立体几何的点线面的关系

合集下载

立体几何公理及定理

立体几何公理及定理

立体几何公理及定理一、空间点、线、面之间的关系1、两条直线的位置关系有:2、两个平面的位置关系有:公理1、如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理2、过不在一条直线上的三点,有且只有一个平面。

推论1、一组平行直线确定唯一一个平面。

推论2、一条直线及直线外一点确定唯一一个平面。

公理3、如果有两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4(平行公理)、平行于同一直线的两直线平行。

二、平行关系直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。

平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

平面与平面平行的性质定理:1、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

2、两平面平行,其中一个平面内的任一直线平行于另一个平面。

3、夹在两个平行平面间的平行线段相等。

4、平行于同一平面的两个平面平行。

三、垂直关系直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。

直线与平面垂直的性质定理:1、垂直于同一个平面的两条直线互相平行。

2、如果一条直线垂直一个平面,那么这条直线垂直于平面内的所有直线。

平面与平面垂直的判定定理:如果一个平面过另一个平面的垂线,那么这两个平面垂直。

平面与平面垂直的性质定理:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

三角公式汇总一、任意角的三角函数1. ①与α终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ⑤ 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 2. 角度与弧度的互换关系:360°=2π 180°=π弧度与角度互换公式: 1rad =π180°≈57.30° 1°=180π3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割5、在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x =αcos 正切:xy=αtan 二、同角三角函数的基本关系式 商数关系:αααcos sin tan = 平方关系:1cos sin22=+αα,2211tan cos αα+=,212sin cos (sin cos )αααα+=+ 212sin cos (sin cos )αααα-=-三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

