立体几何线面关系的常见规律解剖
立体几何所有的定理大总结(绝对全)

⽴体⼏何所有的定理⼤总结(绝对全)(⼆)异⾯直线所成⾓1.定义:不同在任何⼀个平⾯内的两条直线或既不平⾏也不相交的两条直线叫异⾯直线。
2.画法:借助辅助平⾯。
1.定义:对于异⾯直线a 和b ,在空间任取⼀点P ,过P 分别作a 和b 的平⾏线1a 和1b ,我们把1a 和1b 所成的锐⾓或者叫做异⾯直线a 和b 所成的⾓。
2.范围:(0°,90°】(★空间两条直线所成⾓范围:【0°,90°】)(三)线⾯⾓1.定义:当直线l 与平⾯α相交且不垂直时,叫做直线l 与平⾯α斜交,直线l 叫做平⾯α的斜线。
设直线l 与平⾯α斜交与点M ,过l 上任意点A ,做平⾯α的垂线,垂⾜为O ,把点O 叫做点A 在平⾯α上的射影,直线OM 叫做直线l 在平⾯α上的射影。
1.定义:把直线l 与其在平⾯α上的射影所成的锐⾓叫做直线l 和平⾯α所成的⾓。
2.范围【0°,90°】(★斜线与平⾯所成⾓范围:【0°,90°】)(三)⼆⾯⾓1.定义:(1)半平⾯:平⾯内的⼀条直线把这个平⾯分成两个部分,其中每⼀个部分叫做半平⾯。
(3)⼆⾯⾓的棱:这⼀条直线叫做⼆⾯⾓的棱。
(4)⼆⾯⾓的⾯:这两个半平⾯叫做⼆⾯⾓的⾯。
(5)⼆⾯⾓的平⾯⾓:以⼆⾯⾓的棱上任意⼀点为端点,在两个⾯内分别作垂直于棱的两条射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓。
(6)直⼆⾯⾓:平⾯⾓是直⾓的⼆⾯⾓叫做直⼆⾯⾓。
1.定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓。
2.表⽰:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。
2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。
3.点到⾯的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。
立体几何常考定理的总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
高中数学必修2立体几何专题-线面、面面垂直专题总结

∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.
立体几何基本知识总结和线面垂直平行六种关系的证明方法

立体几何基本知识总结I. 基础知识要点 一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向) 二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[]180,0∈θ)(异面直线所成角(] 90,0∈θ)(斜线与平面成角()90,0∈θ)(直线与平面所成角[]90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. 5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性12方向相同12方向不相同证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√) 5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短. [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都POAaPαβθM AB O取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) ⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条. 成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱. 1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全.等的矩形..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.图1θθ1θ2图2⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =. 注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高). ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直. 简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,,得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面. ①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. l ab c FEH GBCDAO'⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.构造以半径为斜边的直角三角形线面垂直平行六种关系的证明方法总结一、线线平行的证明方法:1、利用平行四边形。
高中数学高考45第八章 立体几何 8 3 空间点、直线、平面之间的位置关系

例2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平 面β的交线,则下列命题正确的是 A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交
√D.l至少与l1,l2中的一条相交
解析 由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相 交.故选D.
的公共直线. 公理4:平行于同一条直线的两条直线互相 平行 .
2.直线与直线的位置关系 (1)位置关系的分类
平行 直线 共面直线
相交直线 异面直线:不同在 任何 一个平面内,没有公共点
(2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b, 把a′与b′所成的 锐角(或直角) 叫做异面直线a与b所成的角(或夹角). ②范围: 0,π2. .
√D.点C和点M
解析 ∵AB⊂γ,M∈AB,∴M∈γ. 又α∩β=l,M∈l,∴M∈β. 根据公理3可知,M在γ与β的交线上. 同理可知,点C也在γ与β的交线上.
123456
6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH 在原正方体中互为异面的对数为_3_.
解析 平面图形的翻折应注意翻折前后相对位置的变化, 则AB,CD,EF和GH在原正方体中, 显然AB与CD,EF与GH,AB与GH都是异面直线, 而AB与EF相交,CD与GH相交,CD与EF平行. 故互为异面的直线有且只有3对.
