八年级数学上册 11.3 多边形及其内角和教案 新人教版

合集下载

多边形及其内角和第一课时教案数学八年级上第11章113人教版

多边形及其内角和第一课时教案数学八年级上第11章113人教版

11.3多边形及其内角和第一课时教案一、教学目标(1)观察生活中大量的图片,认识一些简单的几何体(四边形、五边形),了解多边形及其内角,对角线等数学概念;(2)能由实物中辨别寻找出几何体,由几何体图形联想或设计一些实物形状;(3) 了解类比的数学学习方法。

二、教学重难点重点:连接多边形、内角、外角、对角线的概念以及凸多边形的形状的辨别;难点:正多边形的正确理解以及凸多边形的辨别三、专家建议让学生认识生活中的多边形形状,感受数学与生活的联系;在三角形的基础上,学习多边形把多边形的有关问题转化为三角形问题。

在探究多边形的对角线的条数时,从特殊到一般进行分析,让学生体会从特殊到一般的分析问题的方法。

师生共同探究,教师注意多让学生活动,不要急于得出结论,在学生充分讨论的基础上再给出结论,有利于培养学生的探究精神,从而让学生感受成功的乐趣。

四、教学方法情境引入——探索研讨——总结归纳——练习提高五、教学用具多媒体,三角板,直尺六、教学过程(一)、情景导入[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?(二)、多边形及有关概念(1)多边形的定义这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接.这种在同一平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。

多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形。

这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。

例题讲解例1:请列出生活中的一些多边形,并指出其特征解:房屋顶是三角形,因为三角形有稳定性;螺母底面为六边形,是为了方便安装和拆卸;黑板为四边形,是为了满足教学的使用;等等教师强调:多边形概念的重要提示:在多边形的概念中,要分清以下几个方面(1)在同一平面内;(2)若干线段不在同一直线上;(3)首尾顺次相结;(4)所形成的封闭图形(2)多边形的内角与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A、∠B、∠C、∠D、∠E。

人教版初中数学八年级上册11.3多边形与其内角和(教案)

人教版初中数学八年级上册11.3多边形与其内角和(教案)
举例:通过画图、分解多边形等方法,引导学生理解推导过程。
(2)运用多边形内角和解决实际问题:将理论知识应用于实际问题,需要学生具备一定的分析能力和运算技巧。
举例:针对多边形分割、组合等情形,指导学生运用内角和定理进行求解。
(3)多边形内角和与外角和的关系:理解多边形内角和与外角和的关系,有助于提高学生对几何图形的深入理解。
人教版初中数学八年级上册11.3多边形与其内角和(教案)
一、教学内容
人教版初中数学八年级上册11.3节,本节课将围绕多边形及其内角和展开教学。主要内容包括:
1.多边形的定义与性质,例如三角形的内角和定理。
2.多边形内角和的计算公式,即(n-2)×180°,其中n为多边形的边数。
3.通过实际操作,让学生理解并掌握多边形内角和的概念和计算方法。
4.解决与多边形内角和相关的实际问题,例如多边形分割、组合等情形。
5.培养学生运用多边形内角和定理进行几何推理和计算的能力。
本节课将结合教材内容,注重理论与实践相结合,提高学生对多边形内角和知识点的掌握和应用。
二、核心素养目标
本节课的核心素养目标主要包括以下方:1.培养学生的逻辑推理能力:通过多边形内角和定理的推导与应用,让学生理解几何图形之间的内在联系,提高逻辑推理和论证能力。
本节课将紧扣新教材要求,注重培养学生的学科核心素养,提高学生的综合素质。
三、教学难点与重点
1.教学重点
(1)多边形的定义及性质:理解多边形的组成要素,掌握多边形的基本性质,如三角形的内角和定理。
举例:强调三角形内角和为180°,四边形内角和为360°,引导学生发现多边形内角和与边数的关系。
(2)多边形内角和的计算公式:(n-2)×180°,其中n为多边形的边数。

