电气传动自动控制系统课程设计说课材料

合集下载

电气传动控制系统课程设计09(1)

电气传动控制系统课程设计09(1)

课程设计任务书2012~2013学年第一学期学生姓名:专业班级:指导教师:工作部门:一、课程设计题目:直流调速系统设计及仿真和交流调速系建模与仿真二、课程设计内容(含技术指标)1.设计目的及要求《电气传动课程设计》是继“电气传动控制系统”课之后开设的实践性环节课程。

由于“控制系统”课程本身是一门理论深、综合性强的专业课,单是学习理论而不进行实践将不利于知识的接受及综合应用。

为了培养学生的实践能力,而设置电气传动控制系统的课程设计。

它将起到从理论过渡到实践的桥梁作用。

通过该环节训练,达到下述教学目的:1、通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决问题的能力。

2、通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,使学生熟悉设计过程,了解设计步骤,达到培养学生综合应用所学知识能力、培养学生实际查阅相关设计资料能力的目的、培养学生工程绘画和编写设计说明书的能力。

3、通过课程设计,提高学生理论联系实际,综合分析和解决实际工程问题的能力。

通过课程设计,使学生理论联系实际,以实际系统作为实例,对系统进行分析设计,掌握控制系统设计必须遵循的原则、基本内容、设计程序、设计规范、设计步骤方法及系统调试步骤。

并提高正确查阅和使用技术资料、标准手册等工具书的能力,提高独立分析问题、解决问题及独立工作的能力。

通过设计培养学生严肃认真、一丝不苟和实事求是的工作作风。

培养学生的创新意识和创新精神,为今后走向工作岗位从事技术打下良好基础。

2.课程设计基本要求本课程设计应根据设计任务书以设计技术规程及规定进行。

1、根据设计课题的技术指标和给定条件,能独立而正确地进行方案论证和设计计算,要求概念清楚、方案合理、方法正确、步骤完整。

2、要求掌握直流调速系统的设计内容、方法、步骤和交流调速系统建模与仿真。

3、学会查阅有关参考资料和手册,并能正确选择有关元器件和参数。

电气传动课程设计报告

电气传动课程设计报告

电气传动课程设计摘要:综述了一种在给定系统设备的情况下,设计并调试双闭环直流调速系统使其满足要求的性能指标的工程方法。

主要包括原始设备参数的测量、系统模型的建立及简化处理、调节器的设计与仿真、系统的综合调试。

重点记录了双闭环调速系统调试与测试的过程及结果,从初期的实验设计,参数测定,到软件仿真和最终的实际硬件调试等,最终得到符合要求的双闭环调速系统。

直流电动机具有优良的起动,制动和调速性能。

尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。

因为它具有良好的线性特性,优异的控制性能,高效率等优点。

直流调速仍然是目前最可靠,精度最高的调速方法。

有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。

关键字:双闭环调速参数设计MATLAB仿真目录1、课程设计任务书 (1)2、课题的发展状况研究意义 (1)3、设备选型 (1)4、实验台简介 (2)5、参数测试 (4)6、参数设计 (6)7、系统仿真调试 (8)8、系统测试结果 (11)9、实验室安全及实验过程注意事项 (12)10、总结 (12)附录一:试验中遇到的问题及解决办法 (13)附录二:小组分工 (13)1、课程设计任务书内容:设计并调试直流双闭环调速系统。

