计算方法与实习(第五版)期末复习资料

合集下载

计算方法与实习答案

计算方法与实习答案

计算方法与实习答案【篇一:《基础会计学习指导、习题与实训》答案】名词解释1.会计:是以货币为主要计量单位,以凭证为依据,运用专门的技术方法,对一定主体的经济活动进行连续、系统、全面的核算与监督,以提高经济效益为目标,向有关方面提供会计信息的一种经济管理活动。

2.会计职能:是指会计在经济管理中所具有的功能,即会计在经济管理中能发挥什么作用。

3.会计核算职能:是指以货币为主要计量单位,对企事业单位一定时期的经济活动进行真实、连续、系统、完整的记录、计量和报告。

4.会计监督职能:是指依据监督标准,利用会计核算所提供的会计信息对各单位的经济活动全过程的合法性、合理性和有效性进行的指导、控制和检查。

5.会计对象:是指会计所要核算和监督的内容,即会计工作的内容。

6.会计要素:是对会计对象按经济特性所做的基本分类,是会计对象的具体内容。

7.资产:是指企业过去的交易或者事项形成的、由企业拥有或者控制的、预期会给企业带来未来经济利益的资源。

8.负债:是指企业过去的交易或者事项形成的、预期会导致经济利益流出企业的现时义务。

9.所有者权益:是指企业资产扣除负债后由所有者享有的剩余权益,包括实收资本、资本公积、盈余公积和未分配利润。

10.收入:是指企业在日常活动中形成的、会导致所有者权益增加的、与所有者投入资本无关的经济利益的总流入,包括销售商品收入、劳务收入、利息收入等。

11.费用:是指企业在日常活动中发生的、会导致所有者权益减少的、与向所有者分配利润无关的经济利益的总流出。

12.利润:是指企业在一定会计期间的经营成果,包括收入减去费用后的净额、直接计入当期利润的利得和损失等。

13.会计方法:是为实现会计核算、进行会计管理和完成会计任务所采用的手段。

14.会计核算方法:是对单位已经发生的经济活动进行连续、系统、全面的核算所采用的方法,包括设置账户、复式记账、审核和填制会计凭证、登记账簿、成本计算、财产清查和编制财务会计报告。

计算方法复习

计算方法复习

第1章 绪论
§2 对分法(二分法)
2、基本思想(步骤) 取 a0=a ,b0=b (隔根) ,
《 计算其中点,x0=1/2 (a0+b0) 计 如果f(x )=0,则根x*为x 计算结束 0 0, 算 方 如果f(x0) ≠ 0,计算f(a)与f(x0), 法 若 f(a)· f(x0)<0 》
则根x*∈(a,x0),令 a1=a,b1=x0
则对于充分靠近x*的初始值x0,迭代过程是收敛的(局部收敛
《 性),且 计 算 方 ( 1 ) 当Φ’(x*) ≠0 ,迭代过程为线性收敛; 法 》 (2)当Φ’(x*) =0 ,Φ”(x*) ≠0 ,迭代过程为平方收敛。
( k = 1, 2, … )
第1章 绪论
由上面的定理知:
(1)迭代过程是一个求极限的过程,实际计算不能无限次计
k+1 k 《 计 时,取xk+1 作为根的近似值; 算 方 法 (2)由于给定x0后,x1=φ(x0)就确定了,则|x1-x0|为一定值,由 》
算 ,可按事先给定的误差ε,当相邻两次迭代的差|x
其生成一个迭代数列,来逼近方程的根。
《 计 一、迭代格式 算 方 法 考察方程f(x)=0,将f(x)=0改写为下列等价形式 》
x=φ(x)
并可以做出下列的迭代格式 xk+1= φ(xk) k=0,1,2……, (2-7) 则Φ(x) 称为迭代函数
第1章 绪论
从给定的初始近似根x0出发,按迭代公式(2-7)可以得到一个
《 计 算 方 法 》
绝对误差限 相对误差限
有效数字
相对误差
第1章 绪论
若X *的相对误差限满足
《 计 算 方 法 》
则x*至少有n位有效数字。 相对误差限 有效数字位数

