12yue 25立体几何线面关系练习题

合集下载

线面垂直题型20道

线面垂直题型20道

线面垂直题型20道
1. 两条直线的夹角为90度,则它们一定垂直。

2. 如果一条直线垂直于另一条直线,那么任意一条过这两条直线的线段,这条线段上的点就分别与这两条直线的交点连成的线段垂直。

3. 两条直线分别垂直于第三条直线,则这两条直线平行。

4. 一条线段的中垂线与线段垂直。

5. 任意一个点到平面上一直线的垂足所在的直线与这条直线垂直。

6. 如果一个三角形的两条边互相垂直,则这个三角形是直角三角形。

7. 如果一条直线与一个平面垂直,则这条直线称为这个平面的法线。

8. 一个正方体的某个面与它所在的平面垂直。

9. 一个矩形的对角线互相垂直。

10. 一个正方形的对角线互相垂直。

11. 如果两个面互相垂直,则它们的法线互相平行。

12. 如果平面P垂直于直线L1,且L1垂直于直线L2,则平面P和直线L2互相平行。

13. 如果两条直线互相垂直,则它们的斜率的乘积为-1。

14. 如果一条直线过一个圆的圆心,则这条直线与圆的切线垂直。

15. 如果一条直线垂直于直径所在的直线,则它和圆的切线互相平行。

16. 直角梯形的两条腰互相垂直。

17. 如果两个向量垂直,则它们的点积为0。

18. 如果直线L1垂直于平面P,那么L1上任意一点到P的距离均相等。

19. 一个正六面体的某个面与它所在的平面垂直。

20. 如果两个三维空间中的直线垂直,则它们的方向向量的点积为0。

立体几何第二章空间点线面的位置关系单元测试题(含详细答案解析)

立体几何第二章空间点线面的位置关系单元测试题(含详细答案解析)

第二章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线l1∥l2,在l1上取3个点,在l2上取2个点,由这5个点能确定平面的个数为错误!()A.5B.4C.9D.1[答案] D[解析]由经过两条平行直线有且只有一个平面可知分别在两平行直线上的5个点只能确定一个平面.2.教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线错误!()A.平行B.垂直C.相交D.异面[答案] B[解析]当直尺垂直于地面时,A不对;当直尺平行于地面时,C不对;当直尺位于地面上时,D不对.3.已知m、n是两条不同直线,α、β是两个不同平面,则下列命题正确的是错误!()A.若α、β垂直于同一平面,则α与β平行B.若m、n平行于同一平面,则m与n平行C.若α、β不平行...与β平行的直线...,则在α内不存在D.若m、n不平行...垂直于同一平面...,则m与n不可能[答案] D[解析]A项,α、β可能相交,故错误;B项,直线m、n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m、n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.已知α、β是两个平面,直线l⊄α,l⊄β,若以①l⊥α;②l∥β;③α⊥β中两个为条件,另一个为结论构成三个命题,则其中正确的命题有导学号 92180600() A.①③⇒②;①②⇒③B.①③⇒②;②③⇒①C.①②⇒③;②③⇒①D.①③⇒②;①②⇒③;②③⇒①[答案] A[解析]因为α⊥β,所以在β内找到一条直线m,使m⊥α,又因为l⊥α,所以l∥m.又因为l⊄β,所以l∥β,即①③⇒②;因为l∥β,所以过l可作一平面γ∩β=n,所以l∥n,又因为l⊥α,所以n⊥α,又因为n⊂β,所以α⊥β,即①②⇒③。

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。

第8章立体几何专题2 点线面的位置关系常考题型专题练习——【含答案】

第8章立体几何专题2 点线面的位置关系常考题型专题练习——【含答案】

旗开得胜点线面的位置关系【知识总结】1、平面的基本性质基本事实1:如果一条直线上的两点在一个平面内,那么这条直线就在此平面内基本事实2:经过不在同一条直线的三点,有且只有一个平面基本事实3:如果不重合的两个平面有一个公共点,那么它们有且仅有一条过该点的公共直线推论1:经过一条直线和这条直线外一点,有且只有一个平面推论2:经过两条相交直线,有且只有一个平面推论3:经过两条平行直线,有且只有一个平面基本事实4:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.注意事项:(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法(3)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线1旗开得胜 12、直线与直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内3、直线与平面的位置关系有平行、相交、在平面内三种情况.4、平面与平面的位置关系有平行、相交两种情况.【巩固练习】1、(1)下列说法错误的是( )A.平面α与平面β相交,它们只有有限个公共点B.经过一条直线和这条直线外的一点,有且只有一个平面C.经过两条相交直线,有且只有一个平面D.如果两个平面有三个不共线的公共点,那么这两个平面重合(2)下列结论中不正确的是( )A.若两个平面有一个公共点,则它们有无数个公共点B.若已知四个点不共面,则其中任意三点不共线C.若点A既在平面α内,又在平面β内,则α与β相交于b,且点A在b上D.任意两条直线不能确定一个平面【答案】(1)A(2)D【解析】A. 平面α与平面β相交,它们只有有限个公共点平面与平面相交成一条直线,因此它们有无限个公共点.A错误.B. 经过一条直线和这条直线外的一点,有且只有一个平面直线和直线外一点确定一个平面,B正确C. 经过两条相交直线,有且只有一个平面两条相交直线确定一个平面,C正确D. 如果两个平面有三个不共线的公共点,那么这两个平面重合不共线的三点确定一个平面,D正确故答案选A.(2)由平面基本性质可知,若两个不重合的平面有一个公共点,则两平面相交于过这一点的一条直线,有无数个公共点,因此选项A,C正确;当平面四个点中,有三点共线,由直线与直线外一点确定一个平面可得此四个点共面,故假设不成立,即其中任意三点不共线,因此选项B正确;若两条直线平行或相交,则可以确定一个平面,因此选项D错误.故选D.2、一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )11A .1或3B .1或4C .3或4D .1、3或4【答案】D【解析】直线之外不共线的三点记为A ,B ,C .当直线在A ,B ,C 所确定的平面内时,它们只能够只确定一个平面;当A ,B ,C 三点中有两点与直线共面时,能确定平面有3个;当A ,B ,C 三点中没有两点与直线共面时,这样可确定的平面最多就可以达到4个.故选:D .3、已知//,a b αα⊂,则直线a 与直线b 的位置关系是( )A .平行B .相交或异面C .异面D .平行或异面 【答案】D【解析】∵a ∥α,∴a 与α没有公共点,∵b ⊂α,∴a 、b 没有公共点,∴a 、b 平行或异面.故答案为:D4、若直线a,b,c 满足a ∥b,a,c 异面,则b 与c ( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线 【答案】C【解析】由于//a b ,,a c 异面,此时,b 和c 可能相交,也即共面,如图所示b 与c 相交;b 和c 也可能异面,如图所示'b 与c 异面.综上所述,b 与c 不可能是平行直线.故选C.。