点线面的关系

点线面的关系

点线面的关系在几何学中,点、线和面构成了基本的几何要素,它们之间存在着紧密的关系。

点是最基本的元素,它是没有长度、宽度和高度的,只有位置。

线是由一系列相邻点组成的,它具有长度但没有宽度和高度。

面由若干条线段相交形成的封闭区域,它具有长度和宽度但没有高度。

点、线和面之间的关系可以通过以下几个方面来描述。

1. 点与线的关系点与线之间的关系比较简单。

一条线段由两个端点组成,而一个点可以是一条线段的一个端点。

点可以在线上或者线的延长线上,也可以不在线上。

点的位置相对于线的位置有多种可能:在线的中间、在线的一端或者在线的外部。

点和线之间的关系可以通过点是否在线上来判断。

2. 点与面的关系点和面之间的关系也比较简单。

点可以在面上、在面的边界上或者在面的外部。

如果一个点在面上,则称该点在该面内。

点和面之间的关系可以通过点是否在面上来判断。

3. 线与线的关系线与线之间的关系有多种情况。

两条线可以相交,也可以平行或重合。

线与线之间的关系可以通过它们的位置关系来描述:如果两条线没有任何交点,则它们平行;如果两条线有且仅有一个交点,则它们相交;如果两条线的所有点都重合,则它们重合。

4. 线与面的关系线和面之间的关系也有多种情况。

线可以位于面内、跨越面或者位于面的边界上。

当一条线既在面内又与面相交时,它被称为切线。

线和面之间的关系可以通过它们的位置关系来判断。

5. 面与面的关系面与面之间的关系也有多种情况。

两个面可以平行,也可以相交。

两个相交的面可以有共线的边,也可以没有共线的边。

两个面之间的关系可以通过它们的位置关系来描述。

综上所述,点、线和面之间存在着丰富的关系。

它们相互作用和相互影响,形成了几何学中复杂而有趣的结构。

通过研究点、线和面之间的关系,我们可以深入理解几何学的基本原理,并将其应用于实际问题的解决中。

几何学作为数学的一部分,对于我们认识和探索世界具有重要的意义。

因此,我们应该充分理解和运用点、线和面之间的关系,以拓宽我们的视野和思维方式。

立体几何和平面解析几何知识点

立体几何和平面解析几何知识点

立体几何和平面解析几何知识点一、立体几何1.点、线、面和体:在立体几何中,点是没有大小和形状的,是具有位置的对象。

线由无数个点组成,线是没有宽度的。

面是由无数个线组成,面是二维的,具有长度和宽度。

体是由无数个面组成,体是三维的,具有长度、宽度和高度。

2.平行和垂直关系:在立体几何中,平行是两条线或两个面永远不会相交的关系,垂直是两条线或两个面相互垂直的关系。

3.点的投影:在立体几何中,点的投影是指垂直于水平面(或垂直于垂直面)的直线与平面的交点。

点的投影可以用来确定点在一些平面上的位置。

4.线和面的交点:在立体几何中,线和面的交点是指线与面相交的点。

线和面的交点可以用来确定线在一些面上的位置。

5.体的体积和表面积:在立体几何中,体的体积是指所占据的空间大小,可以通过计算底面积与高度的乘积来得到。

体的表面积是指体的外部空间的面积,可以通过计算底面积与侧面积的和来得到。

二、平面解析几何1. 直线的方程:在平面解析几何中,直线可以用一般式、截距式和斜截式等形式来表示。

一般式的直线方程是Ax + By + C = 0,其中A、B和C是常数;截距式的直线方程是x/a + y/b = 1,其中a和b分别是x轴和y轴上的截距;斜截式的直线方程是y = mx + c,其中m是斜率,c是y轴上的截距。

2.圆的方程:在平面解析几何中,圆可以用标准式和一般式来表示。

标准式的圆方程是(x-a)²+(y-b)²=r²,其中(a,b)是圆心的坐标,r是半径的长度;一般式的圆方程是x²+y²+Dx+Ey+F=0,其中D、E和F是常数。

3.直线和圆的交点:在平面解析几何中,直线和圆可以相交于零个、一个或两个交点。

可以通过求解直线方程和圆方程的联立方程组来确定直线和圆的交点。

4.曲线的方程:在平面解析几何中,曲线可以用隐式方程、参数方程和极坐标方程来表示。

隐式方程是F(x,y)=0,其中F是关于x和y的方程;参数方程是x=f(t),y=g(t),其中t是参数;极坐标方程是r=f(θ),其中r是距离原点的距离,θ是与x轴的夹角。

立体几何 点线面位置关系+线面位置关系 定理+图

立体几何 点线面位置关系+线面位置关系 定理+图

点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:
①公理1:如果一条直线上的两点在同一个平面内,那么这条直
线在此平面内。

②公理2:过不在一条直线上的三点,有且只有一个平面。

③公理3:如果两个不重合的平面有一个公共点,那么它们有且
只有一条过该点的公共直线。

④公理4:平行于同一条直线的两条直线平行。

⑤定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

n m a m 1n 1m 2n 2m 1n 1
m 2n
2
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。

