空间解析几何与向量代数习题与答案
8第八章空间解析几何答案

8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。
4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。
(完整版)高数期末复习题第八章空间解析几何与向量代数

第八章一、填空题8.1.1.1、点)1,3,2(-M 关于xoy 面的对称点是)1,3,2(-- .8.1.2.3、向量)2,20(),1,4,2(-=-=b a ϖϖ,则同时垂直于b a ϖϖ,的单位向量为)1,1,1(31--±. 8.1.3.1、向量=⊥-=-=c ,),,2,1(),1,1,3( 则: 且 b a c b a ϖϖϖϖ 1 . 8.1.41、点)1,2,1(M 到平面01022=-++z y x 的距离为 1 .8.1.51、. 过点02)1,2,1(=+-z y x 与平面 平行的平面方程为12=+-z y x 8.1.6.2、平面3=y 在坐标系中的位置特点是 平行xoz 面 .8.1.7.2、过三点A (2,0,0),B (0,3,0),C (0,0,4)的平面方程为1432=++z y x . 8.1.8.2、过两点)(,(2,0,1),1,2321--M M 的直线方程是12241-==-+z y x . 8.1.9.3、过点)4,2,0(且与平面2312=-=+z y z x 及都平行的直线是14322-=-=-z y x . 8.1.10.3、曲面z y x =-22在xoz 面上的截痕的曲线方程为⎩⎨⎧==02y z x . 二、选择题8.2.1.2、点)3,0,4(在空间直角坐标的位置是 ( C )A .y 轴上; B. xoy 平面上; C. xoz 平面上; D. 第一卦限内。
8.2.2.2、设AB 与u 轴交角为α,则AB 在u 轴上的投影AB j u Pr = (C )A .αcos ; B. αsin ; C. α ; D. α.8.2.3.2、两个非零向量b a ρρ与互相垂直,则 ( B )A .其必要不充分条件是0=⋅b a ϖϖ; B. 充分必要条件是0=⋅b a ϖϖ;C .充分不必要条件是0=⋅b a ϖϖ; D. 充分必要条件是0=⨯b a ϖϖ.8.2.4.2、向量),,(z y x a a a a =ϖ, ),,(z y x b b b b =ϖ 且 0=++z z y y x x b a b a b a 则 ( C )A. b a ϖϖ//;B. λλ(b a ϖϖ=为非零常数) ;C. b a ϖϖ⊥ ;D. 0ϖϖϖ=+b a .8.2.5.2、平面0633=--y x 的位置是 ( B )A .平行xoy 面;B . 平行z 轴 ; C. 垂直z 轴; D. 通过z 轴.8.2.6.2、过点131111)1,1,1(--=+=-z y x 与直线 垂直的平面方程为 ( A ) A. 1=-+z y x ; B. 2=-+z y x ;C. 3=-+z y x ;D. 0=-+z y x .8.2.7.2、直线37423L z y x =-+=-+:与平面3224=--z y x 的位置关系是( A ) A .平行; B. 直线在平面上; C. 垂直相交; D. 相交但不垂直.8.2.8.2、xoy 面上曲线369422=-y x 绕x 轴旋转一周,所得曲面方程是( C )A .369)4222=-+y z x (; B. 36)(9)42222=+-+z y z x (; C. 36)(94222=+-z y x ; D. 369422=-y x .8.2.9.2、球面2222R z y x =++与平面a z x =+交线在xoy 平面上投影曲线方程是( D )A .2222)R z y z a =++-(; B. ⎩⎨⎧==++-0)(2222z R z y z a ; C. 2222)(R x a y x =-++; D. ⎩⎨⎧==-++0)(2222z R x a y x 8.2.10.3、方程⎩⎨⎧==++13694222y z y x 表示 ( B )A .椭球面; B. 1=y 平面上椭圆;C. 椭圆柱面;D. 椭圆柱面在平面0=y 上的投影曲线.三、计算题8.3.1.2、 一平面过点)1,0,1(-,且平行于向量)0,1,1()1,1,2(-==b a ϖϖ和,求这个平面。
高数第四版第七章(人民大学出版社)

