幂的乘法、幂的乘方与积的乘方
同底数幂、幂的乘方、积的乘方知识点及习题

幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:〔1〕同底数幂的乘法中,首先要找出一样的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.〔2〕 在进展同底数幂的乘法运算时,如果底数不同,先设法将其转化为一样的底数,再按法那么进展计算.例1: 计算列以下各题 〔1〕 34a a ⋅; 〔2〕 23b b b ⋅⋅ ; 〔3〕 ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 以下计算正确的选项是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 以下计算错误的选项是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 以下四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( ) A.1个 B.2个 C.3个 D.4个4. 以下各题中,计算结果写成底数为10的幂的形式,其中正确的选项是( ) A.100×102=103 B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=1010 4、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
六升七暑假(4、同底数幂的乘,幂的乘方,积的乘方)

辅导讲义)同底数幂:同底数幂是指底数相同的幂,如【注意】底数可以是具体的数,也可以是单项式或多项式.②不要把幂的乘方性质与同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变). ③此性质可以逆用:()()nmmnm n a a a ==.如:()()533155222==知识点4.积的乘方指的是底数是乘积形式的乘方.如()3ab 、()2nab 等. 知识点5.积的乘方的法则积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘. 这个性质适用于三个或三个以上因式的积的乘方.【注意】①公式中的n 可以是正整数,也可以是代表正整数的式子. a 与b 可以是数字,也可以是单项式或多项式.如()()()111,22mm mm m mab a b a b a b +++=+=+⎡⎤⎣⎦②注意积的乘方法则的结构:左边是幂的形式,而幂的底数是两个因数的积;右边是积,而积的因式时2个幂.③积中的每一个因数都应该乘方,不能遗漏.④注意法则的准确应用,不能随便模仿.如,()222ab a b =是正确的,但()222a b a b +=+是错误的.⑤此性质可以逆用,即()nn na b ab =,在计算中若有指数相同的幂相乘,可先把底数相乘,在去求积的同次幂.有时候性质的逆向适用,会使一些数的计算简化.如,2006200620061122122⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭知识点6.关于幂的三种运算(同底数幂相乘、幂的乘方、积的乘方)法则的异同归纳如下【典型例题讲解】x x = 23111010⎫⎛⎫⨯⎪ ⎪⎭⎝⎭()n m n -=; B. ()n m n ⎤-=⎥⎦;)()23298mn m n -=-; D. ()3299mn m n -=.-;+;a a ax x x-.++;(x x xa a a a a)()()--;)()()a a--;x x)()b a-;a b-;()()++;n m m n2b a-;()()()()m n m n --; )()()()a b b a a b ----.。
同底数幂的乘法、幂的乘方、积的乘方

同底数幂的乘法: 1、表示的意义是a5‗‗‗‗‗‗ ;a n的意义是n 个a ‗‗‗‗‗‗,我们把这种运算叫做‗‗‗‗‗‗,乘方的结果叫‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗,n 是‗‗‗‗‗‗‗.)(2a -底数为‗‗‗‗‗,指数为‗‗‗‗‗;a2底数为‗‗‗‗‗,指数为‗‗‗‗‗;)(3y x -底数为‗‗‗‗‗‗‗‗,指数为‗‗‗‗‗;)(y x n-底数为‗‗‗‗‗‗‗‗,指数为‗‗‗‗‗.2、根据乘方的意义可知:1010315⨯=(10×…×10)×(10×10×10)=10×10×…×10=10 一般的,对于任意底数a 与任意正整数m ,n,.)()(nm +=⋅⋯⋅⋅=⋅⋯⋅⋅⋅⋅⋯⋅⋅=⋅a a a a a a a a a a a anm因此,我们有.(都是正整数),n m aa anm nm+=⋅即同底数幂相乘,底数‗‗‗‗‗,指数‗‗‗‗‗. 3、计算=⋅22n m‗‗‗‗‗‗‗;=⋅-22510‗‗‗‗‗‗;=⋅⋅x x x nm ‗‗‗‗‗‗;=⨯⨯-)()(2-2-)2(34‗‗‗‗‗;=⋅-xx n n223‗‗‗‗‗‗‗;)(2)(y x y x -⋅--=‗‗‗‗‗‗同底数相乘,底数不变,指数相加,当三个或三个以上的同底数幂相乘时,法则也适用. 同底数幂相乘时,底数可以是单项式,也可以是多项式.在幂的运算中,经常用到以下变形:⎪⎩⎪⎨⎧=--为奇数)为偶数)n a a a nn n(n ()( ⎪⎩⎪⎨⎧=----为奇数)为偶数)n n a b a b b a nnn (()()()( 4、计算:(1)=⋅⋅----)()()(32x y x y y x ‗‗‗‗‗‗‗‗;(2)===+333ba 8,6,则ba(3)===+aa annm ,7,6则吗‗‗‗‗‗‗‗‗;(4)若==+2233x x 则‗‗‗‗‗‗‗‗;(5)若==+aa m m13,则‗‗‗‗‗‗‗‗;5、已知xn 1-( )=xmn +,则在括号内应填上( ).A 、xmB 、xm 1-C 、xm 1+ D 、xm 2+6、若的值是则a a a nnm m,15,3==+( ).A 、2 B 、3 C 、4 D 、57、若等于则x x ,3222=+( )A 、1 B 、2 C 、3 D 、48、若,2738112+=⨯x 则x 2的值是( )A 、4 B 、7 C 、9 D 、19、若b b ba aan n n m 8225121,=⋅=⋅+-+,则m+n 的值是‗‗‗‗‗‗‗.10、计算下列各题。
第02讲 幂的乘方与积的乘方(解析版)