计算方法复习资料

计算方法复习资料
(1)已知 x 1 , (A) y
2x2 1 1 x , (B) y ; (1 2 x)(1 x) 1 2x 1 x
2 x( x 1 1 x ) x x
, (B) y
(2)已知 x 1 , (A) y
x
1 1 x ; x x
2sin 2 x 1 cos 2 x (3)已知 x 1 , (A) y , (B) y ; x x
2
敛。 (C) ( x)
1 ,由于当 x 1.3,1.6 时,有 x 1
1 1 2(1.6 1)
3 2
'( x)
2( x 1)
3 2

1.075828706 1 ,
所以对任意初值 x 1.3,1.6 (原方程的根除外) , 迭代格式 xk 1 发散。
0
( x 0) ,
所以当 x 1.3,1.6 时,
( x) 1.3,1.6 。
2 3 x (1 x )
2 2 3
又当 x 1.3,1.6 时, '( x)

2 3
1.6 (1 1.3 )
2 2 3
0.552 1 ,
1
由迭代法收敛定理,对任意初值 x 1.3,1.6 ,迭代格式 xk 1 (1 xk ) 3 ,( k 0,1, 2,) 收
3 2
根的简单迭代法 xk 1 ( xk ) 的收敛性,其中 (A) ( x) 1 1/ x ; (B) ( x) 1 x ; (C) ( x)
2 3 2
1 x 1
解:取 1.5 附近区间 1.3,1.6 来考察。 (A) ( x) 1 减,而 (1.3) 1.59171596 , 因此,当 x 1.3,1.6 时,

计算方法复习要点

计算方法复习要点
2.改进的格式是阶的方法,其计算公式为
. 3.格式是阶的方法,其计算公式为. 4.隐式格式是阶的方法. 5.差分格式是两步法,显式公式.
第四章
1. 迭代法求方程的根时,在重根附近是线性收敛的. 2.迭代是弦截法迭代公式. 3.若迭代收敛于方程的根,且,
而则此迭代是阶收敛的. 4.迭代法求方程的根时,在单根附近是平方收敛的. 5.设迭代函数在方程的根的邻近有连续的二阶导
. 5.消去法是校正技术的应用. 6.若线性方程组按列对角占优或对称正定,则Gauss消去法无需选主元
素. 7.矩阵,为对角元为正的下三角矩阵是为对称正定
矩阵的 充要 条件.
注:仅供参考
引论
1.基于化归策略的三种基本的算法设计技术为缩减技术、校正技术、 松弛技术.缩减技术的设计思想是大事化小,小事化了,如多项式求值 的秦九韶算法;校正技术的设计思想是删繁就简,逐步求精,如求开方 值的迭代公式;松弛技术的设计思想是优劣互补,化粗为精,如求倒数 的迭代算法. 2.由计算公式知,此算法运用了
第二章
1.五个节点的求积公式具有阶精度;而五个节点的 公式具有阶精度.
2.复化梯形求积公式具有阶代数精度. 3.(龙贝格)算法中, . 4.已知为常数,则求积
公式的代数精度为阶. 5.个节点的公式的代数精度至少为. 6. 算法设计中,运用了松弛技术. 7.复化公式与复化公式之间存在公式. 8.个节点的求积公式具有阶的代数精度.
缩减技术. 3.设计累乘求积算法时,可以运用缩减技术. 4.由计算公式知:此算法运用了缩减技术. 5.开方公式是校正技术的应用.
第一章
1.设为次的插值基函数,为两两互异的 节点,则: ;; ; 若则为次数的插值多项式.
2. . 3.设、是满足同一插值条件的次、插