人教版八年级数学上册《11.3多边形及其内角和》优秀教学案例

人教版八年级数学上册《11.3多边形及其内角和》优秀教学案例
4.及时反馈,给予学生鼓励和指导,帮助他们提高学习效果,形成良好的学习习惯。
(五)作业小结
1.布置作业:让学生运用所学知识,解决一些与多边形有关的问题,如计算多边形的内角和、判断多边形的类型等。
2.鼓励学生独立思考,创新解题,培养他们的实践操作能力。
3.教师对学生的作业情况进行评价,关注他们的知识掌握程度、能力发展水平以及情感态度。
人教版八年级数学上册《11.3多边形及其内角和》优秀教学案例
一、案例背景
本节课为人教版八年级数学上册《11.3多边形及其内角和》,是在学生学习了平面图形的性质、四边形的性质等知识的基础上进行的一节新授课。通过本节课的学习,学生需要掌握多边形的定义、多边形的内角和定理及多边形的内角和与边数的关系。
在教学过程中,我以“问题驱动”为导向,引导学生通过自主探究、合作交流的方式来发现和证明多边形的内角和定理。在课堂中,我注重让学生经历“观察、操作、思考、表达”的过程,培养他们的空间想象能力、逻辑推理能力和数学语言表达能力。
3.运用实例讲解如何运用多边形的内角和定理解决实际问题,如计算不规则图形的内角和等。
4.引导学生思考:如何用数学方法证明多边形的内角和定理?
(三)学生小组讨论
1.划分学习小组,每组选定一个多边形进行探究,尝试用数学方法证明多边形的内角和定理。
2.引导学生通过观察、操作、思考、表达的过程,发现并证明多边形的内角和定理。
3.小组合作:教师组织学生进行小组合作,让学生在讨论、交流中共同解决问题,提高他们的沟通协作能力和实践操作能力。
4.反思与评价:教师鼓励学生在课堂结束后进行自我反思,关注他们的知识掌握程度、能力发展水平以及情感态度,为学生的持续发展提供指导。
5.教学策略:教师运用了情景创设、问题导向、小组合作等多种教学策略,使学生在实践中掌握知识,提高能力,形成良好的学习习惯。

八年级数学上册11.3多边形及其内角和教案(新)新人教

八年级数学上册11.3多边形及其内角和教案(新)新人教

§11.3.1多边形教学目标1.了解多边形及有关概念,理解正多边形及其有关概念.2.区别凸多边形与凹多边形.重点难点1.重点:(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形.2.难点:多边形定义的准确理解.教学过程一、新课讲授投影:图形见课本P19图11.3一l.你能从投影里找出几个由一些线段围成的图形吗?上面三图中让同学边看、边议.在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?提问:三角形的定义.你能仿照三角形的定义给多边形定义吗?1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)2.多边形的边、顶点、内角和外角.多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形看投影:图形见课本P19.11.3—6.在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.二、课堂练习课本P21练习1.2.三、课堂小结引导学生总结本节课的相关概念.四、课后作业课本P24第1题.备用题:一、判断题.1.由四条线段首尾顺次相接组成的图形叫四边形.()2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.() 3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()二、填空题.1.连接多边形的线段,叫做多边形的对角线.2.多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形.3.各个角,各条边的多边形,叫正多边形.三、解答题.1.画出图(1)中的六边形ABCDEF的所有对角线.2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?§11.3.2多边形的内角和教学目标1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.重点难点1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.教学过程一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于(n一2)·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n 边形内角和=n×l80°一2×180°=(n一2)×180°.分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.三、例题例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD中,∠A+∠C=180°。

人教版2020八年级数学上册 第11章 11.3 多边形及其内角和 多边形的外角和教案 (新版)新人教版

人教版2020八年级数学上册 第11章 11.3 多边形及其内角和 多边形的外角和教案 (新版)新人教版

多边形的外角和课题:多边形的外角和课时第二课时教学设计课标要求探索并掌握多边形外角和公式教材及学情分析多边形的一个外角可以用相邻的内角表示,这样外角的问题就转化为内角的问题。