ab
2n
54
2
,
ab
n
2
202 ,
所以 abn 20 ,故答案为: 20 .
9.已知 a 是正整数,比较大小: 23a
【答案】
32a .(填“ ”“ ”“ ”)
【解析】 23a 23 a 8a , 32a 32 a 9a ,
8 9 , a 为正整数, 23a 32a .故答案为: .
所以 x12 x4 3 23 8,y12 y3 4 34 81 ,
因为 8 81 ,所以 x y .
过关检测
一、选择题
1.计算
2x2
3
的结果是(
)
A. 8x6
B. 6x6
【答案】A
【解析】 2x2 3 8x6 ,故选 A.
C. 2x6
D. 2x5
2.下列运算不正确的是( )
(3) a3x2 y a3x a2 y ax 3 a y 2 33 32 27 9 243 .
【变式训练】 1.(1)若10x 3 ,10y 2 ,求代数式102x3y 的值. (2)已知 3m 2n 6 0 ,求 8m 4n 的值. 【解析】(1)因为10x 3 ,10y 2 ,
(3)已知 a 244 , b 333, c 522 ,比较 a,b,c 的大小关系.
【解析】(1)上述求解过程中,逆用了幂的乘方运算性质.故选 C. (2) x30 (x5 )6 26 64 , y30 ( y6 )5 35 243 , 64 243 , x y ; (3) a 244 (24 )11 1611 , b 333 (33 )11 2711, c 522 (52 )11 2511,且16 25 27 ,
第 02 讲 幂的乘方与积的乘方
初一数学-第三十五讲 幂的乘方与积的乘方

第三十五讲 幂的乘方与积的乘方【知识要点】一、幂的乘方:①幂的乘方法则:底数不变,指数相乘,()m n mn a a=(m 、n 都是正整数) ②公式逆用:()()mn m n n m a a a ==③多重乘方:()(p n m mnp a a m ⎡⎤=⎢⎥⎣⎦、n 、p 都是正整数) 二、积的乘方:①积的乘方法则:积的乘方等于每一个因数乘方的积,()m m m ab a b =⋅(m 为正整数) ②三个或三个以上的数的积的乘方也具有这一性质,()n n n n abc a b c = ③积的乘方法则也可以逆用.即(),()m m m n n n n ab ab a bc abc ⋅==三、注意: ①幂的乘方要和同底数幂的乘法区别开来;②积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘.【经典例题】【例1】计算.①5324)()(x x x -⋅-⋅ ②m m m x x x 5233)()(⋅⋅+ ③3342])([b a a -⋅-④2333)105.2()104.0(⨯⨯⨯ ⑤24232)3(3)2(a a a -⋅-【例2】已知:625255=⋅x x ,求x 的值.【例3】若63=a ,5027=b ,求a b +33的值.【例4】已知192221232=-++a a ,求a 的值.【例5】比较5553,4444,3335的大小.【初试锋芒】1.计算:①432)3(b a --= ; ②3243)()(a a -⋅-= ; ③=⨯-20152014)522()125( ; ④323)21(bc a -= ; ⑤2009200822-= ; ⑥()n m a a ⋅3=2.若5,2n n a b ==则32()n a b = ; n 为奇数,则22()()n n a a -+-= .3.下列运算正确的是( )4.计算32)2(xy --,结果正确的是( ) A. 5361y x B. 6381y x - C. 6361y x - D. 5381y x - 5.下列计算:(1)22)(m m a a-=;(2)m m a a )(22-=;(3)743222)()(b a b a ab =-⋅-;(4)212218)3()2(++=-⋅n n n n b ab a ab ;(5)52236)3(b a ab =中正确的个数为( )6.已知m x =10,n y =10,则m y x =+3210等于( ) A. n m 32+ B. 22n m + C. mn 6 D. 32n m7.下列四个式子中结果为1210的有( )①661010+; ②21010)52(⨯; ③6510)1052(⨯⨯⨯; ④43)10( A. ①② B. ③④ C. ②③ D. ①④8.如果正方体的棱长是3)2-1(b ,那么这个正方体的体积是( )A. 6)2-1(bB. 9)2-1(bC. 12)2-1(bD. 6)2-1(6b9.n m 279⋅等于( )A. n m +9B. n m +27C. n m 323+D. n m 933+ 10.已知3181=a ,4127=b ,519=c ,则a ,b ,c 的大小关系是( )【大展身手】1.计算:①201410078)125.0(⨯- ②b a ab b a a ⋅-⋅-+⋅-⋅-32332)()3()2()()(2.①若62=m ,34=n ,求3222++n m 的值.②3,4m na a ==求32m n a +的值为多少?3.已知17232793=⨯⨯m m ,求m 的值.4.若0542=-+y x ,求y x 164⋅的值.【挑战脑细胞】1.设112233445,4,3,2====D C B A ,则A 、B 、C 、D 从小到大的排列顺序是怎样的?2.已知:m n +3能被13整除,求证:m n ++33也能被13整除.。
同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法