硬件结构:电流环与转速环(两个PI调节器)。

驱动装置:晶闸管整流装置。

执行机构:直流电机。

性能指标:稳态:无静差。

动态:电流超调量小于5%;空载启动到额定转速时的转速超调量小于10%。

2、课题的发展状况研究意义调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。

目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。

早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。

这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。

《电气控制与PLC》课程说课

《电气控制与PLC》课程说课

分工协作
团队成员根据各自专长, 分别负责理论教学、实验 教学、课程设计和科研等 任务,实现优势互补。
协作模式
定期召开教学研讨会,共 同制定教学计划和方案, 分享教学经验和资源。
校内外资源共享途径探讨
校内资源共享
利用学校图书馆、实验室和工程 中心等资源,为学生提供丰富的
实践机会和实验设备。
校外资源共享
通过本课程的学习,学生将掌 握电气控制的基本原理、PLC 的基本知识和应用技能。
课程目标与要求
课程目标
培养学生掌握电气控制技术和PLC应 用技术,具备独立分析和解决电气控 制问题的能力。
课程要求
学生应掌握电气控制的基本概念和原 理,熟悉常用电气控制元件和电路, 了解PLC的基本组成和工作原理,掌 握PLC编程和应用技能。
03 教学重点与难点
教学重点内容及处理方法
教学重点内容
电气控制基本原理、PLC基本指令与编程方法、PLC控制系统设计等。
处理方法
通过理论讲解、案例分析、实践操作等多种教学手段,使学生掌握重点内容; 加强课堂互动,鼓励学生提问和讨论,加深对重点内容的理解。
教学难点内容及突破方法
教学难点内容
PLC指令的理解与应用、PLC控制系统设计思路与方法等。
翻转课堂与微课应用
采用翻转课堂的教学模式,让学生在课前自主学习微课等教学资源,掌 握基础知识和技能。
在课堂上,教师针对学生的疑问和难点进行重点讲解和答疑,引导学生 深入理解和掌握课程内容。
利用微课等教学资源,方便学生随时随地学习,提高学生的学习自主性 和灵活性。同时,微课的针对性强,可以帮助学生更好地掌握重点和难 点知识。
鼓励学生在实践中发现问题、分析问题、解决问题,培养创新能力和实践能力。

电气传动自动控制原理与设计ppt课件

电气传动自动控制原理与设计ppt课件

SIMATIC S7
Siemens AG 2000. All rights reserved.
Information and Training Center Knowledge for Automation
S7-300: CPU 模块
复位存储器操作:通电后从STOP 位置扳到MRES 位置,“STOP”,LED 熄灭1s,亮1s 再熄灭1s 后保持亮。放开开关,使它回到STOP位置,然后又回到 MRES,“STOP”LED 以2Hz 的频率至少闪动3s,表示正在执行复位 , 最后“STOP”LED 一直亮。
DI 8 x DC24V
SIMATIC S7-200
SIMATIC S7
Siemens AG 2000. All rights reserved.
Information and Training Center Knowledge for Automation
简单快速的模块扩展方式
扁平电缆的连接方式,提高抗震动性能 更简单,更可靠
S7-400: 概述
SIMATIC S7
Siemens AG 2000. All rights reserved.
Information and Training Center Knowledge for Automation
S7-400: CPU 技术参数(1)
CPU 412-1 每条二进制指令的 执行时间 装入/传递 (字) 16位定点数 (+/-) IEEE 浮点数 (+/-) 用户存储器 工作存储器 装载存储器 (内部集成) 装载存储器 (外部) 操作资源 存储器标志(位) 时钟存储器 定时器 计数器 块类型/数目 FB 块 FC 块 DB 块 过程映象区大小 (输入/输出) 最大的 I/O 地址区 集成接口 CPU 413-1 200 nsec 200 nsec 200 nsec 1200 nsec CPU 413-2 DP CPU 414-1 CPU 414-2 DP CPU 416-1/-2DP/-2DP

