振型分解反应谱法求位移例题3.2.2

合集下载

计算水平作用的振型分解反应谱法

计算水平作用的振型分解反应谱法

计算水平作用的振型分解反应谱法水平作用的振型分解反应谱法是一种用于结构地震响应分析的方法。

它通过将结构的地震响应分解为多个模态响应,并结合每个模态的频率、阻尼和模态形态,计算出结构在不同地震波作用下的反应谱。

水平作用的振型分解反应谱法的基本原理是基于结构的振型分解理论。

振型分解理论认为,结构的地震响应可以看作是一系列模态振型的叠加效应。

每个模态都代表了结构在不同频率下的振动行为。

根据模态分解的原理,可以将结构的振动方程简化为模态响应方程。

在计算水平作用的振型分解反应谱时,首先需要确定结构的振型特性,包括结构的固有周期、振型形态和阻尼比。

通常可以通过有限元分析或振动试验等方法来确定这些特性。

然后,需要确定地震波的加速度谱。

地震波的加速度谱描述了地震波在不同频率下的强度。

可以通过查阅地震动数据库或根据地震动参数进行计算来获取。

接下来,可以根据结构的振型特性和地震波的加速度谱,计算每个模态下的反应谱。

对于每个模态,可以首先计算出结构的频率响应函数。

频率响应函数描述了结构在单一频率下的响应特性,包括振幅和相位。

然后,将频率响应函数和地震波的加速度谱进行卷积积分,得到模态响应谱。

模态响应谱描述了结构在单个模态下的振动响应特性,包括最大位移、最大加速度和最大应变等。

最后,将每个模态的响应谱按照其中一种组合规则进行叠加,得到整个结构的反应谱。

常见的组合规则包括将每个模态响应谱按照线性叠加或主应力法进行组合。

线性叠加方法适用于结构的线性响应范围,主应力法适用于结构的非线性响应范围。

通过计算水平作用的振型分解反应谱,可以获得结构在地震作用下的振动响应特性。

这些特性可以用于评估结构的抗震性能,指导结构的设计和加固,以增强结构的地震抗力。

《振型分解反应谱法》课件

《振型分解反应谱法》课件

振型分解反应谱法的应用前景
支撑结构的设计和评估
结构设计师和工程师可以利用振 型分解反应谱法,解决实际工程 中的动力响应问题。
工程抗震加固
对已经存在的结构进行加固和改 造时,可以使用振型分解反应谱 法进行更加精细的工程分析,在 不拆除原有结构的同时,提高结 构抗震能力。
地震灾害对策和减灾措施
应用振型分解反应谱法,制定防 灾预案,提高灾害应对和减灾能 力。
振型分解反应谱法
综合振型分解法和反应谱法的优势,识别结构响应来源并计算其动力响应。在大型和复杂结 构抗震分析中应用广泛。
振型分解反应谱法的步骤
数据采集和准备
收集地震动数据,进行处理和筛 选。
滤波处理
去除噪音,提取有效信息。
振型识别和分离
根据振动理论进行振型分解,分 离出不同频率的振型组合。

反应谱计算
振型分解反应谱法的总结和展望
1 现有研究进展
当前振型分解反应谱法的应用领域已经涵盖了建筑、桥梁、风电、海洋、地基、地铁等 众多领域。
2 未来研究方向
应用人工智能技术优化振型分解反应谱法的分析精度和速度,以及开发更加智能化的分 析工具。
3 机遇和挑战
随着大型基础设施建设和城市更新进程加快,结构的抗震设计和评估的需求日益增长。 振型分解反应谱法将有广阔的市场前景,也面临着挑战。
根据结构振型组合和地震动谱计 算每个组合的动力响应。
振型分解反应谱法的数学基础
1
谱分解定理的定义和原理
将一个线性有界算符分解成一组特征向量和特征值,用于结构振动分析。
2
单自由度系统的反应谱
单自由度结构的动力响应,是地震加速度历时曲线和结构自振响应的乘积。
3
多自由度系统的反应谱