高数第四版第七章(人民大学出版社)第七章空间解析几何与向量代数习题7-1★★1.填空题:(1)要使(2)要使★2.设ua?b?a?b设立,向量a,b应当满足用户a?ba?b?a?b成立,向量a,b应满足a//b,且同向ab2c,va3bc,试用a,b,c则表示向量2u?3v知识点:向量的线性运算求解:2u?3v?2a?2b?4c?3a?9b?3c?5a?11b?7c★3.设p,q两点的向径分别为r1,r2,点r在线段pq上,且prrq?m,证明点r的向径为nr?nr1?mr2m?n知识点:向量的线性运算证明:在?opq中,根据三角形法则oq?op?pq,又pr?mmpq?(r2?r1),m?nm?n∴or?op?pr?r1?nr?mr2m(r2?r1)?1m?nm?n★★4.未知菱形abcd的对角线ac?a,bd?b,试用向量a,b表示ab,bc,cd,da。
知识点:向量的线性运算解:根据三角形法则,ab?bc?ac?a,ad?ab?bd?b,又abcd为菱形,ad?bc(民主自由向量),a?b????????????b?a?cd??dc??ab?∴2ab?ac?bd?a?b?ab?22?a?b??? a?b∴ad?bc?,da??22∴★★5.把?abc的bc边五等分,设分点依次为d1,d2,d3,d4,再把各分点与点a相连接,先行以ab?c,bc?a表示向量d1a,d2a,d3a和d4a。
知识点:向量的线性运算解:见图7-1-5,acbad1d2图7-1-5cd3d411bc?d1a??ad1??(c?a)55234同理:d2a??((c?a),d3a??(c?a),d4a??(c?a)555根据三角形法则,ab?bd1?ad1,bd1?习题7-2★1在空间直角坐标系则中,表示以下各点在哪个卦减半?a(2,?2,3);b(3,3,?5);c(3,?2,?4);d(?4,?3,2)请问:a(2,?2,3)在第四卦减半,b(3,3,?5)在第五卦减半,c(3,?2,?4)在第八卦减半, d(?4,?3,2)在第三卦限★2.在座标面上和坐标轴上的点的座标各存有什么特征?并表示以下各点的边线:a(2,3,0);b(0,3,2);c(2,0,0);d(0,?2,0)知识点:空间直角坐标答:在各坐标面上点的坐标有一个分量为零,坐标轴上点的坐标有两个分量为零,∴点a在xoy坐标面上;b在yoz坐标面上;c在x轴上;d在y轴上。
(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
(完整版)高等数学空间解析几何与向量代数练习题与答案

空间解析几何与矢量代数小练习一填空题 5’x9=45分1、平行于向量a=(6,7,-6)的单位向量为______________.2、设已知两点M1(4,2,1)和M2(3,0,2),计算向量M1M2的模_________________,方向余弦_________________和方向角_________________3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.4、方程x2+y2+z2-2x+4y+2z=0表示______________曲面.5、方程x2+y2=z表示______________曲面.6、x2+y2=z2表示______________曲面.7、在空间解析几何中y=x2表示______________图形.二计算题 11’x5=55分1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x轴且过两点(4,0,-2)和(5,1,7)的平面方程.3、求过点(1,2,3)且平行于直线x y-3z-12=1=5的直线方程.4、求过点(2,0,-3)且与直线⎧⎨x-2y+4z-7=0⎩3x+5y-2z+1=0垂直的平面方5、已知:OA=ϖi+3kϖ,OB=ϖj+3kϖ,求∆OAB的面积。
参考答案一填空题1、±⎨⎧67-6⎫⎩11,11,11⎬⎭2、M 11M 2=2,cos α=-2,cos β=22,cos γ=12,α=2π3,β=3ππ4,γ=33、(x -1)2+(y -3)2+(z +2)2=144、以(1,-2,-1)为球心,半径为6的球面5、旋转抛物面6、圆锥面7、抛物柱面二计算题1、3x -7y +5z -4=02、9y -z -2=03、x -1y -2z -32=1=5 4、16x -14y -11z -65=05S ∆=12OA ⨯OB =192。
空间解析几何例题

第4章 向量代数与空间解析几何习题解答习题一、计算题与证明题1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a3.设力k j i F 532++-=作用在点)1,6,3(A , 求力F 对点)2,7,1(,-B 的力矩的大小. 解:因为()1,6,3A ,()2,7,1-B 所以()31,2--=力矩()()k j i k j i F AB M 53232++-⨯-+-=⨯=kj i kj i kj i 41614321252325331532312-+=--+-----=---=所以,力矩的大小为()13641614222=-++=M4.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a ρρ, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1)又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y ky x j y x i z y z yx kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3) 联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,101 5.用向量方法证明, 若一个四边形的对角线互相平分, 则该四边形为平行四边形.证明:如图所示,因为平行四边形ABCD 的对角线 互相平分,则有==,由矢量合成的三角形法则有+=+=+=+=所以CD BA =即BA 平行且等于CD四边形ABCD 是平行四边形6.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程. 解:因为()7,8,3A ,)3,2,1(--BAB 中垂面上的点到B A 、的距离相等,设动点坐标为()z y x M ,,,则由MB MA =得()()()()()()222222321783++-++=-+-+-z y x z y x化简得027532=-++z y x这就是线段AB 的中垂面的方程。
高等数学(工本)课后习题答案