理解以下判定定理:
①平面外一条直线与此平面内的一条直线平行,则该直线与此
平面平行。

②一个平面内的两条相交直线与另一个平面平行,则这两个平
面平行。

③一条直线与一个平面内的两条相交直线垂直,则该直线与此
平面垂直。

④一个平面过另一个平面的垂线,则两个平面垂直。

理解以下性质定理,并能够证明:
①如果一条直线与一个平面平行,那么过该直线的任一个平面与
此平面的交线和该直线平行。

②两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。

③垂直于同一个平面的两条直线平行。

④两个平面垂直,则一个平面内垂直于交线的直线与另一个平
面垂直。

(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题。

立体几何之点线面之间的位置关系

立体几何之点线面之间的位置关系

CBAl 3l 2l 1立体几何之点线面之间的位置关系考试要求:1、 熟练掌握点、线、面的概念;2、 掌握点、线、面的位置关系,以及判定和证明过程;3、掌握点、线、面垂直、平行的性质知识网络:知识要点:1、公理(1)公理 1:对直线 a 和平面α,若点 A 、B ∈a , A 、B ∈α,则(2)公理 2:若两个平面α、β有一个公共点P ,则α、β有且只有一条过点P 的公共直线 a(3)公理 3: 不共线的三点可确定一个平面 推论:① 一条直线和其外一点可确定一个平面②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面(4)公理 4:平行于同一条直线的两条直线平行等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.2、空间两条不重合的直线有三种位置关系:相交、平行、异面3、异面直线所成角θ的范围是 00<θ≤900例1、已知直线1l 、2l 和3l 两两相交,且三线不共点. 求证:直线1l 、2l 和3l 在同一平面上.空间图形的关系空间基本关系与公理 平行关系 垂直关系 公理 点、线、面的位置关系 判定 性质 应用 应用 性质 判定例2、三个平面将空间分成k 个部分,求k 的可能取值. 分析: 可以根据三个平面的位置情况分类讨论,按条件可将三个平面位置情况分为5种:(1)三个平面相互平行(2)两个平面相互平行且与第三个平面相交 (3)三个平面两两相交且交线重合 (4)三个平面两两相交且交线平行 (5)三个平面两两相交且交线共点例3、已知棱长为a 的正方体中,M 、N 分别为CD 、AD 中点。

求证:四边形是梯形。

例4、如图,A 是平面BCD 外的一点,G H 分别是,ABC ACD ∆∆的重心,求证://GH BD .例5、如图,已知不共面的直线,,a b c 相交于O 点,,M P 是直线a 上的两点,,N Q 分别是,b c 上的一点求证:MN 和PQ 是异面直线N MH G D C B Aαc b a Q P N MO例6、已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,则棱A 1B 1所在直线与面对角线BC 1所在直线间的距离是直线与平面平行、平面与平面平行1、 直线与平面的位置关系:平行、相交、在平面内2、 直线和平面平行的判定及性质(1) 判定 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