振型分解反应谱法

振型分解反应谱法

如何解j振型对应的广义坐标方程
Dj (t)
2
j
j
Dj
2 j
D
j
(t)
j
xg (t)
已知:对于单自由度体系
x 2x 2x xg (t)
x(t) 1
d
t 0
xg (
)e
(t
)
sin
d
(t
)d
对于j振型折算体系(右图)
j
(t
)
1
j
t 0
xg (
)e
j
j
(t
)
sin
j
(t
)d
D
j
(t
)
j j
其中: Fji (t) mi[x ji jj (t) x ji j xg (t)]
---t时刻第j振型i质点的水平地震作用
Fji (t) mi[x ji jj (t) x ji j xg (t)]
---t时刻第j振型i质点的水平地震作用
体系j振型i质点水平地震作用标准值为:
Fji Fji (t) max mi x ji j j (t) xg (t) max
0.55 0.75
第三组 0.35
0.45
0.65 0.90
例:试用振型分解反应谱法计算图示框架多遇地震时的层间剪力。 抗震设防烈度为8度,Ⅱ类场地,设计地震分组为第二组。
解:(1)求体系的自振周期和振型
0.334
0.667
4.019
X 1 0.667 X 2 0.666 X 3 3.035
F1n
F2n
F jn
Fnn
mi
F1i
F2i
F ji
Fni

计算水平地震作用的振型分解反应谱法

计算水平地震作用的振型分解反应谱法

& & & Ri = ci1x1 + ci2 x2 +Lcinxn
xi
& mi &&i + ∑cij xi + ∑kij xi = mi &&g x x
j =1 j =1
n
n
i =1,2,LN
xg(t) Ri (t)
i质点相对于基础的位移与加速度为
xi (t) = ∑xji Dj (t)
j =1
N
职业技学院
---体系j振型i质点水平地震作用标准值计算公式 ---体系j振型i 体系
α j ---相应于j振型自振周期的地震影响系数; ---相应于j振型自振周期的地震影响系数; 相应于
xji --- j振型i质点的水平相对位移; 振型i质点的水平相对位移;
一般只取2-3个振型, 一般只取 个振型, 个振型 当基本自振周期大于1.5s 当基本自振周期大于 或房屋高宽比大于5时 或房屋高宽比大于 时, 振型个数可适当增加。 振型个数可适当增加。
3 3
2 270×(0.667) + 270×(0.666) +180×1 = 0.428 第二振型 γ 2 = ∑mi x2i / ∑mi x2i = 2 2 2 i =1 i=1
3
3
270×(0.667) + 270×(0.666) +180×1
第三振型 γ 3 = ∑mi x3i / ∑m x
V23 = 120.8
职业技学院
17 . 8
17 .8 kN 80 .9 kN
63 . 1 44 . 1 3振型
107 .2 kN
第三振型
(5)计算各振型的地震作用效应(层间剪力) 计算各振型的地震作用效应(层间剪力)

振型分解反应谱法

振型分解反应谱法

附录一 振型分解反应谱法振型分解反应谱法作为弹性多自由体系的主要分析方法,很有必要对振型分解反应谱法有充分的了解。

本文仅作为大家参考之用,如有理解上的错误或者不当,敬请谅解。

1、单自由度体系在地震作用下的运动 如图(1)所示,根据达朗贝尔原理有: 0=++s I c f f f (1)也即:g u m ku u c um -=++ (2) 方程两边同时除以m ,可化为:g u u u u-=++22ωξω (3) 式中,2/k m ω= ,令ωξm c2=,为体系阻尼比。