运用例2的思路,n边形的外角和是n个平角减去多边形的内角和。

多边形的内角和恒等于360°,与边数的多少无关,这一点与内角和不同,要让学生注意。

本节内容的展开运用了类比、推广的方法,以及把复杂问题转化为简单问题、化未知为已知的思想方法等,教学中应结合具体内容让学生加以体会。

学生以接触过类比思想,通过类比归纳总结对学生难度不大。

课时教学目标1、探索多边形外角和公式,并能运用公式解决简单的问题。

2、通过求三角形、四边形、五边形外角和,运用类比的方法得出多边形外角和计算公式。

3、经历探索类比总结规律的过程,激发学生学习的兴趣。

重点多边形外角和公式难点多边形外角和公式的推导教法学法指导教具准备PPT教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课创设情境1、什么是三角形的外角?外角有什么性质?2、三角形的外角是多少度?3、我们是如何计算三角形的外角和的呢?4、多边形的内角和是如何计算的呢?通过问题回顾三角形内角和定理,引导学生这个定理探索多边形的内角和教学过程探索多边形内角和如图,你能仿照上面的方法求四边形的外角和吗?四边形外角和=4个平角-四边形内角和=5×180°-(4-2) × 180°=360 °如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?1234ABCDEF56通过运用平角的定义和多边形内角和定理逐步推导多边形外角和,培养学生归纳总结规律的能力巩固练习n边形外角和3、如果一个四边形的一组对角互补,那么另一组4、正n边形的每一个外角等于___.每一个内角等于 ,它是几边形?(n-2).180=3×360 行综合运用,培。

人教版八年级上册第十一章11.3多边形的内角和教学设计

人教版八年级上册第十一章11.3多边形的内角和教学设计
2.学生思考并回答问题,教师总结:三角形的内角和是180°,那么这些多边形的内角和又是多少呢?今天我们就来学习多边形的内角和。
(二)讲授新知
1.教师引导学生通过观察和实际操作,发现多边形内角和与边数的关系。首先,从四边形开始,让学生剪下四个角,拼成一个平角,从而得出四边形的内角和是360°。
2.接着,教师提出问题:五边形的内角和是多少?引导学生通过同样的方法,剪下五个角,拼成一个平角,发现五边形的内角和是540°。
8.教学评价,促进发展
教师应采用多元化评价方式,如口头提问、书面作业、小组讨论等,全面评估学生的学习效果,并及时给予反馈,促进学生的持续发展。
四、教学内容与过程
(一)导入新课
1.教师出示一幅美丽的镶嵌图案,引导学生观察其中的多边形,并提出问题:“这些多边形是由哪些三角形组成的?它们的内角和是多少?”通过这个问题,让学生回顾三角形的内角和知识,为新课的学习做好铺垫。
5.情境总结,提升认知
在课堂小结环节,教师可通过提问、让学生分享学习心得等方式,帮助他们巩固所学知识,提升认知水平。
6.融入信息技术,提高教学效果
利用多媒体、网络等信息技术手段,为学生提供丰富的学习资源,如动画、视频等,帮助他们直观地理解多边形内角和的计算方法。
7.课后作业,巩固提高
教师应布置适量、有针对性的课后作业,让学生在课后巩固所学知识,提高解题能力。
3.教师继续提问:六边形、七边形、八边形的内角和分别是多少?学生通过实际操作,总结出多边形内角和的计算公式:内角和= (边数- 2) × 180°。
4.教师引导学生从几何图形的角度,解释多边形内角和的计算公式。通过分析,让学生明白每个顶点处的内角和为180°,所以多边形的内角和等于所有顶点处的内角和之和,即为(边数- 2)× 180°。

八年级数学上册第11章三角形11.3多边形及其内角和多边形的外角和教案新版新人教版

八年级数学上册第11章三角形11.3多边形及其内角和多边形的外角和教案新版新人教版

多边形的外角和课题:多边形的外角和第二教学设计课标要求探索并掌握多边形外角和公式教材及学情分析多边形的一个外角可以用相邻的内角表示,这样外角的问题就转化为内角的问题。

运用例2的思路,n边形的外角和是n个平角减去多边形的内角和。

多边形的内角和恒等于360°,与边数的多少无关,这一点与内角和不同,要让学生注意。

本节内容的展开运用了类比、推广的方法,以及把复杂问题转化为简单问题、化未知为已知的思想方法等,教学中应结合具体内容让学生加以体会。

学生以接触过类比思想,通过类比归纳总结对学生难度不大。

课时教学目标1、探索多边形外角和公式,并能运用公式解决简单的问题。

2、通过求三角形、四边形、五边形外角和,运用类比的方法得出多边形外角和计算公式。

3、经历探索类比总结规律的过程,激发学生学习的兴趣。

重点多边形外角和公式难点多边形外角和公式的推导教法学法指导教具准备教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课创设情境1、什么是三角形的外角?外角有什么性质?2、三角形的外角是多少度?3、我们是如何计算三角形的外角和的呢?4、多边形的内角和是如何计算的呢?通过问题回顾三角形内角和定理,引导学生这个定理探索多边形的内角和教学过程探索多边形内角和如图,你能仿照上面的方法求四边形的外角和吗?四边形外角和=4个平角-四边形内角和=5×180°-(4-2) × 180°=360 °如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?1234ABCDEF56通过运用平角的定义和多边形内角和定理逐步推导多边形外角和,培养学生归纳总结规律的能力巩固练习n边形外角和3、如果一个四边形的一组对角互补,那么另一4、正n边形的每一个外角等于___.每一个内角,倍,它是几边形?行综合运用,培。