立体几何-点线面关系

立体几何-点线面关系

立体几何第二节空间点、直线、平面之间的位置关系本节主要包括2个知识点:1.平面的基本性质;2.空间两直线的位置关系.突破点(一) 平面的基本性质1.公理1~32.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.考点贯通 抓高考命题的“形”与“神”点、线、面的位置关系1.证明点共线问题的常用方法(1)公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上;(2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上. 2.证明线共点问题的方法先证两条直线交于一点,再证明第三条直线经过该点. 3.证明点、直线共面问题的常用方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.[典例] 已知:空间四边形ABCD (如图所示),E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E ,F ,G ,H 四点共面; (2)三直线FH ,EG ,AC 共点. [方法技巧]平面的基本性质的应用公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.能力练通 抓应用体验的“得”与“失” 1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )2.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .至多等于3 B .至多等于4 C .等于5D .大于53.以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面; ③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面; ④依次首尾相接的四条线段必共面. A .0 B .1 C .2D .34.如图所示,四边形ABEF 和四边形ABCD 都是梯形,BC 綊12AD ,BE 綊12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?突破点(二) 空间两直线的位置关系1.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)公理4和等角定理①公理4:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 2.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎦⎥⎤0,π2.[例1] (1)下列结论正确的是( )①在空间中,若两条直线不相交,则它们一定平行; ②平行于同一条直线的两条直线平行;③一条直线和两条平行直线中的一条相交,那么它也和另一条相交; ④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c . A .①②③ B .②④ C .③④D .②③(2)在图中,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.(填上所有正确答案的序号)[方法技巧]判断空间两直线位置关系的思路方法(1)判断空间两直线的位置关系一般可借助正方体模型,以正方体为主线直观感知并准确判断.(2)异面直线的判定方法①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.②定理法:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.异面直线所成的角[例2] 空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E,F分别为BC,AD的中点,求EF与AB所成角的大小.[方法技巧]用平移法求异面直线所成的角的步骤(1)一作:即根据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.能力练通抓应用体验的“得”与“失”1.[考点一]下列说法正确的是( )A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面2.[考点一]l1,l2,l3是空间三条不同的直线,则下列命题正确的是( ) A.l1⊥l2,l2⊥l3⇒l1∥l3 B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面 D.l1,l2,l3共点⇒l1,l2,l3共面3.[考点二]如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.4.[考点一、二]如图所示,三棱锥P­ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求证AE与PB是异面直线;(2)求异面直线AE与PB所成角的余弦值.[全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)平面α过正方体ABCD­A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.32B.22C.33D.132.(2013·新课标全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l3.(2016·全国甲卷)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.四条线段顺次首尾相连,它们最多可确定的平面有( )A.4个 B.3个 C.2个 D.1个2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC 和BD不相交,则甲是乙成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α4.如图,平行六面体ABCD­A1B1C1D1中既与AB共面又与CC1共面的棱有________条.[练常考题点——检验高考能力]一、选择题1.若直线上有两个点在平面外,则( )A.直线上至少有一个点在平面内 B.直线上有无穷多个点在平面内C.直线上所有点都在平面外 D.直线上至多有一个点在平面内2.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )A.6 2 B.12 C.12 2 D.24 23.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4 B.l1∥l4C.l1与l4既不垂直也不平行 D.l1与l4的位置关系不确定4.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行 B.相交或异面C.平行或异面 D.相交、平行或异面5.如图,ABCD ­A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面6.过正方体ABCD ­A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条二、填空题7.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则下列说法正确的是________.(填写所有正确说法的序号)①EF 与GH 平行 ②EF 与GH 异面③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上 ④EF 与GH 的交点M 一定在直线AC 上8.如图为正方体表面的一种展开图,则图中的AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对.9.已知a ,b ,c 为三条不同的直线,且a ⊂平面α,b ⊂平面β,α∩β=c . ①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交; ②若a 不垂直于c ,则a 与b 一定不垂直; ③若a ∥b ,则必有a ∥c ; ④若a ⊥b ,a ⊥c ,则必有α⊥β.其中正确的命题有________.(填写所有正确命题的序号)10.如图,在三棱锥A­BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.三、解答题11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.12.如图,在三棱锥P ­ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P ­ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.