2、多自由度体系在地震作用下的运动类似于单自由度体系分析过程,体系运动方程为:g u m u k u c u m ][}]{[}]{[}]{[-=++ (4)无阻尼体系自由振动时,0=g u,0=c ,上式即为: }0{}]{[}]{[=+u k um (5) 根据方程解的特征,设其解的形式为:)sin(}{}{ϕωφ+=t u (6)代入(5)式有:}0{)sin(}]){[]([2=+⋅-ϕωφωt m k (7)由于0)sin(≠+ϕωt则}0{}]){[]([2=-φωm k (8)另外,}0{}{≠φ,故特征方程为:0][][2=-m k ω (9)由(9)式可以求出2ω,进而可以求得各阶振型对应的圆频率2i ω,再代入(8)式可求对应于各个2i ω的特征向量}{i φ,即为振型。

振型φ:多自由度体系自由振动时,各质点在任意时刻位移比值是一定的,不随时间变化,即体系自由振动过程中形状保持不变。

振型是结构形状保持不变的振动形式,振型的形状是唯一的。

N 个自由度的体系具有N 个振型。

则结构的变形总可以表示成这N 个振型的线性组合:{}∑==Ni i i q u 1φ (10)其中i q 称为正则坐标。

3、振型的正交性由于}0{}]{[}]{[2=-φωφm k (11) 则}0{}]{[}]{[2=-r r r m k φωφ (12)(12)式两边同时左乘T n }{φ,)(r n ≠,得到:}]{[}{}]{[}{2r T n r r T n m k φφωφφ= (13)同理,}]{[}{}]{[}{2n Tr n n T r m k φφωφφ=,该式两边同时转置一次,得到:}]{[}{}]{[}{2r T n n r T n m k φφωφφ= (14)(13),(14)两式左右对应相减,得到:0}]{[}){22=-r T n n r m φφωω( )(n r ≠ (15)因为22n r ωω≠所以 0}]{[}{=r Tn m φφ )(n r ≠ (16) 同理亦有 0}]{[}{=r Tn k φφ )(n r ≠ (17)即所说的振型关于质量和刚度矩阵满足正交性质。

振型分解反应谱法题库

振型分解反应谱法题库

振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。

该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。

振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。

适用条件(1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。

(此为底部剪力法的适用范围)(2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。

(3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。

刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。

因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。

同样,对刚重比的调整也可能影响周期比。

特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。

见高规5.4.1和5.4.2及相应的条文说明。

刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。

规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。

见高规5.4.4及相应的条文说明。

刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。

但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。

第三章 计算水平地震作用的振型分解反应谱法(第9节课讲义)

第三章   计算水平地震作用的振型分解反应谱法(第9节课讲义)

地震特征周期分组的特征周期值(s)
场地类别




第一组 0.25
0.35
0.45 0.65
第二组 0.30
0.40
0.55 0.75
第三组 0.35
0.45
0.65 0.90
(2)计算各振型的地震影响系数
查表得 max 0.16
Tg 0.4s
第一振型 Tg T1 5Tg
第二振型 0.1s T2 Tg
---t时刻第j振型i质点的水平地震作用
Fji Fji (t) max mi x ji j j (t) xg (t) max
---体系j振型i质点水平地震作用标准值
单自由度体系水平地震作用:
F
F (t ) max
m x(t) xg (t) max
G
多自由度体系j振型i质点水平地震作用:
mx cx kx m1xg (t)
mN
mi
xi
m2
m1
xg(t)
mi mi (xi xg )
Si (t)
Ri (t)
D j
(t )
2
j
j
D j
2 j
D
j
(t )
X
T j
M
1
X
T j
M
X
j
xg
(t )
n
j
X
T j
M
1
X
T j
M
X
j
mi x ji
i 1
n
mi
x
2 ji
i 1
---j振型的振型参与系数
335.8 671.6 845.8
组合后各层地震剪力

振型分解反应谱法

振型分解反应谱法

振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。

该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。

振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。

适用条件(1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。

(此为底部剪力法的适用范围)(2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。

(3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。

刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。

因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。

同样,对刚重比的调整也可能影响周期比。

特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。

见高规5.4.1和5.4.2及相应的条文说明。

刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。

规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。

见高规5.4.4及相应的条文说明。

刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。

但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档