立体几何点线面位置关系习题精选

立体几何点线面位置关系习题精选

同步练习第I 卷(选择题)1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A 、若m ∥,n α∥α,则m ∥nB 、若,αγβγ⊥⊥,则α∥βC 、若n ∥,n α∥β,则α∥βD 、若,m n αα⊥⊥,则m ∥n 2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面, 则下列命题中正确的是 ( ) A .//,//m n αα,则//m n B .,m m αβ⊥⊥,则//αβ C .//,//m n m α,则//n α D .,αγβγ⊥⊥,则//αβ3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( ) A .若α∥β,m ∥α,则m ∥β B .若α⊥β,m ⊥β,则m ⊥α C .若m ⊥α,m ⊥β,则α∥β D .若m ∥α,m ⊥n ,则n ⊥α4.已知l ,m 是两条不同的直线,α是一个平面, 则下列命题正确的是( )A .若l α⊥,m α⊂,则l m ⊥B .若l m ⊥,m α⊂,则l α⊥C .若l ∥α,m α⊂,则l ∥mD .若l ∥α,m ∥α,则l ∥m 5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l α⊥,l m //,则m α⊥ B .若l m ⊥,m α⊂,则l α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m // 6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( ) A .若α⊥a 且b a ⊥,则α//bB .若αγ⊥且βγ⊥,则βα//C .若α//a 且β//a ,则βα//D .若αγ//且βγ//,则βα//7.关于空间两条直线a 、b 和平面α,下列命题正确的是( ) A .若//a b ,b α⊂,则//a α B .若//a α,b α⊂,则//a b C .若//a α,//b α,则//a b D .若a α⊥,b α⊥,则//a b8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( )①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α⊄,m β⊥,则//m α ③若m β⊥,m α⊂,则αβ⊥ ④若αβ⊥,m α⊂,n β⊂,则m n ⊥ A .0个B .1个C .2个D .3个10.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题: ①若//,m n m n αα⊥⊥,则; ②若,,//m m αβαβ⊥⊥则; ③若,//,,m m n n αβαβ⊥⊂⊥则; ④若//,//m n m n ααβ⋂=,则. 其中正确命题的个数是( )A.0B.1C.2D.311.已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是 A. ,////m n m n αα⊂⇒ B. ,m n m n αα⊂⊥⇒⊥ C. ,,////m n m n αβαβ⊂⊂⇒ D. ,n n βααβ⊂⊥⇒⊥12.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥(C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ13.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是 A.若,,mm αβ则αβ B. .若,,m m αβ则αβ⊥C.若,,m m αβ⊥⊥则αβ D. 若,,m m αβ⊥⊥则αβ⊥14.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是( ) A .若l ∥m ,m α⊂,则l ∥α; B .若,,,l m l n m n α⊥⊥⊂,则l α⊥; C .若l ∥α,l ∥β,m αβ=,则l ∥m ; D .若,,l m l m αβ⊂⊂⊥,则αβ⊥.15.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,a b b α⊂,则//a α C.若//,,,a b αβαγβγ==则//a b D.若,,//,//a b a b ββαα⊂⊂,则//βα第II 卷(非选择题)二、解答题(本题共7道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分别为PC 、BD 的中点.(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:平面PDC ⊥平面PAD ;BA17.(本题10分)如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA ∥平面BDE ; (2)BD ⊥平面PAC .18.(本小题8分)如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且2PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ;(3) 求二面角B PD C --的正切值.PO ECDBACBAD1B1A1C19.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==. (Ⅰ)求证:1//AC 平面1AB D ; (Ⅱ)求点A 1 到平面1AB D 的距离.20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠= E 、F 分别是PB 、CD 的中点,且4PB PC PD ===. (1)求证:PA ABCD ⊥平面; (2)求证://EF 平面PAD ; (3)求二面角A PB C --的余弦值.21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (Ⅰ)求证://EF 平面PAD ; (Ⅱ)求证:EF CD ⊥;(Ⅲ)设PD=AD=a, 求三棱锥B-EFC 的体积.BA22.(本小题满分10分)P-中,底面ABCD是矩形,如图,在四棱锥ABCDAP=,E,F分别是PB,PC的中点.PA⊥平面ABCD,AB(Ⅰ)证明:EF∥平面PAD;AE⊥.(Ⅱ)求证:PC评卷人得分三、解答题(本题共3道小题,每小题10分,共30分)评卷人得分四、填空题(本题共4道小题,每小题0分,共0分)23.已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题序号是______24.设,m n是两条不同的直线,,αβ是两个不同的平面,下列正确命题的序号是__________。

2024届高考数学立体几何专项练(3)空间点、直线、平面之间的位置关系

2024届高考数学立体几何专项练(3)空间点、直线、平面之间的位置关系

π3B.π4A.A.BM EN=,且直线BM,EN18.已知E,F,G,H分别是三棱锥A BCD-棱AB,BC,3.答案:D9.C11.答案:ABD解析:A 项,如图,易证//A D B C ,显然BC B ⊥C 项,如图,设111A C B D BB D D C BO ∠13.答案:45°或135°那么222151331544cos 155232a a a MCE a a+-∠==⨯⨯.16.答案:若②③④则①或若①③④则②解析:若①m n ⊥,②αβ⊥,③m β⊥成立,则n 与α可能平行也可能相交,也可能n α⊂,即④n α⊥不一定成立;若①m n ⊥,②αβ⊥,④n α⊥成立,则m 与β可能平行也可能相交,也可能m β⊂,即③m β⊥不一定成立.若①m n ⊥,③m β⊥,④n α⊥成立,则②αβ⊥成立.若②αβ⊥,③m β⊥,④n α⊥成立,则①m n ⊥成立.17.答案:②④解析:如题干图①中,直线//GH MN ;题干图②中,G ,H ,N 三点共面,但M ∉平面GHN ,因此直线GH 与MN 异面;题干图③中, 连接MG(图略),//GM HN ,因此,GH 与MN 共面;题干图④中G ,M ,N 三点共面,但H ∉平面GMN ,所以GH 与MN 异面.18.答案:1或3解析:因为E ,F ,G ,H 分别是三棱锥A BCD -棱AB ,BC ,CD ,DA 的中点,所以EF 为ABC △的中位线,故//EF AC 且12EF AC =,同理GH 为ACD △的中位线,故//GH AC 且12GH AC =,所以EF 平行且等于GH ,所以四边形EFGH 是平行四边形且112EF AC ==,同理//FG BD 且112FG BD ==,因为AC 与BD 所成角为60°,所以60EFG ∠=︒或120°,当60EFG ∠=︒时,1EG =.当120EFG ∠=︒时,3EG =.。

高中数学立体几何空间点线面的位置关系讲义及练习

课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。

平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。

点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。

两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。

图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。

知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。

知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。

完整版)线线、线面、面面平行练习题(含答案)