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案 (新版)新人教版

八年级数学上册 11.3 多边形及其内角和 11.3.2 多边形的内角和教案(新版)新人教版一. 教材分析《新人教版八年级数学上册》第11.3节介绍了多边形及其内角和,11.3.2节主要讲解多边形的内角和。

本节内容是学生在学习了平面几何基本概念和三角形内角和的基础上,进一步探究多边形的内角和。

通过本节内容的学习,使学生掌握多边形的内角和定理,提高学生的逻辑思维能力和空间想象能力。

二. 学情分析八年级的学生已经掌握了平面几何的基本概念,对三角形的内角和有了一定的了解。

但多边形的内角和可能对学生来说较为抽象,因此,在教学过程中,需要引导学生从已知知识出发,逐步探究多边形的内角和。

三. 教学目标1.让学生理解多边形的内角和定理。

2.培养学生用数学知识解决实际问题的能力。

3.提高学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.重点:掌握多边形的内角和定理。

2.难点:如何推导出多边形的内角和定理。

五. 教学方法采用问题驱动法、引导发现法、合作交流法等,让学生在探究中学习,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学PPT。

2.教学素材(如多边形的图片)。

3.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些多边形的图片,如正方形、矩形、三角形等,引导学生观察这些多边形的特点。

提问:你们知道这些多边形有多少个内角吗?让学生回顾三角形内角和的知识,为新课的学习做好铺垫。

2.呈现(10分钟)讲解多边形的内角和定理。

通过PPT展示多边形内角和定理的证明过程,引导学生理解并掌握定理。

同时,让学生思考如何运用定理解决实际问题。

3.操练(10分钟)让学生分组讨论,每组设计一个多边形,并计算其内角和。

学生可以利用纸张和直尺在课堂上进行实际操作,增强对多边形内角和定理的理解。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目可以包括计算多边形内角和、运用内角和定理解决实际问题等。

教师在旁边辅导,解答学生的疑问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
BC
课题:多边形的内角和与外角和
教师提问,学生思考作答。
教师总结:三角形的内角和等于180°。
情境
导入
问题:你知道任意一个四边形的内角和是多少吗
学生猜想,引入课题




Hale Waihona Puke 一、探究四边形的内角和AD
B C
教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。
情感态度与价值观:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。
重点
难点
重点:探索多边形的内角和及外角和公式
难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。
教学过程
教师活动
学生活动
复备标注
时间安排




预习
复习
反馈
问题:你知道三角形的内角和是多少度吗?
小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?
例:六边形外角和等于多少度?
E 4 D
5
F 3 C
6
2
A 1 B
问题2:n边形外角和等于多少度?
n边形外角和等于360°
1、学生分小组交流与探究,进一步来论证自己的猜想。
2、由各小组成员汇报探索的思路与方法,讲明理由。
让学生归纳借助辅助线将五边形分割成三角形的不同分法。
探究五边形的边数与所分割的三角形个数间的关系,进而得出五边形内角和与边数的关系。
学生思考作答,教师作适当点拨。通过课件演示,由学生发现:六边形的外角和等于360°。




例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系?
例2、一个多边形的内角和与外角和相等,它是几边形?
113 多边形及其内角和教案
课题
课时
本学期第 课时
日期
本单元第 课时
课型
新授课
复备人
审核人








知识与能力:了解多边形的内角和与外角和公式,并能进行简单的应用
过程与方法:让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。
二、探究五边形的内角和
三、归纳探究n边形的内角和
根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。
四、多边形的外角和公式:
(教师从学生的回答中,了解学生有条理表达自己的思考过程。)
学生利用当堂所学的知识通过小组合作解决问题,巩固本节知识。




求下列图中x值
150°2x°
120°

80°
120°
75°x°




1、多边形的内角和:(n-2)·180°
多边形的外角和:360度
2、用分割多边形的方法探究多边形问题




探究题:小明有一个设想:2008年奥运会在北京召开,他设计一个内角和是2008°的多边形图案多有意义,小明的想法能实现吗?
教学
后记
相关文档
最新文档