解 ∵BE∥AF 且 BE=12AF,G 为 FA 的中点, ∴BE∥FG且BE=FG, ∴四边形BEFG为平行四边形,∴EF∥BG. 由(1)知BG∥CH. ∴EF∥CH,∴EF与CH共面. 又D∈FH,∴C,D,F,E四点共面.
立体几何公理定理总结

一.公理
公理1:如果一条直线上两点在一个平面 内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且 只有一个平面.
公理3:如果两个不重合的平面有一个公 共点,那么它们有且只有一条过该点的 公共直线.
公理4:平行于同一条直线的两条直线平 行.
二.空间位置关系
面面平行:
判定:一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行.
性质:如果两个平行平面同时和第三个平面相 交,那么它们的交线平行.
四.垂直
线线垂直:
平面上的判定 如果直线与平面垂直,则该直线与平面内任意
一条直线垂直.
线面垂直:
定义:如果一条直线垂直于一个平面内的任意 一条直线,那பைடு நூலகம்就说这条直线和这个平面垂直.
判定:一条直线与一个平面内的两条相交直线 都垂直,则该直线与此平面垂直.
性质:垂直于同一个平面的两条直线平行.
面面垂直:
定义:两个平面相交,如果它们所成的二面角 是直二面角,就说这两个平面互相垂直.
判定:一个平面经过另一个平面的一条垂线, 则这两个平面垂直.
性质:两个平面互相垂直,则一个平面内垂直 于交线的直线垂直于另一个平面.
线线位置关系:平行、相交、异面. 定理:空间中如果两个角的两边分别对应
平行,那么这两个角相等或互补. 线面位置关系:线在平面内、线与平面相
交、线与平面平行. 面面位置关系:平行、相交.
三.平行
线面平行:
判定:平面外一条直线与此平面内的一条直线 平行,则该直线与此平面平行 .
性质:一条直线与一个平面平行,则过这条直 线的任一平面与此平面的交线与该直线平行.
高中数学必修2立体几何专题线面垂直典型例题的判定与性质

线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
第九章 立体几何9-5线面、面面垂直的判定及性质

∴DE⊥AE,这与∠AED=60°矛盾. ∴DE与平面ABC不垂直. 点评:①“折叠”问题一定要弄清折迭前后, 图形的哪些位置与数量关系发生了变化,哪 些没有发生变化. ②探索某种位置关系是否具备,通常是先假 定具备这种位置关系,然后结合条件进行推 理,如果产生矛盾,则不具备这种位置关系, 否则具备这种位置关系.
2.不要将“经过一点有且仅有一条直线与
平面垂直”;“经过一点有且仅有一个平面
与已知直线垂直”;“经过平面外一点有无
数条直线与已知平面平行,这无数条直线在
同一个平面内,即经过平面外一点有且仅有 一个平面与已知平面平行”;“经过直线外 一点有且仅有一条直线l与已知直线平行,
4.两平面垂直时,从一个平面内一点向另一个平面 有无数个平面与已知直线平行,这无数个平 .. 作垂线,则垂足必落在交线上. 面的交线为l”弄混错用.
(3)解:∵EF⊥BF,BF⊥FC且EF∩FC=F, ∴BF⊥平面CDEF, 即BF⊥平面DEF. ∴BF为四面体B—DEF的高.
又∵BC=AB=2,∴BF=FC= 2. 四边形CDEF为直角梯形,且EF=1,CD=2. 1 1 2 ∴S△DEF= (1+2)× 2- ×2× 2= 2 2 2 1 2 1 ∴VB—DEF=3× 2 × 2=3.