完整版)线线、线面、面面平行练习题(含答案)一、选择题1.B2.C3.B4.B5.A6.A二、填空题7.直线MN与直线BD异面。

三、解答题10.因为D是AC的中点,所以BD平分角ABC,即∠ABD=∠CBD。

又因为AB=AC,所以△ABD≌△CBD,从而BD=BD,即BD//平面ABC。

又因为A1D1//ABC,所以BD//A1D1,即BD//平面A1BD。

因此,BD//平面A1BD,即B1C1//平面A1BD,即B1C1//平面ABD。

11.1) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN//CD,MN=CD/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以MN=CD/2=AC/√3=BD/2√3,即MN//B1D1.2) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以AE=BD/2=AC/√3,从而AE=EN,即AEEN是平行四边形,即AE//EN。

又因为XXX,所以AE//MN,即平面AEM//平面MNC。

又因为平面AEM与平面ABC的交线是直线AE,平面MNC与平面ABC的交线是直线MN,所以AE//MN//BD,即B1D1//平面AEM。

因此,AC1//平面AEM//B1D1,即AC1//平面EB1D1.3) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.又因为D1是BD的中点,所以D1C1=BC/2=AC/2√2.所以MN=CD/2=AC/√3=D1C1√2/√3,即MN//D1C1.又因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以EG=CC1/2=AC/2√2.又因为ABCD是平行六面体,所以AD//BC,从而△ABD≌△CBA1,即AD=BC,AD=2AC/√3.所以EG=CC1/2=AC/2√2=AD/2√2,即EG//AD。

空间线面、面面关系习题

承接上次课:直线与平面垂直的性质:直线与平面垂直的性质定理 :垂直于同一个平面的两条直线平行.例题1. 直线b 直线a ,直线b 平面,则直线a 与平面的关系是( C ) A. a ∥α B a α⊥ C a α⊂或a ∥α D a α⊂ 例题2.已知PH ⊥Rt △HEF 所在的平面,且HE ⊥EF ,连结PE 、PF ,则图中直角三角形的个数是 ( D )A 1B 2C 3D 4例题3.已知直线a 、b 和平面M 、N ,且a M ⊥,那么 ( A ) (A )b ∥M b ⊥a (B )b ⊥a b ∥M (C )N ⊥M a ∥N (D )a N M N φ⊄⇒⋂≠例题4.下列命题中,正确的是(B )A 、过平面外一点,可作无数条直线和这个平面垂直B 、过一点有且仅有一个平面和一条定直线垂直C 、若a ,b 异面,过a 一定可作一个平面与b 垂直D 、a ,b 异面,过不在a ,b 上的点M ,一定可以作一个平面和a ,b 都垂直.⊥⊥αα⇒⇒⇒PHEF平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.例题1.下列命题中,正确的是(B )A、过平面外一点,可作无数条直线和这个平面垂直B、过一点有且仅有一个平面和一条定直线垂直C、若a,b异面,过a一定可作一个平面与b垂直D、a,b异面,过不在a,b上的点M,一定可以作一个平面和a,b都垂直.空间线面、面面关系习题课1:例题1.给出下列四个命题:①如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;②如果直线a和平面α满足a∥α,那么a与平面α内的直线不是平行就是异面,③如果直线a∥α,b∥α,则a∥b④如果平面α∩平面β=a,若b∥α,b∥β,则a∥b其中为真命题有( B )A.1个B.2个C.3个D.4个例题2.平面α∥平面β,直线aÌα,P∈β,则过点P的直线中(C )A.不存在与α平行的直线B.不一定存在与α平行的直线C.有且只有—条直线与a平行D.有无数条与a平行的直线例题3.下列命题中为真命题的是( B ) A .平行于同一条直线的两个平面平行 B .垂直于同一条直线的两个平面平行C .若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D .若三直线a 、b 、c 两两平行,则在过直线a 的平面中,有且只有—个平面与b ,c 均平行.题型二:有关线面、面面关系的判定与性质问题例题1:如图:,△ABC 是正三角形,EA 和DC 都垂直于平面ABC ,且EA =AB =2a ,DC=a, F ,G 分别是EB 和AB 的中点。

高中数学立体几何综合专题(线面 面面-垂直、平行)