立体几何第二节空间点、直线、平面之间的位置关系本节主要包括2个知识点:1.平面的基本性质;2.空间两直线的位置关系.突破点(一) 平面的基本性质1.公理1~32.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.考点贯通 抓高考命题的“形”与“神”点、线、面的位置关系1.证明点共线问题的常用方法(1)公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上;(2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.2.证明线共点问题的方法先证两条直线交于一点,再证明第三条直线经过该点.3.证明点、直线共面问题的常用方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.[典例] 已知:空间四边形ABCD (如图所示),E ,F 分别是AB ,AD的中点,G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =13DC .求证: (1)E ,F ,G ,H 四点共面;(2)三直线FH ,EG ,AC 共点.[证明] (1)连接EF ,GH ,∵E ,F 分别是AB ,AD 的中点,∴EF ∥BD .又∵CG =13BC ,CH =13DC , ∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,G ,H 四点共面.(2)易知FH 与直线AC 不平行,但共面,∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC .又∵平面EFHG ∩平面ABC =EG ,∴M ∈EG ,∴FH ,EG ,AC 共点.[方法技巧]平面的基本性质的应用公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.能力练通 抓应用体验的“得”与“失”1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )解析:选D A 、B 、C 图中四点一定共面,D 中四点不共面.2.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .至多等于3B .至多等于4C .等于5D .大于5 解析:选B n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,这种情况不可能出现,所以正整数n 的取值至多等于4.3.以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3解析:选 B ①显然是正确的,可用反证法证明;②中若A ,B ,C三点共线,则A ,B ,C ,D ,E 五点不一定共面;③构造长方体或正方体,如图显然b ,c 异面,故不正确;④中空间四边形中四条线段不共面.故只有①正确.4.如图所示,四边形ABEF 和四边形ABCD 都是梯形,BC 綊12AD ,BE 綊12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由已知FG =GA ,FH =HD ,可得GH 綊12AD .又∵BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)C ,D ,F ,E 四点共面,证明如下:由BE 綊12AF ,G 为FA 的中点知BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH ,∴EF ∥CH .∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.突破点(二) 空间两直线的位置关系1.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)公理4和等角定理①公理4:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.2.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎦⎥⎤0,π2.[例1] (1)下列结论正确的是( )①在空间中,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线中的一条相交,那么它也和另一条相交;④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c .A .①②③B .②④C .③④D .②③(2)在图中,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.(填上所有正确答案的序号)[解析] (1)①错,两条直线不相交,则它们可能平行,也可能异面;②由公理4可知正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.(2)图①中,直线GH ∥MN ;图②中,G ,H ,N 三点共面,但M ∉平面GHN ,因此直线GH 与MN 异面;图③中,连接MG ,GM ∥HN ,因此GH 与MN 共面;图④中,G ,M ,N 共面,但H ∉平面GMN ,因此GH 与MN 异面.所以在图②④中,GH 与MN 异面.[答案] (1)B (2)②④[方法技巧] 判断空间两直线位置关系的思路方法(1)判断空间两直线的位置关系一般可借助正方体模型,以正方体为主线直观感知并准确判断.(2)异面直线的判定方法①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.②定理法:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线.异面直线所成的角[例2] 空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E ,F 分别为BC ,AD 的中点,求EF 与AB 所成角的大小.[解] 取AC 的中点G ,连接EG ,FG ,则EG 綊12AB ,FG 綊12CD , 由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为30°,∴∠EGF =30°或150°.由EG =FG 知△EFG 为等腰三角形,当∠EGF =30°时,∠GEF =75°;当∠EGF =150°时,∠GEF =15°.故EF 与AB 所成的角为15°或75°.[方法技巧]用平移法求异面直线所成的角的步骤(1)一作:即根据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.能力练通 抓应用体验的“得”与“失”1.[考点一]下列说法正确的是( )A .若a ⊂α,b ⊂β,则a 与b 是异面直线B .若a 与b 异面,b 与c 异面,则a 与c 异面C .若a ,b 不同在平面α内,则a 与b 异面D .若a ,b 不同在任何一个平面内,则a 与b 异面解析:选D 由异面直线的定义可知D 正确.2.[考点一]l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B 若l 1⊥l 2,l 2⊥l 3,则l 1,l 3有三种位置关系,可能平行、相交或异面,A 不正确;当l 1∥l 2∥l 3或l 1,l 2,l 3共点时,l 1,l 2,l 3可能共面,也可能不共面,C ,D 不正确;当l 1⊥l 2,l 2∥l 3时,则有l 1⊥l 3,故选B.3.[考点二]如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.解析:如图,将原图补成正方体ABCD ­QGHP ,连接GP ,AG ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中AG =GP =AP ,所以∠APG =π3. 答案:π34.[考点一、二]如图所示,三棱锥P ­ABC 中, PA ⊥平面ABC ,∠BAC =60°,PA =AB =AC =2,E 是PC 的中点.(1)求证AE 与PB 是异面直线;(2)求异面直线AE 与PB 所成角的余弦值.解:(1)证明:假设AE 与PB 共面,设平面为α,∵A ∈α,B ∈α,E ∈α,∴平面α即为平面ABE ,∴P ∈平面ABE ,这与P ∉平面ABE 矛盾,所以AE 与PB 是异面直线.(2)取BC 的中点F ,连接EF ,AF ,则EF ∥PB ,所以∠AEF (或其补角)就是异面直线AE 与PB 所成的角.∵∠BAC =60°,PA =AB =AC =2,PA ⊥平面ABC ,∴AF =3,AE =2,EF =2,cos ∠AEF =AE 2+EF 2-AF 22·AE ·EF =2+2-32×2×2=14,故异面直线AE 与PB 所成角的余弦值为14.