5.求顶点为 A(2,5,0) ,B(11,3,8) ,C(5,1,11)的三角形各边的长度.
AB = AC =
(2 − 11) 2 + (5 − 3) 2 + (0 − 8) 2 = (2 − 5) 2 + (5 − 1) 2 + (0 − 11) 2 =
149 ; BC= 146 .
(11 − 5) 2 + (3 − 1) 2 + (8 − 11) 2= 7 ;
(3) (m − n)(a + b) − (m + n)(a − b) .
(m − n)(a + b) − (m + n)(a − b)
= (m − n)a + (m − n)b − (m + n)a + (m + n)b = 2(mb − na )
2.设向量 u = i − j + 2k , v =− i + 3 j − k ,计算 2u − 3v .
量和坐标轴的关系如何? (1)由 cos α = 0 可知该向量垂直于 x 轴; (2)由 cos β = 1 可知该向量与 y 轴同向; (3)由 cos α = 0 及 cos β = 0 可知该向量垂直于 x 轴与 y 轴,即该向量与 z 轴平行. 7.求向量 a = {1, 2,1} 的单位化向量 a ,并求 a 与各个坐标轴的夹角.
(1) a (2) a , b ; (2) a 与 b 的夹角 θ . b;
= (1) a (2) a b= {1,1, −4} {2, −2,1} = −4 ;
2 12 + 12 + (−4)= 3 2, b =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
3、μ=λ2三、1、14)2()3()1(222=++-+-z y x2、以(1,-2,-1)为球心,半径为的球面3、1) x z y 222=+,旋转抛物面 x z y x 2)2222=++,球面3)绕x 轴:36994222=--z y x 旋转双叶双曲面绕y 轴:36944222=-+y z x 旋转单叶双曲面 4、抛物线,抛物柱面 5、四、1、平面解析几何表示椭圆与其一切线的交点;空间解析几何中表示椭圆柱面与其切平面的交线。
2、⎩⎨⎧==+-082222z y x x3、在xoy 面的投影为:⎪⎩⎪⎨⎧=≤+-0)2(222z ay a x 在x O z 面的投影为:⎩⎨⎧=≤+0222y a z x 五、1、04573=-+-z y x 2、0)1(3)1(1)1(1=+--⋅+-⋅z y x3、05=+y4、029=--z y六、1、531221-=-=-z y x 2、14322-=-=-z y x 3、065111416=---z y x 4、0592298=---z y x5、06、1)垂直 2)直线在平面上7、223 B1、证明思路:0=++c b a ,0)(=++⨯∴c b a a即0=⨯+⨯+⨯c a b a b a ,又0=⨯a a ,a c c ab a ⨯=⨯-=⨯∴ 同理得c b b a ⨯=⨯2、思路:),sin(b a b a b a =⨯),cos(b a b a b a =⋅。
答案:6),(π=b a3、思路)(2||||)()(||2222b a t b t a tb a tb a tb a ⋅++=+⋅+=+该式为关于的一个2次方程,求其最小值即可。
答案:2||b ba t ⋅-=4、思路:取i b =,则b n a n ⊥⊥,。
答案:)68(101k j n -±= 5、思路:平面过轴,不妨设平面方程为0=+By Ax ,则}0,,{B A n =,又(B A , 不全为)答案:所求平面方程为03=+y x 或031=-y x 6、法一:,所求平面法向量21M M n ⊥,且}3,2,6{1-=⊥n n取}10,3,6{326347121-=---=⨯=kj in M M n 又平面过点)2,1,4(1M ,则平面方程为071036=--+z y x解法 2. 在平面上任取一点),,(z y x M ,则211M M MM 和}3,2,6{1-=n共面,由三向量共面的充要条件得0347326214=------z y x ,整理得所求平面方程7、思路:用平面束。
设过直线的平面束方程为0)22(12=--++-+-z y x z y x λ 答案:平面方程为0114311=--+z y x8、思路:求交点)1,1,1(-,过交点)1,1,1(-且垂直于已知直线的平面为01=-x 。
答案:⎩⎨⎧=++=-11z y x x9、思路:重力的方向可看作与向量方向相反答案:J g g M M F W 5880600)6()100(3.0)2(021=⋅=-⋅-++-⋅=⋅= 10、思路:先求投影柱面方程,答案:原曲线在xoy 面上的投影曲线方程为⎩⎨⎧==+-00922z x y 。
原曲线是由旋转抛物面0222=-+x z y 被3=z 平面所截的抛物线。
11、思路:||21OB OA S OAB ⨯=∆,答案:219 12、思路:利用平面束方程。
答案⎩⎨⎧=+-=--+140117373117z y x z y xC1、证明:设a OA =,b OB =,c OC =,根据三角形法则。