高中数学立体几何综合专题(线面/面面-垂直、平行)一.选择题(共5小题)1.已知a,b为两条直线,α,β为两个平面,下列四个命题①a∥b,a∥α⇒b∥α;②a⊥b,a⊥α⇒b∥α;③a∥α,β∥α⇒a∥β;④a⊥α,β⊥α⇒a∥β,其中不正确的有()A.1个 B.2个 C.3个 D.4个2.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m3.如图,四棱锥P﹣ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则()A.MN∥PD B.MN∥PA C.MN∥AD D.以上均有可能4.如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③5.如图,ABCD﹣A1B1C1D1为正方体,则以下结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1其中正确结论的个数是()A.0 B.1 C.2 D.3二.解答题(共33小题)6.如图,正方体ABCD﹣A1B1C1D1边长为2,E、F分别为AD1,CD1中点.(1)求证:EF∥平面ABCD;(2)求异面直线EF与B1C1所成角的大小.7.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.8.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D﹣BCM的体积.9.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.10.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.11.如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.12.如图所示,在直三棱柱A1B1C1﹣ABC中,∠ABC=90°,BC=CC1,M、N分别为B1B、A1C1的中点.(1)求证:平面ABC1⊥平面B1BC;(2)求证:MN∥平面ABC1.13.如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,DA的中点,且AC=BC.求证:四边形EFGH是菱形.14.三棱柱中D、E为AC、B1C的中点,证明:(1)B1C∥平面A1BD;(2)DE∥平面A1B1BA.15.如图,在四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E为PB的中点,求证:CE∥平面PAD.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,M,N分别为PD,PC上的点,且=,求证:MN∥AB.17.如图,四棱锥P﹣ABCD中,四边形ABCD为平行四边形,E,F分别为所在边中点,证明:EF∥平面PBC.18.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.19.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.20.已知直三棱柱ABC﹣A1B1C1的底面△ABC中,∠C=90°,BC=,BB1=2,O 是AB1的中点,D是AC的中点,M是CC1的中点,(1)证明:OD∥平面BB1C1C;(2)试证:BM⊥AB1.21.在四梭推P﹣ABCD中,CD⊥平面PAD,AB∥CD,CD=4AB,AC⊥PA,M为线段CP上一点.(1)求证:平面ACD⊥平面PAM;(2)若PM=PC,求证:MB∥平面PAD.22.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;(2)证明:平面D1AC⊥平面BB1C1C.23.如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.(1)求证:直线BD1∥平面PAC;(2)求证:平面PAC⊥平面BDD1;(3)求证:直线PB1⊥平面PAC.24.如图,在四棱锥P﹣ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,点E在棱PD上,且PE=2ED.(1)求证:平面PCD⊥平面PBC;(2)求证:PB∥平面AEC.25.直三棱柱ABC﹣A'B'C'中,底面ABC是边长为2的正三角形,D'是棱A'C'的中点,且.(1)若点M为棱CC'的中点,求异面直线AB'与BM所成角的余弦值;(2)若点M在棱CC'上,且A'M⊥平面AB'D',求线段CM的长.26.如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD,∠ACB=∠ACD=.求证:BD⊥平面PAC;B1C1中,BC=,E、F、M分别为棱A1C1、AB1、BC27.在正三棱柱ABC﹣A的中点,(1)求证:EF∥平面BB1C1C;(2)求证:EF⊥平面AB1M.28.如图,三棱柱ABC﹣A1B1C1中,M,N分别为AB,B1C1的中点.(1)求证:MN∥平面AA1C1C;(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB⊥平面CMN.29.已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥AE;(Ⅱ)求证:AC∥平面B1DE.30.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD,E为PD中点.(Ⅰ)证明:AB∥平面PCD;(Ⅱ)证明:AE⊥平面PCD.31.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.32.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.33.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.34.如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(Ⅰ)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(Ⅱ)证明:平面PAB⊥平面PBD.35.如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.36.已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB;(2)证明:平面PMB⊥平面PAD;(3)求点A到平面PMB的距离.37.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE.38.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.高中数学立体几何综合专题(线面/面面-垂直、平行)参考答案与试题解析一.选择题(共5小题)1.已知a,b为两条直线,α,β为两个平面,下列四个命题①a∥b,a∥α⇒b∥α;②a⊥b,a⊥α⇒b∥α;③a∥α,β∥α⇒a∥β;④a⊥α,β⊥α⇒a∥β,其中不正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据线面平行的判定定理,利用排除法排除错误的命题,从而找出正确的选项【解答】解:对于①、②结论中还可能b⊂α,所以①、②不正确.对于③、④结论中还可能a⊂β,所以③、④不正确.故选:D.2.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选:B.3.如图,四棱锥P﹣ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则()A.MN∥PD B.MN∥PA C.MN∥AD D.以上均有可能【分析】直接利用直线与平面平行的性质定理推出结果即可.【解答】解:四棱锥P﹣ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,MN⊂平面PAC,平面PAC∩平面PAD=PA,由直线与平面平行的性质定理可得:MN∥PA.故选:B.4.如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③【分析】点M不在这两异面直线中的任何一条上,所以,过M点有且只有一条直线与直线AB、B1C1都相交,①正确.②过M点有且只有一条直线与直线AB、B1C1都垂直,正确.