电气工程-电气传动控制系统设计报告 精品

电气工程-电气传动控制系统设计报告 精品
1
1.1
1、变频调速控制系统硬件设计
2、网络系统设计
3、变频器功能预置,参数设定
4、PLC硬件组态及程序设计
5、Wincc组态及程序设计
6、系统调试
1.2
电机额定转速2840r/min;电机额定频率50HZ;电机额定电压380V;电机额定功率1.0KW;调速范围>100
1.3
通过本次课程设计,旨在让学生掌握工程型变频器的基本结构,基本参数以及通讯功能,学会设置6SE70变频器的基本参数,了解标准设备基本元器件型号及参数等,学会电机参数的设置及优化,掌握6SE70通过PMU面板设置参数的方法,实现变频器通过端子排启/停以及调速,掌握变频器通过PROFIBUS通讯的方法以及参数设置,熟悉变频器通讯时所需的硬件配置,最后实现基于Wincc的变频调速控制。
电网电源和现有的电动机之间接入变频器和相应设备,就可以利用变频器实现调速控制,而无须对电动机和系统本身进行大的设备改造。
在采用了变频器的交流拖动系统中,异步电动机的调速控制是通过改变变频器的输出频率实现的。因此,在进行调速控制时,可以通过控制变频器的输出频率使电动机工作在转差率较小的范围,电动机的调速范围较宽,并可以达到提高运行效率的目的。一般来说,通用型变频器的调速范围可以达到1 : 10以上,而高性能的矢量控制方式的变频器的调速范围可以达到1 :1000。此外,当采用矢量控制方式的变频器对异步电动机进行调速控制时,还可以直接控制电动机的输出转矩。因此,高性能的矢量控制变频器与变频器专用电动机的组合在控制性能方面可以达到和超过高精度直流伺服电动机的控制性能。
3、变频器与负载的匹配问题;
1)电压匹配;变频器的额定电压与负载的额定电压相符。
2)电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。

电气传动控制系统课程设计

电气传动控制系统课程设计

电⽓传动控制系统课程设计⽬录第1篇直流电动机调速系统的设计⽬录 (1)1 前⾔ (2)1.1 研究背景及意义 (2)2 总体结构设计和系统⽅案选择 (3)2.1总体结构设计 (3)2.2调速⽅案的选择 (3)3主电路设计与参数计算 (5)3.1整流变压器的设计 (5)3.2晶闸管元件的选择 (7)3.3晶闸管保护环节的计算 (8)3.4平波电抗器的计算 (9)3.5励磁电路元件的选择 (11)4 触发电路选择 (12)4.1 晶闸管触发⽅法 (12)5 双闭环的动态设计和校验 (15)5.1电流调节器的设计和校验 (15)5.2 转速调节器的设计和校验 (16)6 控制电路的设计与计算 (18)6.1 给定环节的选择 (18)6.2 控制电路的直流电源 (18)6.3 反馈电路参数的选择与计算 (19)7 直流调速系统电⽓原理总图 (20)8 系统MATLAB仿真 (21)8.1 系统的建模与参数设置 (21)8.2 系统仿真结果的输出及结果分析 (22)第2篇交-交变频调速系统建模及仿真9 交-交变频调速系统建模与仿真 (23)9.1 交-交变频调速原理 (23)9.2 逻辑切换装置DLC封装 (23)9.3 逻辑⽆环流单相交-交变频器的建模及仿真 (24)9.4 异步电动机交-交变频器调速系统的建模与仿真 (25)10 课程⼩结 (26)11 参考⽂献 (27)1湖北理⼯学院课程设计报告摘要本⽂实现了转速电流双闭环直流调速系统的设计,实验结果可以准确直观的观察转速-电流双闭环调速系统的启动过程,可⽅便的设计各种不同的调节器参数及控制策略并分析其多系统性能的影响,取得了很好的效果。

但怎样处理好转速控制和电流控制之间的关系呢?经过反复研究和实践,终于发现,如果在系统中设置两个调节器,分别调节转速和电流,两者之间实⾏串联连接,即以转速调节器的输出作为电流调节器ACR的输⼊,再⽤电流调节器的输出作为晶闸管触发装置的控制电压,那么这两种调节作⽤就能互相配合,相辅相成了。