《科学与工程计算方法》期末复习提纲

《科学与工程计算方法》期末复习提纲

用高斯消去法为什么要选主元?哪些方程组可以不选主 元?
高斯消去法与LU分解有什么关系?用它们解线性方程 组Ax=b有何不同?A要满足什么条件?
乔列斯基分解与LU分解相比,有什么特点? 何谓向量范数?给出三种常用的向量范数 何谓矩阵范数?给出三种常用的矩阵范数
第6章 线性方程组的迭代解法
科学与工程计算方法 复习提纲
第1章 科学计算与Matlab
1.1 科学计算的意义 1.2 误差基础知识(了解)
1.2.1 误差的来源 1.2.2 误差度量 1.2.3 有效数字
列出科学计算中的误差的三个来源,并说 出截断误差与舍入误差的区别。
什么是绝对误差与相对误差?什么是近似 数的有效数字?它与绝对误差和相对误差 有何关系?
7.1 非线性方程求根的基本问题 (了解) 7.2 二分法 (掌握) 7.3 不动点迭代方法 (应用) 7.5 牛顿法 (应用) 7.6 割线法 (应用)
什么是不动点迭代法?不动点迭代法的收 敛条件是什么?
什么是牛顿迭代法?什么是割线法?
第8章 矩阵特征值与特征向量的计算
8.1 前言 (了解) 8.2 幂方法 (掌握)
8.2.1 乘幂法 8.2.2 反幂法
什么是乘幂法?它收敛到矩阵A的哪个特征 向量?
什么是反幂法?它收敛到矩阵A的哪个特征 向量?
在乘幂法和反幂法中,为什么每一步要讲 迭代向量规范化?
6.1 范数和条件数 (掌握)
6.1.1 向量范数和矩阵范数 6.1.2 扰动分析和条件数
6.2 基本迭代法 (应用)
6.2.1 雅可比迭代法 2 高斯-赛德尔迭代法
写出求解线性方程组Ax=b的迭代法的一般 形式
写出雅可比迭代与高斯-赛德尔迭代的迭代 矩阵,它们有什么本质的区别?

数值分析(第五版)计算实习题第五章作业教学资料

数值分析(第五版)计算实习题第五章作业教学资料
(1)输入:
>> format compact
>> A=[3.01 6.03 1.99;1.27 4.16 -1.23;0.987 -4.81 9.34];
>> b=[1;1;1];
>> [RA,RB,n,X]=liezhu(A,b),h=det(A),C=cond(A)
输出:
请注意:因为RA=RB,所以方程组有唯一解
ans =
-9.5863 18.3741 -3.2258 3.5240
xX =
10.4661
jxX =
0.9842
Xgxx =
22.7396
xAb =
0.0076
xAbj =
0.0076
Acp =
2.9841e+03
第四题:
(1)输入:
建立m文件:
forn=2:6
a=hilb(n);
pnH(n-1)=cond(a,inf);
RA =
3
RB =
3
n =
3
X =
1.0e+03 *
1.5926
-0.6319
-0.4936
h =
-0.0305
C =
3.0697e+04
(2)输入:
>> A=[3.00 6.03 1.99;1.27 4.16 -1.23;0.990 -4.81 9.34];
>> b=[1;1;1];
>> [RA,RB,n,X]=liezhu(A,b),h=det(A)
>> r=b-H*X,deltax=X-x
输出:
X =

计算方法第1章复习(05)

计算方法第1章复习(05)

第1章 误差一、考核知识点:误差的来源,绝对误差、绝对误差限、相对误差,相对误差限,有效数字,准确数位,误差传播。

二、考核要求:1.知道误差的主要来源,误差传播。

2.了解绝对误差、绝对误差限、相对误差,相对误差限、掌握其确定方法。

3.掌握有效数字,准确数位的求法。

4.误差传播(一元函数的、二元函数、多元函数误差传播公式) 4.数值计算中应注意的一些问题(算法设计的几个原则)。

三、典型例题分析1.近似值0.45的误差限为( )。

A . 0.5 B. 0.05 C . 0.005 D. 0.0005.解 因 210450.00.45⨯=,它为具有3位有效数字的近似数,其误差限为 1231021101021--⨯=⨯⨯=ε。

或2,3m n ==,m-n=-1,其误差限为 13210211021--⨯=⨯=ε 所以 答案为B. 2.已知 4142135.12==*x ,求414.1=x 的误差限和相对误差限。