[全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)平面α过正方体ABCD ­A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22 C.33 D.13解析:选A 如图,在正方体ABCD ­A 1B 1C 1D 1的上方接一个同等大小的正方体ABCD ­A 2B 2C 2D 2,则过A 与平面CB 1D 1平行的是平面AB 2D 2,即平面α就是平面AB 2D 2,平面AB 2D 2∩平面ABB 1A 1=AB 2,即直线n 就是直线AB 2,由面面平行的性质定理知直线m 平行于直线B 2D 2,故m ,n 所成的角就等于AB 2与B 2D 2所成的角,在等边三角形AB 2D 2中,∠AB 2D 2=60°,故其正弦值为32.故选A. 2.(2013·新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l解析:选D 由于m ,n 为异面直线,m ⊥平面α,n ⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m ,n ,又直线l 满足l ⊥m ,l ⊥n ,则交线平行于l ,故选D.3.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)解析:对于①,α,β可能平行,也可能相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.答案:②③④[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.四条线段顺次首尾相连,它们最多可确定的平面有( )A.4个 B.3个 C.2个 D.1个解析:选A 首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC 和BD不相交,则甲是乙成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交,充分性成立;若直线AC和BD不相交,若直线AC和BD平行,则A,B,C,D四点共面,必要性不成立,所以甲是乙成立的充分不必要条件.3.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:选D 结合正方体模型可知b与α相交或b⊂α或b∥α都有可能.4.如图,平行六面体ABCD­A1B1C1D1中既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的棱有5条.答案:5[练常考题点——检验高考能力]一、选择题1.若直线上有两个点在平面外,则( )A.直线上至少有一个点在平面内 B.直线上有无穷多个点在平面内C.直线上所有点都在平面外 D.直线上至多有一个点在平面内解析:选D 根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.2.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )A.6 2 B.12 C.12 2 D.24 2解析:选A 如图,已知空间四边形ABCD,对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的角,大小为45°,故S四边形EFGH=3×4×sin 45°=62,故选A.3.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4 B.l1∥l4C.l1与l4既不垂直也不平行 D.l1与l4的位置关系不确定解析:选D 构造如图所示的正方体ABCD­A1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A、B、C,选D.4.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行 B.相交或异面C.平行或异面 D.相交、平行或异面解析:选D 依题意,直线b和c的位置关系可能是相交、平行或异面.5.如图,ABCD­A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面解析:选A 连接A 1C 1,AC ,则A 1C 1∥AC ,所以A 1,C 1,C ,A 四点共面,所以A 1C ⊂平面ACC 1A 1,因为M ∈A 1C ,所以M ∈平面ACC 1A 1,又M∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 在平面ACC 1A 1与平面AB 1D 1的交线上,所以A ,M ,O 三点共线.6.过正方体ABCD ­A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条解析:选D 如图,连接体对角线AC 1,显然AC 1与棱AB ,AD ,AA 1所成的角都相等,所成角的正切值都为 2.联想正方体的其他体对角线,如连接BD 1,则BD 1与棱BC ,BA ,BB 1所成的角都相等,∵BB 1∥AA 1,BC∥AD ,∴体对角线BD 1与棱AB ,AD ,AA 1所成的角都相等,同理,体对角线A 1C ,DB 1也与棱AB ,AD ,AA 1所成的角都相等,过A 点分别作BD 1,A 1C ,DB 1的平行线都满足题意,故这样的直线l 可以作4条.二、填空题7.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则下列说法正确的是________.(填写所有正确说法的序号)①EF 与GH 平行 ②EF 与GH 异面③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上④EF 与GH 的交点M 一定在直线AC 上解析:连接EH ,FG (图略),依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上,故点M 在平面ACB 上.同理,点M 在平面ACD 上, ∴点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线, 所以点M 一定在直线AC 上.答案:④8.如图为正方体表面的一种展开图,则图中的AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB ,CD ,EF 和GH 在原正方体中,显然AB 与CD ,EF 与GH ,AB 与GH 都是异面直线,而AB 与EF 相交,CD 与GH 相交,CD 与EF 平行.故互为异面直线的有3对.答案:39.已知a ,b ,c 为三条不同的直线,且a ⊂平面α,b ⊂平面β,α∩β=c .①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交;②若a 不垂直于c ,则a 与b 一定不垂直;③若a ∥b ,则必有a ∥c ;④若a ⊥b ,a ⊥c ,则必有α⊥β.其中正确的命题有________.(填写所有正确命题的序号)解析:①中若a 与b 是异面直线,则c 至少与a ,b 中的一条相交,故①正确;②中平面α⊥平面β时,若b ⊥c ,则b ⊥平面α,此时不论a ,c 是否垂直,均有a ⊥b ,故②错误;③中当a ∥b 时,则a ∥平面β,由线面平行的性质定理可得a ∥c ,故③正确;④中若b ∥c ,则a ⊥b ,a ⊥c 时,a 与平面β不一定垂直,此时平面α与平面β也不一定垂直,故④错误.答案:①③10.如图,在三棱锥A ­BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.解析:如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK .∵M为AD 的中点,∴MK ∥AN ,∴∠KMC (或其补角)为异面直线AN ,CM 所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理易求得AN =DN =CM =22,∴MK = 2.在Rt △CKN 中,CK = 22+12= 3.在△CKM 中,由余弦定理,得cos ∠KMC =22+222-322×2×22=78,所以异面直线AN ,CM 所成的角的余弦值是78. 答案:78三、解答题11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P ­ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求: (1)三棱锥P ­ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23,三棱锥P ­ABC 的体积为V =13S △ABC ·PA =13×23×2=433. (2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34. 故异面直线BC 与AD 所成角的余弦值为34.。