电气传动课程设计

电气传动课程设计

课程设计任务书一、课程设计概述电气传动技术课程是本专业的一门专业课,主要讲述交、直流电动机原理及其应用,是一门实践性很强的课程,通过电气传动技术的课程设计,掌握在工厂设备中电动机的选择、校验和计算。

课程设计模拟工厂常用的生产流水线,设计一条电动机驱动的输送带,根据加工工艺要求,在输送带上的工件大小和重量是变化的,输送的位置和距离根据不同的要求,有所变化,要求正确的选择电动机的额定功率、转速、工作制以及考虑生产现场的实际条件,需要采取的措施。

二、课程设计任务有一条生产流水线的输送带如下图所示,在装料点0,按生产节拍依次装上各种电动机的零配件:A转子、B定子、C前端盖、D后端盖、E底座。

分别要求送到工位1、工位2、工位3、工位4、工位5进行加工装配。

输送带采取带上无零配件的空载启动,在传送中,自动控制系统使输送带上始终只有一个零配件,而且两个零配件传送过程中无间隔、停顿。

各种零配件依次送完后,再重复循环传送,…。

传动系统设计参数:空载负载力矩T L0 '= 1000N·m输送带的输送速度ν= 7.5m/min;输送带的加速度dv/dt = 0.05m/s2;电源供电电压3相380V、变压器容量13Kva电压波动安全系数0.75。

传动系统的减速装置第一级采用减速采用皮带轮,第二和第三级采用齿轮减速箱,参数见表1:工艺要求送料的次序和位置见表2:假设四极交流电动机转速1470 r/min 、六极970 r/min ,功率以0.1Kw 分档,Tst/T N =1.2,Tmax/T N =2,电源电压波动安全系数0.75。

(计算中保留两位小数点)三、课程设计要求根据输送机的启动和送料过程中给出的阻力矩和飞轮转矩,在保证启动过程和送料过程中系统要求的速度和加速度的条件下,设计、计算所需的电动机力矩,然后分析负载特性,选择电动机的工作制,确定电动机的额定功率、转速,最后在车间供电条件下,以及可能出现的供电电压不稳的特殊情况下,选择电动机的类型、电压、启动方式。

电气传动控制系统的讲义

电气传动控制系统的讲义

系统集成与智能化
总结词
系统集成与智能化是电气传动控制系统未来 发展的另一个重要趋势,它将提高系统的自 动化和智能化水平,降低人工干预和操作成 本。
详细描述
随着物联网、云计算和人工智能等技术的发 展,电气传动控制系统将更加集成化和智能 化。系统将能够实现远程监控、故障诊断和 预测性维护等功能,提高设备的可靠性和稳 定性。同时,通过集成各种传感器和执行器 ,系统将能够更好地适应各种复杂环境和工

控制方式
电气传动控制系统的控制方式包括开环控制和闭环控制两种。开环控制是指控制系统只 根据输入的指令信号对电动机进行控制,不进行反馈;而闭环控制则是指控制系统不仅 根据指令信号对电动机进行控制,还会将电动机的实际输出反馈到控制器中,通过比较
实际输出与指令信号的差异来调整控制信号,实现对电动机的精确控制。
04
电气传动控制系统的性能指标
调速范围
调速范围
指电气传动系统能够调节的速度范围,通常以最高和最低转速的 比值来表示。
宽调速范围的意义
宽调速范围可以满足不同的工作需求,提高生产效率和设备利用率 。
调速范围的限制因素
实际应用中,调速范围的限制因素包括电动机的机械特性和电气特 性、传动装置的传递特性和效率等。
动态响应的重要性
动态响应是衡量电气传动系统动态性能的重要指标, 直接影响设备的动态特性和控制效果。
提高动态响应的措施
提高动态响应的措施包括优化系统结构、采用快速的 驱动器和传感器等。
05
电气传动控制系统的设计与优 化
系统设计
01
02
03
系统架构设计
根据应用需求,确定电气 传动控制系统的整体架构 ,包括硬件和软件的组成 及相互关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告书题目:电气传动自动控制系统报告人:王宗禹学号:1043031325班级:2010级34班指导教师:肖勇完成时间:2013年7月日同组人:王大松秦缘龚剑电气信息学院专业实验中心一.设计任务1.设计目标:(1)系统基本功能:该调速系统能进行平滑的速度调节,负载电机不可逆运行,系统在工作范围内能稳定工作(2)已知条件:(3)稳态/动态指标:静态:s% ≤ 5% D = 3动态:σi% ≤ 5% σn% ≤ 10%(4)期望调速性能示意说明:静差率小于5%,调速范围D=3.(5)系统电路结构示意图:2.客观条件:(1)使用设备列表清单及主要设备功能描述:二.系统建模(系统固有参数测定实验内容)1.实验原理(1)变流电源内阻Rn的测定:a.电路示意图如下:可以等效如下:b.利用伏安法可以测出内阻R n的大小,方法是在电机静止,电枢回路外串限流电阻,固定控制信号 Uct 大小,0.5A≤Id ≤1A的条件下用伏安法测量Ud1,Id1和Ud2,Id2;利用公式可以求得Rn。