(文)在空间中,用x、y、z表示不同的直线或 平面,若命题“x⊥y,x⊥z,则y∥z”成立, 则x、y、z分别表示的元素是( ) A.x、y、z都是直线 B.x、y、z 都是平面 C.x、y是平面,z是直线 D.x是直线,y、 z是平面 解析:垂直于同一条直线的两直线不一定平 行故A错;垂直于同一个平面的两个平面不 一定平行,故B错;一条直线与一个平面都 和同一个平面垂直时,直线可能在平面内, 故C错.由线面垂直的性质知,D正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何线面关系的常见规律规律一:线线平行与线线垂直的判定1、直线与直线平行的判定方法:公理4:平行与同一条直线的两条直线互相平行直线与平面垂直的性质定理:如果两条直线垂直与同一个平面,那么这两条直线平行直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两交线平行2、直线与直线垂直的判定方法:利用直线与平面垂直的定义来判定:如果一条直线垂直于一个平面,那么它就与平面内的任意一条直线垂直例题1:(2012·南通调研)如图,在六面体ABCD-A1B1C1D1中,AA1∥CC1,A1B =A1D,AB=AD.求证:(1)AA1⊥BD;(2)BB1∥DD1.证明(1)取BD的中点M,连结AM,A1M.因为A1D=A1B,AD=AB,所以BD ⊥AM,BD⊥A1M.又AM∩A1M=M,AM,A1M⊂平面A1AM,所以BD⊥平面A1AM.因为AA1⊂平面A1AM,所以AA1⊥BD.(2)因为AA1∥CC1,AA1⊄平面D1DCC1,CC1⊂平面D1DCC1,所以AA1∥平面D1DCC1.又AA1⊂平面A1ADD1,平面A1ADD1∩平面D1DCC1=DD1,所以AA1∥DD1.同理可得AA 1∥BB 1,所以BB 1∥DD 1.例题2:(13泰州期末)在三棱锥S-ABC 中,SA ⊥平面ABC ,SA=AB=AC=3BC ,点D 是BC 边的中点,点E 是线段AD 上一点,且AE=4DE,点M 是线段SD 上一点,求证:BC ⊥AM方法小结:(1)要证明线线垂直有两条思路:第一条:把其中一条直线平移,使得两条直线在同一个平面,然后用平面几何的知识证明垂直即可;第二条:通过证明线面垂直证明。
即证明其中一条直线垂直另一个直线所在的平面。
第二条思路用的较多,要熟练,第一条用的较少,但也不能忘(2)证明线线垂直也主要有两条思路,第一条:证明其中一条直线平行另一条直线所的平面,在用线面平行的性质;第二条:先证明两条直线所在的平面平行,再证明这两条直线为第三个平面与两平行平面所交的交线,即运用面面平行的性质定理。
面面平行与线面平行的性质定理在证明过程中容易被学生忽视,所以教学过程中应引起重视同步练习1:在如图所示的多面体中,11//AA BB ,11CC AC CC BC ⊥⊥,.(1)求证:1CC AB ⊥;A1A(2)求证:11//CC AA .同步练习2:如图,在四棱柱1111D C B A ABCD -中,已知平面⊥C C AA 11平面,ABCD 且3===CA BC AB ,1==CD AD .求证:;1AA BD ⊥同步练习3:(13南京期初)如图,已知斜三棱柱ABC -A 1B 1C 1中,AB =AC ,D 为BC 的中点,若平面ABC ⊥平面BCC 1B 1,求证:AD ⊥DC 1;规律二:线面平行的判定:方法一:直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;方法二:平面与平面平行的定义:如果两个平面平行,那么其中一个平面内的任1AEC D BA1D1B1C 第16题ABC DA 1B 1C 1(第16题)一条直线平行于另一个平面例题2:三棱柱111ABC A B C -中,面11BB C C ⊥面ABC ,AB AC =,D 是BC的中点,M 为1AA 上一动点. 若1AM MA =,求证:AD ∥平面1MBC ;例题3:如图,已知▱ABCD ,直线BC ⊥平面ABE ,F 为CE 的中点.求证:直线AE ∥平面BDF ;例题4:在直角梯形ABCD 中,AB ∥CD ,AB =2BC =4,CD =3,E为AB 中点,过E 作EF ⊥CD ,垂足为F ,如(图1),将此梯形沿EF 折成一个直二面角A —EF —C ,如(图2). 求证:BF ∥平面ACD ;方法小结:在证明线面平行有两条思路:第一:通过线面平行的判定,即在平面上找一条直线与已知直线平行,在平面上找直线与已知直线平行有三种方法:1、构造平行四边形;2、通过中位线寻找平行;3、通过比例关系找平行相似。
第二,当在已知平面找不出或很难找出直线与已知直线平行时可以考虑用面面平行的性质来证明,即过已知直线构造平面与已知平面平行。