例1 计算 (1)82004×0.1252004; (2)(-8)2005×0.1252004.
随堂练习
0.2520×240-32003·( )2002+
类型四积的乘方在生活中的应用
例1地球可以近似的看做是球体,如果用V、r分别代表球的体积和半径,那么V= πr3。地球的半径约为 千米,它的体积大约是多少立方千米?
知识点一
同底数幂的乘法法则:同底数幂相乘
am·an=(m、n都是正整数)
当三个或三个以上同底数幂相乘时,也具有这一性质,用公式表示为
am·an·ap= am+n+p(m、n、p都是正整数)
知识点精讲
1.同底数幂相乘法则要注重理解“同底、相乘、不变、相加”这八个字.
2.解题时要注意a的指数是1.
3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.
4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.
5.若底数是多项式时,要把底数看成一个整体进行计算
4、拓展:
(1)已知n为正整数,且x2n=4.求(3x3n)2-13(x2)2n的值.
(2)已知xn=5,yn=3,求(xy)2n的值
(3)若m为正整数,且x2m=3,求(3x3m)2-13(x2)2m的值.
知识点四
同底数幂相除, 底数,指数.
即:am÷an=( ,m,n都是正整数,并且m>n)
规定:a0=1(a≠0)即:任何非0的数的0次幂都等于1
典型例题讲解
例一、填一填
⒈ =;
⒉ =;
⒊ ;
第3讲:同底数幂的乘法及幂的乘积与积的乘方-教案

∴x、y、z满足的关系式是:xy=z.
故答案为:xy=z.
【总结与反思】此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.
阅读下列材料:
一般地,n个相同的因数a相乘 记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
A.6 B.8 C.9 D.12
【解析】因为 ,所以 ,故选B.
【总结与反思】幂的乘方法则的逆运算.
若x3=﹣8a9b6,则x=.
【解析】∵x3=﹣8a9b6,
∴x3=(﹣2a3b2)3,
∴x=﹣2a3b2.
故答案为:=﹣2a3b2.
【总结与反思】根据幂的乘方与积的乘方法则进行解答即可.
已知ax=2,ay=3,求ax+2y=.
【解析】∵21×22=23,22×23=25,23×25=28,25×28=213,…,
∴x、y、z满足的关系式是:xy=z.
故答案为:xy=z.
【总结与反思】此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.
同底数幂相乘,底数不变,指数相加.
(1)讨论归纳结果;(2)得出法则.
同底数幂乘法法则:同底数幂相乘,底数不变,指数相加.
幂的乘方与积的乘方运算法则