(2)电枢内阻 Ra、平波电感内阻 Rd的测定:a.电路示意图如下:b.实验方法步骤:◆电机静止,电枢回路外串限流电阻◆固定控制信号Uct 大小,Id ≈1A(额定负载热效点)◆使电枢处于三个不同位置(如上图约120o对称)进行三次测量(Ura,Urd,Id),求 Ra ,Rd 的平均值.(3)电动机电势转速系数 Ce的测定:a.实验原理:由公式可以推导出Ce的测定公式:b.实验方法步骤:◆空载启动电机并稳定运行(I d0大小基本恒定)◆给定两个大小不同的控制信号Uct ,测量两组稳定运行时的Ud、n数据(4)整流电源放大系数 Ks的测定:a.实验原理:Ks可以根据公式Ud0=Ks*Uct可知Ks就是以Uct为横坐标Ud0为纵坐标的如下图曲线中线性段的斜率。

故可以通过公式测定Ks.b.实验方法步骤:◆分级调节控制信号U ct大小,并保持I d≤1A◆在U d0有效范围内,测量每一组U ct,U d,I d,数据应大于10 组以上,测量上限不低于最大理想空载整流输出电压U d0max◆按U d0 = U d+I d×R n 作出电源输入-输出特性曲线(用Excel生成)◆取线性段3段以上斜率,求其平均值得Ks(5)电枢回路电磁时间常数 TL的测定:a.电路示意图:b.实验原理:可以根据公式L=Ld+La与TL=L/R∑求得TLc.实验方法步骤:◆断开电枢回路连线◆使用电感表测量电枢回路总电感量 L(6)电枢回路机电时间常数Tm的测定:a.实验原理:由下列公式可以推导出Tm的公式b.实验方法步骤:◆电机空载,突加给定,并使起动峰值电流达到系统设定最大电流I dm◆记录 id 波形,由下列公式计算Tm2.原始数据(1)Ud1 214V Id1 0.5AUd2 207V Id2 1.0AUrd Ura Id11.88V 20.68V 1A11.82V 20.59V 1A11,88V 20.65V 1A(3)Ud(V) n(r/min)78 537144 999(4)Ud(V) Id(A) Uct(V)286 0.80 4.585268 0.75 3.444251 0.70 2.825233 0.65 2.359213 0.60 1.991195 0.55 1.729178 0.50 1.521157 0.45 1.306138 0.40 1.141118 0.35 0.989102 0.30 0.87884 0.25 0.77367 0.20 0.656Ld La671mH 345mH(6)实验波形如下:3.数据处理(1)Rn=(Ud2-Ud1)/(Id1-Id2)=(207-214)/(0.5-1.0)Ω=14Ω(2)Rd=1/3*(11.88V/1A+11.82V/1A+11.88V/1A)=11.86ΩRa=1/3*(20.68V/1A+20.59V/1A+20.65V/1A)=20.64Ω(3)Ce=(Ud2-Ud1)/(n2-n1)=(144-78)/(999-537)V*min/r=0.1428 