类似地,还可估计e的近似值的有效数字位数。

解:(绝对)误差限:0005.00003.00002135.0241.1<<=-=∆ x 所以(绝对)误差限为0003.0=ε,也可以取0005.0=ε。

一般地,我们取误差限为某位数的半个单位,即取 0005.0=ε。

相对误差限:rx x x x εδ=<=-=-=*0002.000015.0414.14142135.1414.1)(所以,相对误差限0002.0=r ε3.已知 ,1415926.3*==πx 求近似值142.3=x 的误差限,准确数字 或有效数字。

解 由,00041.01415926.3142.3<-= x ∆ 误差限为31021-⨯=ε因为1,3,4m n m n ==--=,所以由定义知x 是具有4位有效数字的近似值,准确到310-位的近似数。

注意:当只给出近似数x 时,则x 必为四舍五入得到的有效数字,则可直接求出误差限和有效数字。

计算方法总复习

计算方法总复习

数值分析复习一、期末考试试题期末考试的试卷有填空题和解答题。

解答题共7个题,分数约占70%。

期末考试主要考核:●基本概念;●基本原理;●基本运算。

必须带简易计算器。

总成绩=平时成绩*20%+期末成绩*80%二、考核知识点、复习要求第1章误差(一) 考核知识点●误差的来源类型;●绝对误差和绝对误差限,相对误差和相对误差限,有效数字;●绝对误差的传播。

(二) 复习要求1. 产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

第2章方程求根(一) 考核知识点二分法;迭代法;牛顿法;弦截法。

(二) 复习要求1. 知道有根区间概念,和方程f(x)=0在区间 (a,b)有根的充分条件。

2. 掌握方程求根的二分法,知道其收敛性;掌握二分法迭代次数公式;掌握迭代法,知道其收敛性。

3. 熟练掌握牛顿法。

掌握初始值的选择条件。

4. 收敛阶和收敛速度第3章线性方程组的数值解法(一) 考核知识点高斯顺序消去法,列主元消去法,LU分解法;消去法消元能进行到底的条件;雅可比迭代法,高斯―赛德尔迭代法,超松弛迭代法;迭代解数列收敛的条件。

(二) 复习要求1. 掌握线性方程组雅可比迭代法和高斯――赛德尔迭代法。

2. 知道高斯消去法的基本思想,熟练掌握高斯顺序消去法和列主元消去法。

3. 知道解线性方程组的高斯消去法消元能进行到底的条件,迭代解收敛性的充分条件。

4. Cond(A)的概念和性质第4章函数插值与最小二乘法(一) 考核知识点●插值函数,插值多项式;●拉格朗日插值多项式;插值基函数;●牛顿插值多项式;差商表;●分段线性插值、线性插值基函数●最小二乘法,法方程组,线性拟合、二次拟合、指数拟合。