过M点有无数个平面与直线AB、B1C1都相交,③不正确.④过M点有且只有一个平面与直线AB、B1C1都平行,正确.【解答】解:直线AB与B1C1是两条互相垂直的异面直线,点M不在这两异面直线中的任何一条上,如图所示:取C1C的中点N,则MN∥AB,且MN=AB,设BN 与B1C1交于H,则点A、B、M、N、H 共面,直线HM必与AB直线相交于某点O.所以,过M点有且只有一条直线HO与直线AB、B1C1都相交;故①正确.过M点有且只有一条直线与直线AB、B1C1都垂直,此垂线就是棱DD1,故②正确.过M点有无数个平面与直线AB、B1C1都相交,故③不正确.过M点有且只有一个平面与直线AB、B1C1都平行,此平面就是过M点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选:C.5.如图,ABCD﹣A1B1C1D1为正方体,则以下结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1其中正确结论的个数是()A.0 B.1 C.2 D.3【分析】①由正方体的性质得BD∥B1D1,所以结合线面平行的判定定理可得答案;②由正方体的性质得AC⊥BD,再由三垂线定理可得答案.③由正方体的性质得BD∥B1D1,并且结合②可得AC1⊥B1D1,同理可得AC1⊥CB1,进而结合线面垂直的判定定理得到答案.【解答】解:由正方体的性质得,BD∥B1D1,所以结合线面平行的判定定理可得:BD∥平面CB1D1;所以①正确.由正方体的性质得AC⊥BD,因为AC是AC1在底面ABCD内的射影,所以由三垂线定理可得:AC1⊥BD,所以②正确.由正方体的性质得BD∥B1D1,由②可得AC1⊥BD,所以AC1⊥B1D1,同理可得AC1⊥CB1,进而结合线面垂直的判定定理得到:AC1⊥平面CB1D1 ,所以③正确.故选:D.二.解答题(共33小题)6.如图,正方体ABCD﹣A1B1C1D1边长为2,E、F分别为AD1,CD1中点.(1)求证:EF∥平面ABCD;(2)求异面直线EF与B1C1所成角的大小.【分析】(1)连接AC,则EF∥AC,由此能证明EF∥平面ABCD.(2)由EF∥AC,B1C1∥BC,得两异面直线EF与B1C1所成角为∠ACB,由此能求出两异面直线EF与B1C1所成角的大小.【解答】证明:(1)连接AC,∵E、F分别为AD1、CD1中点,∴EF∥AC,又∵EF⊄平面ABCD,AC⊂平面ABCD,∴EF∥平面ABCD.解:(2)∵EF∥AC,B1C1∥BC,∴两异面直线EF与B1C1所成角为∠ACB,∵△ABC是等腰直角三角形,∴∠ACB=45°,∴两异面直线EF与B1C1所成角的大小为45°.7.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.【分析】(1)由AC⊥BC,先证明AC⊥平面BB1C1C即可能证明AC⊥BC1.(2)设CB1与C1B的交点为E,连结DE,由已知推导出DE∥AC1,由此能证明AC1∥平面CDB1.【解答】证明:(1)∵∠ACB=90°,∴AC⊥CB,又在直三棱柱ABC﹣A1B1C1中,有AC⊥BB1,∵CB∩BB1=B,∴AC⊥平面BB1C1C.∵BC1⊂平面BB1C1C,∴AC⊥BC1;(2)设BC1与B1C交于点P,连DP,易知P是BC1的中点,又D是AB中点,∴AC1∥DP,∵DP⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1.8.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D﹣BCM的体积.【分析】(1)要证DM∥平面APC,只需证明MD∥AP(因为AP⊂面APC)即可.(2)在平面ABC内直线AP⊥BC,BC⊥AC,即可证明BC⊥面APC,从而证得平面ABC⊥平面APC;(3)因为BC=4,AB=20,求出三棱锥的高,即可求三棱锥D﹣BCM的体积.【解答】证明:(I)由已知得,MD是△ABP的中位线∴MD∥AP∵MD⊄面APC,AP⊂面APC∴MD∥面APC;(II)∵△PMB为正三角形,D为PB的中点∴MD⊥PB,∴AP⊥PB又∵AP⊥PC,PB∩PC=P∴AP⊥面PBC(6分)∵BC⊂面PBC∴AP⊥BC又∵BC⊥AC,AC∩AP=A∴BC⊥面APC,∵BC⊂面ABC∴平面ABC⊥平面APC;(III)由题意可知,三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.MD⊥面PBC,BC=4,AB=20,MB=10,DM=5,PB=10,PC==2,∴MD是三棱锥D﹣BCM的高,S=×=2,△BCD∴.9.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【分析】(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)【方法一】先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直.【解答】证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,以C1为原点建立空间直角坐标系,C1A1为x轴,C1B1为y轴,C1C为z轴,如图所示;设BC=CC1=a,AC=b,则A(b,0,a),B1(0,a,0),B(0,a,a),C1(0,0,0);∴=(﹣b,a,﹣a),=(0,﹣a,﹣a),∴•=﹣b×0+a×(﹣a)﹣a×(﹣a)=0,∴⊥,即AB1⊥BC1.10.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.【分析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A 1D、DE和A1E的值,可得A1D⊥DE.进而求得的值,再根据三棱锥C﹣A1DE的体积为••CD,运算求得结果.【解答】解:(Ⅰ)证明:连接AC1交A1C于点F,则F为AC1的中点.∵直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,故DF为三角形ABC1的中位线,故DF∥BC1.由于DF⊂平面A1CD,而BC1不在平面A1CD中,故有BC1∥平面A1CD.(Ⅱ)∵AA1=AC=CB=2,AB=2,故此直三棱柱的底面ABC为等腰直角三角形.由D为AB的中点可得CD⊥平面ABB1A1 ,∴CD==.∵A1D==,同理,利用勾股定理求得DE=,A1E=3.再由勾股定理可得+DE2=,∴A1D⊥DE.∴==,∴=••CD=1.11.如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【分析】(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.12.如图所示,在直三棱柱A1B1C1﹣ABC中,∠ABC=90°,BC=CC1,M、N分别为B1B、A1C1的中点.(1)求证:平面ABC1⊥平面B1BC;(2)求证:MN∥平面ABC1.【分析】(I)根据直三棱柱的性质,利用面面垂直性质定理证出AB⊥平面BB1C1,得出AB⊥CB1.正方形BCC1B1中,对角线CB1⊥BC1,由线面垂直的判定定理可证出CB1⊥平面ABC1;(II)取AC1的中点F,连BF、NF,利用三角形中位线定理和平行四边形的性质,证出EF∥BM且EF=BM,从而得到BMNF是平行四边形,可得MN∥BF,结合线面平行判定定理即可证出MN∥面ABC1.【解答】解:(Ⅰ)在直三棱柱ABC﹣A1B1C1中,侧面BB1C1C⊥底面ABC,且侧面BB1C1C∩底面ABC=BC,∵∠ABC=90°,即AB⊥BC,∴AB⊥平面BB1C1 (2)∵CB1⊂平面BB1C1C,∴AB⊥CB1.…(4分)∵BC=CC1,CC1⊥BC,∴BCC1B1是正方形,∴CB1⊥BC1,∵AB∩BC1=B,∴CB1⊥平面ABC1,CB1⊂平面B1BC;∴平面ABC1⊥平面B1BC;(Ⅱ)取AC1的中点F,连BF、NF.…(7分)如图在△AA1C1中,N、F是中点,∴NF∥AA1,NF=又∵正方形BCC1B1中,BM∥AA1,BM=∴NF∥BM,且NF=BM…(8分)故四边形BMNF是平行四边形,可得MN∥BF,…(10分)∵BF⊂面ABC1,MN⊄平面ABC1,∴MN∥面ABC1…(12分)13.如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,DA的中点,且AC=BC.求证:四边形EFGH是菱形.【分析】由已知得EH=GF,EF=HG,再由AC=BC,得到四边形EFGH是菱形.