V*min/r(4)用Excel处理:可以用公式Ud0=Ud+Id*Rn直接生成Ud0这一列的结果,表格如下:Ud(V) Id(A) Ud0(V) Uct(V)286 0.80 297.2 4.585268 0.75 278.5 3.444251 0.70 260.8 2.825233 0.65 242.1 2.359213 0.60 221.4 1.991195 0.55 202.7 1.729178 0.50 185 1.521157 0.45 163.3 1.306138 0.40 143.6 1.141118 0.35 122.9 0.989102 0.30 106.20.87884 0.25 87.5 0.77367 0.20 69.8 0.656再用Excel插入散点图功能生成如下图形:取图中线性段四段求斜率如下:Ks1=(106.2-69.8)/(0.878-0.656)≈164Ks2=(143.6-106.2)/(1.141-0.878)≈142Ks3=(185-143.6)/(1.521-1.141)≈109Ks4=(221.4-185)/(1.991-1.521)≈77求得平均值:Ks=(164+142+109+77)/4=123(5)L=Ld+La=671mH+345mH=1016mHTL=L/R∑=L/(Rn+Ra+Rd)=1016mH/(14Ω+20.64Ω+11.86Ω)=21.8ms=0.0218s (6) 通过作图工具处理如下:可以知道s的面积是10.75*(1.4/8A)*50ms=94.0625A*ms由此可以计算出Tm=s/(Idm-Idz)=94.0625A*ms/[7*(1.4/8A)]≈0.0767s4.实验结果电动机电枢内阻 R a20.64Ω电势转速系数 Ce 0.1428 V*min/r整流电源等效内阻 R n14Ω放大系数 Ks 123平波电感直流内阻 R d11.86Ω电枢回路总电阻 R∑= R a+ R n+ R d46.5Ω电磁时间常数 T L0.0218s机电时间常数 T m0.0767s三.系统设计1.系统理论设计内容(系统传递函数结构图,设计步骤、PI参数计算及电路实现结果等)(1)系统设计理论:控制系统的动态性能指标:➢动态性能指标总结:(1)跟随性能超调量 (%)反映系统的动态调节稳定性能上升时间 tr 反映系统的动态调节快速性能调节时间 ts 反映系统的动态调节过渡周期(2)抗扰性能动态降落比△C max% 反映系统扰动引起的最大动态误差恢复时间 tr 反映系统的动态抗扰调节快速性能上述指标对应的给定和扰动均为阶跃信号◆调节器的工程设计方法:➢工程设计方法:在设计时,把实际系统校正或简化成典型系统,可以利用现成的公式和图表来进行参数计算,设计过程简便得多。

➢调节器工程设计方法所遵循的原则是:(1)概念清楚、易懂;(2)计算公式简明、好记;(3)不仅给出参数计算的公式,而且指明参数调整的方向;(4)能考虑饱和非线性控制的情况,同样给出简单的计算公式;(5)适用于各种可以简化成典型系统的反馈控制系统。