(二) 复习要求1. 了解插值函数,插值节点等概念。

2. 熟练掌握拉格朗日插值多项式的公式,知道拉格朗日插值多项式余项。

3. 掌握牛顿插值多项式的公式,掌握差商表的计算,知道牛顿插值多项式的余项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计算机在材料科学中的应用》习题课第一章 误差等概念1. 误差来源:模型误差、观测误差、截断误差、舍入误差2. 绝对误差(限):e=x*-x ,|e|=|x*-x|≤ε3. 相对误差(限):e r =(x*-x)/x ,|e r |=|x*-x|/|x|≤εr4. 有效数字:|e|≤m-n 11025. 防止误差的危害:避免两相近数相减,多数作乘数或小数作除数,大数“吃”小数第二章 方程求根1. 根的存在及隔离2. 二分法:误差是()k+11b-a 23. 迭代法:'1x (x)|(x)|1 ||k k x x ϕϕε+=<-<, ,4. 加速法:'()L x ϕ≈取, 1111() L 1Lk k k k k k x x x x x x ϕ-+--+++⎧⎪⎨+-⎪⎩-==() 5. 牛顿迭代法:1000''1'111111'f()f()f ()0f ()f() f ()=c f()-f()f()()f ()=f()-f()f() f ()k k k k k k k k k k k k k k k k k k k k k k k x x x x x x x x x x x c x x x x x x x x x x x x x x x x λλ++--+--+->-----g ''=, 选取时使得简化牛顿法:,=拟牛顿法(割线法): ,=牛顿下山法:=, 选取下山因子使得1|f()|<|f()|k k x x +⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩第三章 方程组求解1. 消去法:高斯消去法,列主元消去法,高斯-约当法,消元因子 ()()k ikik k kka l a =消元公式 (k+1)(k)(k)ij ij ik kj (k+1)(k)(k)i i ik k a =a -l a (i,j=k+1,k+2,...,n)b =b -l b (i=k+1,k+2,...,n)⎧⎪⎨⎪⎩ 回代公式 kjn(k)(k)kjj=k+1k (k)kkb - a x x =(k=n,...,1)a∑2. 矩阵直接分解:紧凑格式3. 追赶法4. 迭代法:收敛条件1||||nii ij j j ia a =≠>∑①雅可比法迭代格式:ji n(k)i ij j=1j i(1)iib -a x x =(i=1,2,...,n) a k ≠+∑②高斯-赛德尔法迭代格式:jji i-1n(k+1)(k)i ij ij j=1j=i+1(1)iib -a x -a x x =(i=1,2,...,n)a k +∑∑第四章 插值法1. 插值多项式2012j j j j (1)n+1 ()()... , (x )= f( x )= y (j=0,1,...,n) x [a,b],() ()=()-()=()(n+1)!n n n n f x P x a a x a x a x P f R x f x P x x ξω+≈=++++=插值条件,插值节点,插值区间插值余项2. 拉格朗日插值: 插值基函数 n 001 () L ()()0 n nji j i i j i j j ix x i j l x x y i jx x ==≠-=⎧==⎨≠-⎩∑∏g ,3. 差商:10011002010122101k-2k 01k-2k-101k k k-1f(x )-f(x )f[x ,x ]=x -x f[x ,x ]-f[x ,x ]f[x ,x ,x ]=x -x f[x ,x ,...,x ,x ]-f[x ,x ,...,x ,x ]f[x ,x ,...,x ]=x -x 一阶差商二阶差商k 阶差商4. 牛顿插值公式f(x)=f(x 0)+f[x 0,x 1](x-x 0)+f[x 0,x 1,x 2](x-x 0)(x-x 1)+… +f[x 0,x 1,…,x n ](x-x 0)(x-x 1)…(x-x n-1) 5. 差分(等间距节点)111122111 = () , () -() -() - - k k k k k k k k k k k k k k m m m k k k x x kh x x f f x f x x h f f f f x x h f f f f x x h f f fm f f f δ+-+---+=+-∆≡∇≡≡∆=∆∆k 0k+1k 等距节点时,(k=0,1,...,n ),h=记则在处以为步长的向前差分:在处以为步长的向后差分:在处以为步长的中心差分:同样也有各自的阶差分111111122- -m m m k k k m m m k k k f f f f f fδδδ-----+-∇=∇∇=6. 牛顿前插公式20000001012nf f f ()=()+(-)()()....()...()()h 2!h n!h n n n f x f x x x x x x x x x x x R x -∆∆∆+--++--+7. 样条插值:三次样条插值,要求光滑、连续第五章 曲线拟合最小二乘原理2012n2i 01m j j j=1n (j=1,2,...,n),[]()...a (i=0,1,..., m),• (a ,...,a )= [P(x ) - y ] (x)(x,y ) m m p x a a x a x a x p n ϕ=++++∑j j 1n 有对数据(x ,y )在x ,x 上求一个m 次多项式适当选取使得,a 为最小值,则称为最小二乘拟合多项式是间的经验公式。

有正规方程组200010012000 ... ... ................................................. ... n n nmj j j j j j n n m j j j j n n n m m mj j j j j j x x x x x x x x ===+==+===⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭∑∑∑∑∑∑∑∑00100 ........ nj j nj j j n mm j j j a y x y a a x y ===⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑列表计算累加和如下从正规方程组中解得拟合多项式的各个系数值a i (i=0,1,…,m)。