幂的乘方运算法则
底数不变,指数相乘。
即
a的m次幂的n次幂=a的(m?n)次幂(n、m为正整数)
积的乘方运算法则
把积的每个因式分别乘方,再把所得的幂相乘。
即
a、b乘积的n次方=a的n次方乘b的n次方(n为正整数)
幂的乘方与积的乘方运算法则
幂的乘方法则:幂的乘方是幂的一种运算积的乘方是指底数是乘积形式的乘方。
积的乘方法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
幂的乘方最终转化为指数的乘法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。
幂的乘方是类比数的乘方,并借助于同底数幂的乘法性质来学习的,首先在具体例子的基础上抽象出幂的乘方的性质,进而通过推理加以论证,这一过程蕴含着转化及由特殊到一般,从具体到抽象的数学思想方法
幂的乘方与积的乘方运算法则
幂的乘方的运算法则:幂的乘方,低数不变,指数相加。
积的乘方的运算法则:是指底数是乘积形式的乘方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.
例题讲解
1. =, =,32m·3m=,23·(-2)4=,x·(-x)4·x7=,
1000×10m-3=,
, =______, =___________.
2.(- x2y3)2=_________;a2·(a3)4·a=_________.
3.若 成立,则m=,n=.
4.①若 ,则m=_____;②若 ,则a=____;③若 ,则y=____;
8.已知:S=1+2-1+2-2+2-3+…+2-2-2019,请求出S的值。
9.记M(1)=-2,M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),…M(n)=【[(-2)x(-2)×…x(-2)]n个-2相乘】(1)填空:M(5)+M(6)=_____;(2)求2M(2015)+M(2016)的值:(3)说明2M(n)与M(n+1)互为相反数。
C.当n为偶数时, 和 相等D. 和 一定不相等
11.计算
⑴ ⑵ ⑶
⑷ ⑸ (m是正整数)⑹-(a3-m)2
⑺(-2x5y4z)5⑻0.12516×(-8)17⑼( )199×(-2 )199
⑽0.299×5101⑾
12.(1)
(2)(-2a b) +8(a ) ·(-a) ·(-b) ;
(3) (4)
(1)根据上述规定,计算:(3,27),(4,16);
(2)记(3,5)= ,(3,6)=b,(3,30)=c.求证:a+b=c
2.若 ,则m=n。你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!
(1)若2×2x=8,求x的值;
(2)若(9x)2=38,求x的值。
3.已知x7=2,y9=3,试比较x与y的大小。
课堂练习
错题回顾
学生课堂评价:优□良□中□差□
学生总结(课上完成):
教师课堂反馈(课上完成):
家庭作业:
教研组长签字:
13.(1)已知 , ,求 、 、 的值.
(2)知10a=5,10b=6,求102a+3b的值.
(3)xn=5,yn=3,求(x2y)2n的值。
(4) ,求n的值。
14.已知 , , ,求a、b、c之间有什么样的关系?
15.已知2m+3n能被19整除,求2m+3+3n+3能否被19整除。
课后练习:
1.如果 ,那么我们规定( ,b)=c,例如:23=8,所以(2,8)=3.
学生薄弱点,需重点讲解内容
上节课未掌握或需加强知识
教
学
过
程
﹃
讲
义
部
分
﹄
知识要点
1.同底数幂的乘法法则:
.同底数幂相乘,底数不变,指数相加。
注意:①底数a可以是任意有理数,也可以是单项式、多项式、相反数。
②逆用
2.幂的乘方法则: (m,n都是正整数)。即:幂的乘方,底数不变,指数相乘。逆用:
3.积的乘方法则: (n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
6.一个正方体的边长是 ,则它的表面积是_________.
7.下面计算正确的是()
A. ;B. ;C. ;D.
8.81×27可记为()A. ;B. ;C. ;D.
9.若 ,则下面多项式不成立的是()
A ;B.
C. ;D.
10.下列说法中正确的是()
A. 和 一定是互为相反数B.当n为奇数时, 和 相等
常州知典教育一对一教案
学生:年级:七学科:数学授课时间:月日授课老师:
课题
三角形内角和、多边形内角和与外角和
教学目标(通过本节课学生需掌握的知识点及达到程度)
1、同底数幂的乘法法则
2、幂的乘方法则
3、积的乘方法则
本节课考点及单元测试中所占分值比例
灵活运用同底数幂的乘法法则、幂的乘方法则、积的乘方法则
④若 ,则x=_____;⑤若644×83=2x,则x=_________.
5.①若x2n=4,则x6n=________;②a12=(_________)6=(________)3;
③若 ,则x=______;
⑤若xn-3·xn+3=x10,则n=_________.
4.已知:
求:(1) (2)求 (3)试说明:2b= .
5.(1)已知3×9m×27m=321,求 的值;
(2)已知 ,求m的值。
6.三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户年用电量是2.75×103度,那么三峡工程该年所发的电能可供该市居民使用多少年?
7.已知 试证明:(a-1)(d-1)=(b-1)(c-1).