➢在典型系统设计的基础上,利用MATLAB/SIMULINK进行计算机辅助分析和设计,可设计出实用有效的控制系统。

➢控制系统的开环传递函数都可以表示成:(3-9)➢分母中的s r项表示该系统在s= 0处有r重极点,或者说,系统含有r个积分环节,称作r型系统。

➢为了使系统对阶跃给定无稳态误差,不能使用0型系统(r=0),至少是Ⅰ型系统(r =1);当给定是斜坡输入时,则要求是Ⅱ型系统(r =2)才能实现稳态无差。

➢选择调节器的结构,使系统能满足所需的稳态精度。

由于Ⅲ型(r =3)和Ⅲ型以上的系统很难稳定,而0型系统的稳态精度低。

因此常把Ⅰ型和Ⅱ型系统作为系统设计的目标。

◆典型Ⅰ型系统:➢作为典型的I型系统,其开环传递函数选择为(3-10)式中,T——系统的惯性时间常数;K——系统的开环增益。

➢对数幅频特性的中频段以-20dB/dec的斜率穿越零分贝线,只要参数的选择能保证足够的中频带宽度,系统就一定是稳定的。

➢只包含开环增益K和时间常数T两个参数,时间常数T往往是控制对象本身固有的,唯一可变的只有开环增益K 。

设计时,需要按照性能指标选择参数K的大小。

➢典型Ⅰ型系统的对数幅频特性的幅值为:得到➢相角裕度为➢➢K值越大,截止频率ωc也越大,系统响应越快,相角稳定裕度γ越小,快速性与稳定性之间存在矛盾。

➢在选择参数K时,须在快速性与稳定性之间取折衷。

◆◆动态跟随性能指标:⏹⏹典型Ⅰ型系统的闭环传递函数为⏹过阻尼动态响应较慢,一般把系统设计成欠阻尼,即 0< < 1。

⏹超调量(3-13)⏹⏹上升时间(3-14)⏹⏹峰值时间(3-15)⏹当调节时间在、误差带为的条件下可近似计算得(3-16)⏹截止频率(按准确关系计算)(3-17)⏹⏹相角稳定裕度(3-18)◆动态抗扰性能指标:➢影响到参数K的选择的第二个因素是它和抗扰性能指标之间的关系,➢典型Ⅰ型系统已经规定了系统的结构,分析它的抗扰性能指标的关键因素是扰动作用点,➢某种定量的抗扰性能指标只适用于一种特定的扰动作用点。

➢➢电压扰动作用点前后各有一个一阶惯性环节,➢➢采用PI调节器➢在计算抗扰性能指标时,为了方便起见,输出量的最大动态降落ΔC max用基准值C b的百分数表示,➢所对应的时间t m用时间常数T的倍数表示,➢允许误差带为±5%C b时的恢复时间t v也用T的倍数表示。

➢取开环系统输出值作为基准值,即C b=Fk2 (3-21)◆典型Ⅱ型系统:➢典型Ⅱ型系统的开环传递函数表示为:(3-22)➢典型II型系统的时间常数T也是控制对象固有的,而待定的参数有两个:K 和 。

➢定义中频宽:(3-23)➢中频宽表示了斜率为20dB/sec的中频的宽度,是一个与性能指标紧密相关的参数。

图3-13 典型Ⅱ型系统(a)闭环系统结构图 (b)开环对数频率特性➢(3-24)➢改变K相当于使开环对数幅频特性上下平移,此特性与闭环系统的快速性有关。

➢系统相角稳定裕度为:➢τ比T大得越多,系统的稳定裕度就越大。

➢采用“振荡指标法”中的闭环幅频特性峰值最小准则,可以找到和两个参数之间的一种最佳配合。

(3-25)(3-26)➢在确定了h之后,可求得:(3-29)(3-30)◆动态跟随性能指标:➢按Mr最小准则选择调节器参数,典型Ⅱ型系统的开环传递函数为:➢系统的闭环传递函数 :➢当R(t)为单位阶跃函数时,,则:(3-31)◆动态抗扰性能指标:➢在扰动作用点前后各有一个积分环节,用作为一个扰动作用点之前的控制对象➢取➢于是(3-33)(3-32)➢在阶跃扰动下,,按M rmin准则确定参数关系(3-34)➢取2T时间内的累加值作为基准值 C b = 2FK2T (3-35)➢由表3-5中的数据可见,h值越小,也越小,tm都短,因而抗扰性能越好。

相关文档
最新文档