【解答】证明:∵空间四边形ABCD中,E,F,G,H分别是AB,BC,DA的中点,∴EH,GF,∴EH GF,EF,HG,∴EF HG,∵AC=BC,∴EF=FG=HG=EH,∴四边形EFGH是菱形.14.三棱柱中D、E为AC、B1C的中点,证明:(1)B1C∥平面A1BD;(2)DE∥平面A1B1BA.【分析】充分利用三角形的中位线得到线线平行,利用线面平行的判定定理可证.【解答】证明:(1)如图设AB1与A1B相交于O,因为三棱柱中D为AC的中点,所以在△ACB1中,OD∥B1C,又OD⊂平面A1BD,B1C⊄平面A1BD,所以B1C∥平面A1BD;(2)在△ACB1中三棱柱中D、E为AC、B1C的中点,所以DE∥AB1,DE⊄平面A1B1BA,AB1⊂平面A1B1BA,所以DE∥平面A1B1BA.15.如图,在四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E为PB的中点,求证:CE∥平面PAD.【分析】取PA的中点F,连EF,DF,由已知条件推导出四边形DCEF是平行四边形,由此能证明CE∥平面PAD.【解答】证明:取PA的中点F,连EF,DF.因为E是PB的中点,所以EF∥AB,且EF=AB.因为AB∥CD,AB=2DC,所以EF∥CD,EF=CD,所以四边形DCEF是平行四边形,从而CE∥DF,而CE⊄平面PAD,DF⊂平面PAD,故CE∥平面PAD.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,M,N分别为PD,PC上的点,且=,求证:MN∥AB.【分析】由已知条件推导出MN∥CD,AB∥CD,从而利用平行公式能证明MN∥AB.【解答】证明:在△ADC中,∵M,N分别为PD,PC上的点,且=,∴MN∥CD,∵在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∴AB∥CD,∴MN∥AB.17.如图,四棱锥P﹣ABCD中,四边形ABCD为平行四边形,E,F分别为所在边中点,证明:EF∥平面PBC.【分析】取DC中点O,连结EO、FO,由已知推导出面EOF∥面PCB,由此能证明EF∥平面PBC.【解答】证明:取DC中点O,连结EO、FO,∵四棱锥P﹣ABCD中,四边形ABCD为平行四边形,E,F分别为所在边中点,∴EO∥PC,FO∥BC,∵EO∩FO=O,PC∩BC=C,∴面EOF∥面PCB,∵EF⊂平面EFO,∴EF∥平面PBC.18.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.【分析】(Ⅰ)连接PE,G,F为EC和PC的中点,得到FG∥PE,利用线面平行的判定定理可证;(Ⅱ)利用菱形的性质得到BD⊥AC,再由PA⊥面ABCD,得到BD⊥PA,结合线面垂直的判定定理得到BD⊥平面PAC,进一步由线面垂直的性质得到所证.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)19.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.【分析】(1)根据线面平行关系的判定定理,在面ACD内找一条直线和直线EF 平行即可,根据中位线可知EF∥AD,EF⊄面ACD,AD⊂面ACD,满足定理条件;(2)需在其中一个平面内找一条直线和另一个面垂直,由线面垂直推出面面垂直,根据线面垂直的判定定理可知BD⊥面EFC,而BD⊂面BCD,满足定理所需条件.【解答】证明:(1)∵E,F分别是AB,BD的中点.∴EF是△ABD的中位线,∴EF∥AD,∵EF⊄面ACD,AD⊂面ACD,∴直线EF∥面ACD;(2)∵AD⊥BD,EF∥AD,∴EF⊥BD,∵CB=CD,F是BD的中点,∴CF⊥BD又EF∩CF=F,∴BD⊥面EFC,∵BD⊂面BCD,∴面EFC⊥面BCD20.已知直三棱柱ABC﹣A1B1C1的底面△ABC中,∠C=90°,BC=,BB1=2,O 是AB1的中点,D是AC的中点,M是CC1的中点,(1)证明:OD∥平面BB1C1C;(2)试证:BM⊥AB1.【分析】(1)连B1C利用中位线的性质推断出OD∥B1C,进而根据线面平行的判定定理证明出OD∥平面BB1C1C.(2)先利用线面垂直的性质判断出CC1⊥AC,进而根据线面垂直的判定定理证明出AC⊥平面BB1C1C,进而可知AC⊥MB.利用证明△BCD∽△B1BC,推断出∠CBM=∠BB1C,推断出BM⊥B1C,最后利用线面垂直的判定定理证明出BM⊥平面AB1C,进而可知BM⊥AB1.【解答】证明:(1)连B1C,∵O为AB1中点,D为AC中点,∴OD∥B1C,又B1C⊂平面BB1C1C,OD⊄平面BB1C1C,∴OD∥平面BB1C1C.(2)连接B1C,∵直三棱柱ABC﹣A1B1C1,∴CC1⊥平面ABCAC⊂平面ABC,∴CC1⊥AC,又AC⊥BC,CC1,BC⊂平面BB1C1C,∴AC⊥平面BB1C1C,BM⊂平面BB1C1C,∴AC⊥MB.在Rt△BCM与Rt△B1BC中,==,∴△BMC∽△B1BC,∴∠CBM=∠BB1C,∴∠BB1C+∠B1BM=∠CBM+∠B1BM=90°,∴BM⊥B1C,AC,B1C⊂平面AB1C,∴BM⊥AB1C,∵AB1⊂平面AB1C,∴BM⊥AB1.21.在四梭推P﹣ABCD中,CD⊥平面PAD,AB∥CD,CD=4AB,AC⊥PA,M为线段CP上一点.(1)求证:平面ACD⊥平面PAM;(2)若PM=PC,求证:MB∥平面PAD.【分析】(1)由CD⊥平面PAD得PA⊥CD,结合PA⊥AC,得PA⊥平面ACD,故平面ACD⊥平面PAM;(2)在PD上取点E,使得PE=PD,连结ME,AE,可得ME∥CD,ME=CD,因为AB∥CD,AB=CD,所以AB与ME平行且相等,推出四边形ABME是平行四边形,故MB∥AE,所以MB∥平面PAD.【解答】证明:(1)∵CD⊥平面PAD,PA⊂平面PAD,∴CD⊥PA,又∵AC⊥PA,CD∩AC=C,∴PA⊥平面ACD,∵PA⊂平面PAM,∴平面ACD⊥平面PAM.(2)在PD上取点E,使得PE=PD,连结ME,AE.∵PM=PC,∴ME∥CD,ME=CD,又∵AB∥CD,AB=CD,∴ME∥AB,ME=AB,∴四边形ABME是平行四边形,∴MB∥AE,又∵AE⊂平面PAD,MB⊄平面PAD,∴MB∥平面PAD.22.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;(2)证明:平面D1AC⊥平面BB1C1C.【分析】(1)取A1B1的中点为F1,连接FF1,C1F1,要证明直线EE1∥平面FCC1,只需证明EE1∥F1C,就证明了EE1∥平面FCC1内的直线,即可推得结论;(2)要证明平面D1AC⊥平面BB1C1C,只需证明AC⊥BC,AC⊥CC1,即可.【解答】证明:(1)方法一:取A1B1的中点为F1,连接FF1,C1F1,由于FF1∥BB1∥CC1,所以F1∈平面FCC1,因此平面FCC1即为平面C1CFF1.连接A1D,F1C,由于A1F1D1C1CD,所以四边形A1DCF1为平行四边形,因此A1D∥F1C.又EE1∥A1D,得EE1∥F1C,而EE1⊄平面FCC1,F1C⊂平面FCC1,故EE1∥平面FCC1.方法二:因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD綊AF,因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,所以平面ADD1A1∥平面FCC1,又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.(2)连接AC,取F为AB的中点,在△FBC中,FC=BC=FB=2,又F为AB的中点,所以AF=FC=FB=2,因此∠ACB=90°,即AC⊥BC.又AC⊥CC1,且CC1∩BC=C,所以AC⊥平面BB1C1C,而AC⊂平面D1AC,故平面D1AC⊥平面BB1C1C.23.如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.(1)求证:直线BD1∥平面PAC;(2)求证:平面PAC⊥平面BDD1;(3)求证:直线PB1⊥平面PAC.【分析】(1)利用三角形中位线的性质证明PO∥BD1,进而得到线BD1∥平面PAC.(2)由底面ABCD是正方形,则AC⊥BD,再由DD1⊥AC,得到AC⊥面BDD1,这样在平面PAC内找到了2条直线和平面BDD1垂直,问题得证.(3)△PB1C中,先求出三边的长度,使用勾股定理可得PB1⊥PC,同理可证PB1⊥PA,这样,PB1垂直于平面PAC的2条相交直线,所以直线PB1⊥平面PAC.