6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:()
A. n i 与能级的简并度无关
B. £ i 值越小,n i 值就越大
C. n i 称为一种分布
D. 任何分布的n i 都可以用波尔兹曼分布公式求出B
7. 15•在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上
分布的粒子数之比为:( )
A. 0.5exp( j/2£kT)
B. 2exp(- £j/2kT)
C. 0.5exp( -£j/kT)
D. 2exp( 2 j/k£T) C
8. I2的振动特征温度® v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( )
A. 306 K
B. 443 K
C. 760 K
D. 556 K B
9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( )
A. S、G、F、C v
B. U、H、P、C v
C. G、F、H、U
D. S、U、H、G B
10. 分子运动的振动特征温度®v是物质的重要性质之一,下列正确的说法是:
( )
A. © v越高,表示温度越高
B. ®v越高,表示分子振动能越小
C. ©越高,表示分子处于激发态的百分数越小
D. ©越高,表示分子处于基态的百分数越小 C
11. 下列几种运动中哪些运动对热力学函数G与
A贡献是不同的:()
A. 转动运动
B. 电子运动
C. 振动运动
D. 平动运动D
12. 三维平动子的平动能为£ t = 7h2 /(4mV 2/3 ),能级的简并度为:( )
A. 1
B. 3
C. 6
D. 2 C
13.02的转动惯量J = 19.3X 10 -47 kg • m 2,则02的转动特征温度是:( )
A. 10 K
B. 5 K
C. 2.07 K
D. 8 K
C
14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒 子数:() A.不变 B.增多 C.减少 D.不能确定 C 15. 在相同条件下,对于 He 与Ne 单原子分子,近似认为它们的电子配分函数 相同且等于1,则He 与Ne 单原子分子的摩尔熵是:( ) A. S m (He) > S m (Ne) B. S m (He) = S m (Ne) C. Sm (He) < S m(Ne)
D.以上答案均不成立
C
二、填空题 1 •某双原子分子 AB 取振动基态能量为零,在 分布在v = 0的基态上的分布数 N 0/N 应为_ 2. 已知CO 的转动惯量I=1.45X 10-26 kg • m 2,则CO 的转动特征温度为:_ 3. 双原子分子以平衡位置为能量零点, 其振动的零点能等于
4. 双原子分子在温度很低时且
选取振动基态能量为零,则振
动配分函数值为
5. 2molCO 2的转动能U r 为 _______
6. NH 3分子的平动自由度为
7. 300K 时,分布在J=1转动能级上的分子数是 转动特征温度是 ____
8. H 2O 分子气体在室温下振动运动时 C v,m 的贡献可以忽略不计。

则它的
值为 ___ (H 2 O 可当作理想气体) 1.33
9. 三维平动子的平动能 E t =6h 2 /8mV 能级的简并度为—
10. 晶体CH 3 D 中的残余熵S o,m 为 _____ 三、判断题 1 •玻耳兹曼熵定理一般不适用于单个粒子。

2.玻耳兹曼分布是最概然分布,但不是平衡分布。

3 •并不是所有配分函数都无量纲。

4. 在分子运动的各配分函数中平均配分函数与压力有关。

5. 粒子的配分函数q 是粒子的简并度和玻耳兹曼因子的乘积取和
6. 对热力学性质(U 、V 、N)确定的体系,体系中粒子在各能级上的分布数一定 7•理想气体的混合物属于独立粒子体系。

8 .量子统计认为全同粒子在不同的量子态中不可别。

9•任何两个粒子数相同的独立粒子体系,不定因子a 的值趋于一致。

10.量热熵由量热实验结果据热力学公式算得。

T 时的振动配分函数为 1.02,则粒子 1/1.02 2.78K 0.5hv _ 1 2RT 转动自由度为—振动自由度为— 3 ,3 ,6
J=0能级上的3exp(-0.1)倍,则分子
15K
C p,m /C v,m
3
Rln4
(V) (X) (X) (V) (X) (X) (V) (X) (X) (V)
20
8
22
2
四、计算题
仁 按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为 RT 2。

现有
1 mol CO 气体于0 Q 、101.325 kPa 条件下置于立方容器中,试求:
(1)每个CO 分子的平动能一;
21
5.657 10
6.6261 10 34
彳 6.022 10
26
101
.325
10
3.811 1020
46 2
1.45 10
kg m ,试求转动量子数j 为4与3两能级
的能量差
,并求T 300K 时的
.kT
解:假设该分子可用刚性转子描述,其能级公式为
2.某平动能级的 2 n x 2
n
y
2
n Z 45
,使球该能级的统计权重。

解:根据计算可知, n x
n y

n
z
只有分别取 2,4,5时上式成立。

因此,该能级的
统计权重为g = 3! = 6,对应于状态
425
‘ 245 , 452 542。

h 2
1

12 - 6.626 10 34
~2
46
1.45 10
22
3.077 10 J
3.077 10
kT 300 1.3807 1023
7.429 10
(2)能量与此—相当的CO 分子的平动量子数平方和 解:(1)CO 分子有三个自由度,因此,
- 3RT 3 8.314 273.15 匚厂“
“21 ,
5.657 10 J
2 n
x 2 n y 2 n y
(2)
23
2L 2 6.022 10
由三维势箱中粒子的能级公式
h 2 2 8ma 2 "x 2
n y 2 n z
2 n
x
2 n
y
2 n
z
8ma 2 8mV 23— 8m _ h
h h nRT
h 2
2 3
1 8.314 273.15 '
28.0104 3.气体CO 分子的转动惯量1。

相关文档
最新文档