同步练习1:在正三棱柱111ABC A B C -中,点D 是BC 的中点,1BC BB =.求证:1A C ∥平面1AB D ;同步练习2:如图,直三棱柱ABCA ′B ′C ′,∠BAC =90°,点M ,N 分别为A ′B 和B ′C ′的中点. 证明:MN ∥平面A ′ACC ′;证明 法一 连接AB ′,AC ′,如图,由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱, 所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′.DC 1B 1A 1CBA又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.法二取A′B′的中点P,连接MP,NP,AB′,如图,而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,因此平面MPN∥平面A′ACC′.而MN⊂平面MPN,因此MN∥平面A′ACC′.同步练习3:如图,在四面体ABCD中,F,E,H分别是棱AB,BD,AC的中点,G为DE的中点.证明:直线HG∥平面CEF.证明法一如图1,连接BH,BH与CF交于K,连接E K.图1∵F,H分别是AB,AC的中点,∴K是△ABC的重心,∴B KBH=2 3.又据题设条件知,BEBG=2 3,∴B KBH=BEBG,∴E K∥GH.∵E K⊂平面CEF,GH⊄平面CEF,∴直线HG∥平面CEF.法二图2 如图2,取CD的中点N,连接GN、HN.∵G为DE的中点,∴GN∥CE.∵CE⊂平面CEF,GN⊄平面CEF,∴GN∥平面CEF.连接FH,EN∵F,E,H分别是棱AB,BD,AC的中点,∴FH綉12BC,EN綉12BC,∴FH綉EN,∴四边形FHNE为平行四边形,∴HN∥EF.∵EF⊂平面CEF,HN⊄平面CEF,∴HN∥平面CEF.HN∩GN=N,∴平面GHN∥平面CEF.∵GH⊂平面GHN,∴直线HG∥平面CEF.规律三:线面平行中的探索问题如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.(1)证明∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,又AE ⊂平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,∴AE ⊥BF , 又BF ∩BC =B ∴AE ⊥平面BCE ,又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE . ∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE , ∴MG ∥平面ADE . 同理,GN ∥平面ADE . 又∵GN ∩MG =G , ∴平面MGN ∥平面ADE . 又MN ⊂平面MGN , ∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.方法小结:解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.同步练习:如图,在四棱锥P -ABCD 中,底面是平行四边形,P A ⊥平面ABCD ,点M 、N 分别为BC 、P A 的中点.在线段PD 上是否存在一点E ,使NM ∥平面ACE ?若存在,请确定点E 的位置;若不存在,请说明理由.解 在PD 上存在一点E ,使得NM ∥平面ACE .证明如下:取PD 的中点E ,连接NE ,EC ,AE ,因为N ,E 分别为P A ,PD 的中点,所以NE 綉12AD .又在平行四边形ABCD 中,CM 綉12AD .所以NE 綉MC ,即四边形MCEN 是平行四边形.所以NM 綉EC .又EC ⊂平面ACE ,NM ⊄平面ACE ,所以MN ∥平面ACE ,即在PD 上存在一点E ,使得NM ∥平面ACE .规律三:平面与平面平行的判定:平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.例题5:在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1C ,B 1C 1,C 1D 1的中点,求证:平面PMN ∥平面A 1BD .证明 法一 如图,连接B 1D 1,B 1C . ∵P ,N 分别是D 1C 1,B 1C 1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄平面A1BD,∴PN∥平面A1BD.同理MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.法二如图,连接AC1,AC,且AC∩BD=O,∵ABCD-A1B1C1D1为正方体,∴AC⊥BD,CC1⊥平面ABCD,∴CC1⊥BD,又AC∩CC1=C,∴BD⊥平面AC1C,∴AC1⊥BD.