【解答】解:(1)设AC和BD交于点O,连PO,由P,O分别是DD1,BD的中点,故PO∥BD1,所以直线BD1∥平面PAC.(2)长方体ABCD﹣A1B1C1D1中,AB=AD=1,底面ABCD是正方形,则AC⊥BD又DD1⊥面ABCD,则DD1⊥AC,所以AC⊥面BDD1,则平面PAC⊥平面BDD1(3)PC2=2,PB12=3,B1C2=5,所以△PB1C是直角三角形.PB1⊥PC,同理PB1⊥PA,所以直线PB1⊥平面PAC.(12分)24.如图,在四棱锥P﹣ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,点E在棱PD上,且PE=2ED.(1)求证:平面PCD⊥平面PBC;(2)求证:PB∥平面AEC.【分析】(1)由CD⊥BC,CD⊥PB得出CD⊥平面PBC,故而平面PCD⊥平面PBC;(2)连结BD交AC于O,连结EO.利用三角形相似得出=,从而得到OE∥PB,得出结论.【解答】证明:(1)∵AD∥BC,AD⊥CD,∴CD⊥BC,又CD⊥PB,BC⊂平面PBC,PB⊂平面PBC,BC∩PB=B,∴CD⊥平面PBC,又CD⊂平面PCD,∴平面PCD⊥平面PBC.(2)连结BD交AC于O,连结EO.∵AD∥BC,∴△AOD∽△COB,∴,又PE=2ED,即,∴OE∥PB,∵OE⊂平面EAC,PB⊄平面EAC,∴PB∥平面AEC.25.直三棱柱ABC﹣A'B'C'中,底面ABC是边长为2的正三角形,D'是棱A'C'的中点,且.(1)若点M为棱CC'的中点,求异面直线AB'与BM所成角的余弦值;(2)若点M在棱CC'上,且A'M⊥平面AB'D',求线段CM的长.【分析】(1)取AC边中点为O,由题意可得OD'⊥AC,OD'⊥OB,以O为坐标原点,OB为x轴,OC为y轴,OD'为z轴建立空间直角坐标系,若M为CC'的中点,则可求,,,设异面直线AB'与BM所成的角为θ,利用向量数量积的运行即可计算得解.(2)设M(0,1,t),则由A'M⊥AD',A'M⊥AB',可得,进而解得A'M⊥平面AB'D'时CM的值.【解答】解:取AC边中点为O,∵底面ABC是边长为2的正三角形,∴OB⊥AC连接OD',∵D'是边A'C'的中点,∴OD'⊥AC,OD'⊥OB,以O为坐标原点,OB为x轴,OC为y轴,OD'为z轴建立如图所示的空间直角坐标系,则O(0,0,0),A(0,﹣1,0),,C(0,1,0),,,,,(1)若M为CC'的中点,则,,,设异面直线AB'与BM所成的角为θ,则,,所以异面直线AB'与BM所成的角得余弦值为,(2)设M(0,1,t),则,,,若A'M⊥平面AB'D',则由A'M⊥AD',A'M⊥AB',∴,可得:,即当时,A'M⊥平面AB'D'.26.如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD,∠ACB=∠ACD=.求证:BD⊥平面PAC;【分析】由已知可得BD⊥AC.再由PA⊥底面ABCD,得PA⊥BD,由线面垂直的判定可得BD⊥平面PAC;【解答】证明:∵BC=CD,∴△BCD为等腰三角形.又∠ACB=∠ACD,故BD⊥AC.∵PA⊥底面ABCD,PA⊥BD,又PA∩AC=A,∴BD⊥平面PAC.B1C1中,BC=,E、F、M分别为棱A1C1、AB1、BC27.在正三棱柱ABC﹣A的中点,(1)求证:EF∥平面BB1C1C;(2)求证:EF⊥平面AB1M.【分析】(1)连结A1B,BC1,利用三角形的中位线的性质得到EF∥BC1,利用线面平行的判定定理得证;(2)首先判断EF⊥B1M,然后利用三棱柱的性质EF⊥AM,结合线面垂直的判定定理得证.【解答】证明:(1)连结A1B,BC1,∵E、F分别为棱A1C1、AB1的中点,∴EF∥BC1,∵BC1⊂平面BB1C1C,EF⊄平面BB1C1C∴EF∥平面BB1C1C(2)在矩形BCC 1B1中,,∴tan∠CBC1•tan∠B1MB=1∴∴BC1⊥B1M∵EF∥BC1∴EF⊥B1M在正三棱柱ABC﹣A1B1C1中,底面ABC⊥平面BB1C1C∵M为BC的中点∴AM⊥BC∵平面ABC∩平面BB1C1C=BC∴AM⊥平面BB1C1C∵BC1⊂平面BB1C1C∴AM⊥BC1∵EF∥BC1∴EF⊥AM又∵AM∩B1M=M∴EF⊥平面AB1M.28.如图,三棱柱ABC﹣A1B1C1中,M,N分别为AB,B1C1的中点.(1)求证:MN∥平面AA1C1C;(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB⊥平面CMN.【分析】(1)取A1C1的中点P,连接AP,NP.证得四边形AMNP为平行四边形.再由线面平行的判定定理即可得到;(2)运用面面垂直的性质定理和线面垂直的性质和判定定理,即可得证.【解答】证明:(1)取A1C1的中点P,连接AP,NP.因为C1N=NB1,C1P=PA1,所以NP∥A1B1,NP=A1B1.在三棱柱ABC﹣A1B1C1中,A1B1∥AB,A1B1=AB.故NP∥AB,且NP=AB.因为M为AB的中点,所以AM=AB.所以NP=AM,且NP∥AM.所以四边形AMNP为平行四边形.所以MN∥AP.因为AP⊂平面AA1C1C,MN⊄平面AA1C1C,所以MN∥平面AA1C1C.(2)因为CA=CB,M为AB的中点,所以CM⊥AB.因为CC1=CB1,N为B1C1的中点,所以CN⊥B1C1.在三棱柱ABC﹣A1B1C1中,BC∥B1C1,所以CN⊥BC.因为平面CC1B1B⊥平面ABC,平面CC1B1B∩平面ABC=BC.CN⊂平面CC1B1B,所以CN⊥平面ABC.因为AB⊂平面ABC,所以CN⊥AB.因为CM⊂平面CMN,CN⊂平面CMN,CM∩CN=C,所以AB⊥平面CMN.29.已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥AE;(Ⅱ)求证:AC∥平面B1DE.【分析】(Ⅰ)连接BD,则BD∥B1D1.在ABCD是正方形中,AC⊥BD,结合CE ⊥BD,可以证出BD⊥面ACE,从而得到BD⊥AE,利用平行线的性质得到B1D1⊥AE.(II)取BB1的中点F,连接AF、CF、EF.可以证出四边形B1FCE是平行四边形,从而CF∥B1E;然后再证四边形ADEF是平行四边形,可得AF∥ED,结合面面平行的判定定理,得到平面ACF∥平面B1DE.最后利用面面平行的性质,得到AC ∥面B1DE.【解答】解:(Ⅰ)连接BD,则BD∥B1D1,∵ABCD是正方形,∴AC⊥BD.∵CE⊥平面ABCD,BD⊂平面ABCD,∴CE⊥BD.又∵AC∩CE=C,∴BD⊥面ACE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵AE⊂面ACE,∴BD⊥AE,∴B1D1⊥AE.﹣﹣﹣(5分)(Ⅱ)证明:取BB1的中点F,连接AF、CF、EF.∵E、F是C1C、B1B的中点,∴CE∥B1F且CE=B1F∴四边形B1FCE是平行四边形,∴CF∥B1E.∵正方形BB1C1C中,E、F是CC、BB的中点,∴EF∥BC且EF=BC又∵BC∥AD且BC=AD,∴EF∥AD且EF=AD.∴四边形ADEF是平行四边形,可得AF∥ED,∵AF∩CF=C,BE∩ED=E,∴平面ACF∥平面B1DE.又∵AC⊂平面ACF,∴AC∥面B1DE.﹣﹣﹣﹣﹣﹣(10分)30.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD,E为PD中点.(Ⅰ)证明:AB∥平面PCD;(Ⅱ)证明:AE⊥平面PCD.【分析】(Ⅰ)根据底面ABCD为矩形,判断出AB∥CD,进而根据线面平行的判定定理推断出AB∥平面PCD.(Ⅱ)根据PA=AD,E为PD中点,推断出AE⊥PD,进而根据PA⊥平面ABCD,推断出PA⊥CD,同时底面ABCD为矩形,推断出CD⊥AD.进而根据线面垂直的判定定理知CD⊥平面PAD.继而可知CD⊥AE,则AE⊥平面PCD可证明.【解答】证明:(Ⅰ)因为底面ABCD为矩形,所以AB∥CD.又因为AB⊄平面PCD,CD⊂平面PCD,所以AB∥平面PCD.(Ⅱ)因为PA=AD,E为PD中点,所以AE⊥PD,因为PA⊥平面ABCD,所以PA⊥CD.又底面ABCD为矩形,所以CD⊥AD.所以CD⊥平面PAD.所以CD⊥AE.又AE⊥PD,PD∩CD=D所以AE⊥平面PCD.31.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC﹣A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.32.