第六章 数值积分、微分1. 积分的有限过程()() nbk k k ak f x dx A f x x =≈∑⎰k ,其中A 是求积系数,是求积节点a) 插值型求积公式用插值多项式代替被积函数,()()()() ()nnnbbb bn kkkkkaa aa k k kb k af x dx L x dx f x l x dx f x l x dx f x l x dx===≈====∑∑∑⎰⎰⎰⎰⎰kk ()()()A 所以A从而在有两个求积节点时得到梯形公式 []b-a()()f(a)+f(b)2ba f x dx T f ≈=⎰ 有三个等距求积节点时得到Simpson 公式 b-a a+b f(a)+4f()+f(b)62()ba f x dx ≈⎡⎤⎢⎥⎣⎦⎰S(f)=2. 柯特斯公式(等距节点情况):①柯特斯系数 ()()001(1)()!()!n k n n n kj j kCt j dt n k n k -=≠-=⋅--∏⎰ ②柯特斯求积公式(有五个等距求积节点时) []01234b-a 7f(x )+32f(x )+12f(x )+32f(x )+12f(x )90()ba f x dx ≈=⎰4C(f)=I3. 复化求积x b an h n-=k 将求积区间[a,b]作等分,并记步长值,则=a+kh (k=0,1,...,n)。

①复化梯形公式h ()f(a)+2f(x )+f(b) 2baf x dx ⎡⎤≈=⎢⎥⎣⎦∑∑⎰n-1n-1n k k k=1k=1T(f)=I ②复化Simpson 公式12k+h ()f(a)+4f(x )+2f(x )f(b) 6baf x dx S ⎡⎤≈=+⎢⎥⎣⎦∑∑∑⎰n-1n-1n-1n k k k=1k=0k=1(f)=I③复化柯特斯公式113424n-10k k+k+k+k=0h7f(x )+90()(32f(x )+12f(x )+32f(x )+14f(x )+7f(b))baf x dx ≈⎡⎤⎢⎥⎣⎦∑⎰n C (f)=4. 步长自适应n+1h f(a)+2f(x )+f(b)2x x n+111 f(x )22⎡⎤=⎢⎥⎣⎦+∑∑∑12n-1n-1n k k k=1k=1k k+12n n n-12n n k+k=0将求积区间n 等分后,共有个分点,可以得到积分值T =I 若将每个小区间[,]再二分,则有2个分点,此时的积分值T 与T 之间有关系如下T =T 5. 龙贝格求积公式n 2n n n 2n n n 2n n 41S =T -T 33161C =S -S 1515641R =C -C 6363⎧⎪⎪⎪⎨⎪⎪⎪⎩6. 数值微分①二点公式010111021h f'(x )=[f(x )-f(x )]-f"() h 21h f'(x )=[f(x )-f(x )]+f"() h 2ξξ⎧⎪⎪⎨⎪⎪⎩②三点公式200121210222201231h f'(x )=[-3f(x )+4f(x )-f(x )]+f"'() 2h 31h f'(x )=[-f(x )+f(x )]-f"'()2h 61h f'(x )=[f(x )-4f(x )+3f(x )]+f"'()2h 3ξξξ⎧⎪⎪⎪⎨⎪⎪⎪⎩第七章 常微分方程的数值解法1. 边值问题和初值问题①边值问题 y"=f(x,y,y') yy(a)=, y(b)=αβ⎧⎪⎨⎪⎩求解边值问题可以转化为初值问题求解。

②初值问题 000y'=f(x,y) x xy(x )=y ⎧⎨⎩≥求解满足上述两式的近似值y i ,即在a ≤x 0≤x 1≤…≤x n ≤b 上的y(x i )的近 似值y i (i=0,1,2,…,n)。

通常取等距节点,即h=x i+1-x i ,有x i =x 0+ih (i=0,1,2,…,n)。

初值问题的数值解法特点:按节点顺序依次推进,由已知的y 0 , y 1 , …, y i ,求出y i+1,这可以通过递推公式得到。

相关文档
最新文档