同理可证AC1⊥A1B,∴AC1⊥平面A1BD.同理可证AC1⊥平面PMN,∴平面PMN∥平面A1BD.规律四:直线与平面垂直的判定:直线与平面垂直的判定定理:如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面平面与平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面例题6:如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE .证明 (1)在四棱锥P -ABCD 中,∵P A ⊥底面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD .∵AC ⊥CD ,P A ∩AC =A ,∴CD ⊥平面P AC .而AE ⊂平面P AC ,∴CD ⊥AE .(2)由P A =AB =BC ,∠ABC =60°,可得AC =P A .∵E 是PC 的中点,∴AE ⊥PC .由(1),知AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD .而PD ⊂平面PCD ,∴AE ⊥PD .∵P A ⊥底面ABCD ,∴P A ⊥AB .又∵AB ⊥AD 且P A ∩AD =A ,∴AB ⊥平面P AD ,而PD ⊂平面P AD ,∴AB ⊥PD .又∵AB ∩AE =A ,∴PD ⊥平面ABE .例题6:如图1所示,在ABC Rt ∆中,6=AC ,3=BC ,︒=∠90ABC ,CD为ACB ∠的平分线,点E 在线段AC 上,4=CE .如图2所示,将BCD ∆沿CD 折起,使得平面⊥BCD 平面ACD ,连结AB ,设点F 是AB 的中点. 求证:⊥DE 平面BCD ;方法小结:在证明线面垂直时通常用到的证明线线垂直的方法有:1、等腰三角形的三线合一;2、菱形与正方形的对角线垂直;3、根据线段的长度运用勾股定理的逆定理;4、线面垂直的定义;5、面面垂直的性质定理在证明过程中可以引导学生去掌握证明推理中的分析法,即逆向推理同步练习:(2013·江西卷改编)如图,直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AD ⊥AB ,AB =2,AD =2,AA 1=3,E 为CD 上一点,DE =1,EC =3. 证明:BE ⊥平面BB 1C 1C .证明 过B 作CD 的垂线交CD 于F ,则BF =AD =2,EF =AB -DE =1,FC =2.在Rt △BEF 中,BE = 3.在Rt△CFB中,BC= 6.在△BEC中,因为BE2+BC2=9=EC2,故BE⊥BC.由BB1⊥平面ABCD,得BE⊥BB1,又BB1∩BC=B,所以BE⊥平面BB1C1C.规律四:平面与平面垂直的性质与判定:平面与平面垂直的判定定理:如果一个平面经过另外一个平面的一条垂线,那么这两个平面互相垂直例题6:如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.证明∵ABC-A1B1C1是棱柱,且AB=BC=AA1=BB1,∴四边形BCC1B1是菱形,∴B1C⊥BC1.由AA1⊥平面ABC,AA1∥BB1,得BB1⊥平面ABC.∵AB⊂平面ABC,∴BB1⊥AB,又∵AB=BC,且AC=2BC,∴AB⊥BC,而BB1∩BC=B,BB1,BC⊂平面BCC1B1,∴AB⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AB⊥B1C,而AB∩BC1=B,AB,BC1⊂平面ABC1.∴B1C⊥平面ABC1,而B1C⊂平面B1CD,∴平面ABC1⊥平面B1CD.方法小结:其实证明面面垂直就是证明线面垂直,不同的是需要我们找哪条直线垂直哪个平面,一般方法是如果是要证明βα⊥,那么就在α内找一条直线l 证明β⊥l ,或者在β内找一条直线a 证明α⊥a同步练习:如图,在长方体ABCDA 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .证明 由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,所以A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,所以C 1M =CM =1.在Rt △B 1C 1M 中,B 1M =B 1C 21+MC 21=2,同理BM =BC 2+CM 2=2,又B 1B =2,所以B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,所以BM ⊥平面A 1B 1M ,因为BM ⊂平面ABM ,所以平面ABM ⊥平面A 1B 1M .。