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【分析】(1)推导出四边形BHFE为平行四边形,从而BE∥HF,进而BE∥平面FGH,推导出GH∥AB,从而AB∥平面FGH,由此能证明平面ABED∥平面FGH.(2)连接HE,EG,则GH∥AB,由AB⊥BC,得GH⊥BC,推导出四边形EFCH 是平行四边形,从而CF∥HE,由CF⊥BC,得HE⊥BC,从而BC⊥平面EGH,由此能证明平面BCD⊥平面EGH.【解答】(本小题满分8分)证明:(1)在三棱台DEFABC中,∵BC=2EF,H为BC的中点,∴BH∥EF,BH=EF,∴四边形BHFE为平行四边形,∴BE∥HF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)∵BE⊄平面FGHHF⊂平面FGH,∴BE∥平面FGH﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)在△ABC中,∵G为AC的中点,H为BC的中点,∴GH∥AB.∵AB⊄平面FGHGH⊂平面FGH,∴AB∥平面FGH﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)又AB∩BE=B,∴平面ABED∥平面FGH.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)连接HE,EG,∵G,H分别为AC,BC的中点,∴GH∥AB.∵AB⊥BC,∴GH⊥BC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)又∵H为BC的中点,∴EF∥HC,EF=HC,∴四边形EFCH是平行四边形,∴CF∥HE.∵CF⊥BC,∴HE⊥BC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∵HE,GH⊂平面EGH,HE∩GH=H,∴BC⊥平面EGH.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∵BC⊂平面BCD,∴平面BCD⊥平面EGH.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)33.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.34.如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(Ⅰ)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(Ⅱ)证明:平面PAB⊥平面PBD.【分析】(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,证明平面CME∥平面PAB,即可证明直线CM∥平面PAB;(II)证明:BD⊥平面PAB,即可证明平面PAB⊥平面PBD.【解答】证明:(I)M为PD的中点,直线CM∥平面PAB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间点、直线、平面之间的位置关系
1. a ,b 是两条异面直线, ( )
A .若P 为不在a 、b 上的一点,则过P 点有且只有一个平面与a ,b 都平行
B .过直线a 且垂直于直线b 的平面有且只有一个
C .若P 为不在a 、b 上的一点,则过P 点有且只有一条直线与a ,b 都平行
D .若P 为不在a 、b 上的一点,则过P 点有且只有一条直线与a ,b 都垂直
2.若三棱锥S —ABC 的项点S 在底面上的射影H 在△ABC 的内部,且是在△ABC 的垂心,则
A .三条侧棱长相等
B .三个侧面与底面所成的角相等
C .H 到△ABC 三边的距离相等
D .点A 在平面SBC 上的射影是△SBC 的垂心
3. a 、b 是异面直线,下面四个命题:
①过a 至少有一个平面平行于b ;②过a 至少有一个平面垂直于b ;③至少有一条直线与a 、b 都垂直;④
至少有一个平面分别与a 、b 都平行,其中正确命题的个数是( )
A .0
B .1
C .2
D .3
4.直线l 不垂直于平面α,则α内与l 垂直的直线有( )
A .0条
B .1条
C .无数条
D .α内所有直线
5.关于直线m ,n 与平面α,β,有以下四个命题:
①若m ∥α,n ⊥β且α⊥β,则m ∥n ;②若m ⊥α,n ⊥β且α⊥β,则m ⊥n ;
③若m ⊥α,n ∥β且α∥β,则m ⊥n ;④若m ∥α,n ∥β且α⊥β,则m ∥n .
其中真命题的序号是( )A .①② B .③④ C .①④ D .②③
6. 把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的正棱锥体积最大时,直线BD 和平面ABC
所成的角的大小为 ( )
A. 90° B .60° C. 45° D.30°
7. 在长方体ABCD —A 1B 1C 1D 1中,A 1A=AB=2,若棱AB 上存在一点P ,使得D 1P ⊥PC ,则棱AD 的长的取值范围
A .]2,1[
B .]2,0(
C .)2,0(
D .]1,0(
8. 已知直线m ,n ,平面βα,,给出下列命题:
①若βαβα⊥⊥⊥则,,m m ;②若βαβα//,//,//则m m ;③若βαβα⊥⊥则,//,m m ;④若异面直线m ,n
互相垂直,则存在过m 的平面与n 垂直. 其中正确的命题的题号为 .
9. 设l m n 、、是三条不同的直线,αβγ、、是三个不同的平面,下面有四个命题:
①,l l βαβα若∥∥,则∥; ②,l n m n l m 若∥∥,则∥;
③,l l αβαβ⊥⊥若∥,则; ④,,l m αβ⊥⊥若,.l m αβ⊥⊥则
其中假命题的题号为 .
10. 在右图所示的是一个正方体的展开图,在原来的正方体中,有下列命题:
①AB 与EF 所在的直线平行;②AB 与CD 所在的直线异面;③MN 与BF 所在的直线成60°角;④MN 与CD 所
在的直线互相垂直.其中正确的命题是
11. 有6根细木棒,其中较长的两根分别为a 3,a 2,其余4根均为a ,用它们搭成三棱锥,则其中两
条较长的棱所在的直线所成的角的余弦值为 .
12.P 为△ABC 所在平面外一点,且P A 、PB 、PC 两两垂直,则下列命题:
①P A ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC . 其中正确的个数是________ 20、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点.
求证:(1) C 1O ∥面11AB D ;(2)1
AC ⊥面11AB D . E N F C
D M D 1O D B A C 1
B 1A 1C
13. 下列五个正方体图形中,l 是正方体的一条对角线,点M ,N ,P 分别为其所在棱的中点,求能得出l ⊥
面MNP 的图形的序号(写出所有符合要求的图形序号) .
14.如图所示,P 为△ABC 所在平面外一点,且P A ⊥平面ABC ,若O 、Q 分别为△ABC 和△PBC 的垂心
求证:OQ ⊥平面PBC .
15如图所示,直三棱柱ABC -A 1B 1C 1中,AC =BC =1,∠ACB =90°,A 1A =,D 是A 1B 1的中点.
(1)求证:C 1D ⊥平面ABB 1A 1;
(2)在BB 1上找一点F ,使AB 1⊥平面C 1DF ,并说明理由.
16.已知:正方体ABCD -A 1B 1C 1D 1(如图所示)(1)求证:B 1D ⊥BC 1;
(2)求证:B 1D ⊥面ACD 1
17(2009·山东高考)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,
BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点.
(1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C
18.在右图所示的是一个正方体的展开图,在原来的正方体中,有下列命题:
①AB 与EF 所在的直线平行;②AB 与CD 所在的直线异面;③MN 与BF 所在的直线成60°角;④MN 与CD 所
在的直线互相垂直.其中正确的命题是
19.如图,正三棱柱ABC —A 1B 1C 1的底面边长的3,侧棱AA 1=,2
33D 是CB 延长线上一点,且BD=BC.
(Ⅰ)求证:直线BC 1//平面AB 1D ;
(Ⅱ)求二面角B 1—AD —B 的大小; (Ⅲ)求三棱锥C 1—ABB 1的体积.。

相关文档
最新文档