空间几何体知识点总结

空间几何体知识点总结

空间几何体知识点总结空间几何体知识点总结空间几何体是研究三维空间中各种几何形体的数学学科。

它包括了点、线、面和立体等概念,以及它们之间的关系与性质。

在学习空间几何体时,我们通常会接触到以下几个重要的知识点。

1. 点、线、面的定义:点是空间中的一个位置,用来表示长度为零的物体;线是两个点之间最短的路径,没有宽度和厚度;面是由多条线围成的平坦平面,有宽度和厚度。

2. 点、线、面的关系:点和点之间可以连成线,线和线之间可以相交、平行或垂直,面与面之间可以相交、平行或垂直。

3. 空间几何体的表示方法:点可以用坐标表示,线可以用两个点的坐标表示,面可以用三个点的坐标表示。

在三维空间中,我们通常使用笛卡尔坐标系来表示几何体。

4. 长度、面积与体积:长度是线段的大小,可以用距离公式计算;面积是平面内图形的大小,可以用计算面积的公式计算;体积是立体图形的大小,可以用计算体积的公式计算。

5. 点、线、面的投影:点的投影是指将点在投影面上的投影点,线的投影是指将线在投影面上的投影线段,面的投影是指将面在投影面上的投影区域。

6. 点、线、面与平面的位置关系:点可以在平面上、平面内或平面外;线可以与平面相交、平面内或平面外;面可以与平面相交、平面内或平面外。

7. 点、线、面的旋转、平移与对称:旋转是指在空间中围绕某个轴旋转;平移是指将一个物体在空间中沿着某个方向平行移动;对称是指将一个物体绕着某个中心轴翻转。

8. 直线、平面的方程:直线可以用点斜式、两点式、截距式等方程表示;平面可以用一般式、点法式等方程表示。

9. 空间几何体的投影性质:投影性质是指一个物体在投影面上的形状与原来物体的关系。

例如,平行于投影面的物体的投影在投影面上的尺寸与原来物体的尺寸相等。

10. 空间几何体的立体视图:立体视图是指将一个三维物体在不同方向上投影到二维平面上,用于表示物体的三维形状。

除了以上的知识点,还有许多更深入、更复杂的空间几何体的理论与性质,如立体的表面积与体积计算、立体的相似性与全等性、等距变换等。

点线面的关系及其在几何学中的应用

点线面的关系及其在几何学中的应用

点线面的关系及其在几何学中的应用几何学是研究点、线、面等几何对象之间的关系和性质的学科。

在几何学中,点、线、面是最基本的概念,它们之间存在着密切的关系,并且在几何学中扮演着重要的角色。

本文将介绍点线面的关系以及它们在几何学中的应用。

一、点线面的关系1. 点与线的关系点是几何学中最基本的概念,它没有长度、宽度和高度,只有位置。

而线则是由无数个点组成的集合,是一维的几何对象。

点与线之间存在着以下几种关系:(1)点在线上:当一个点与一条线上的点完全重合时,我们可以说这个点在这条线上。

(2)点在线上的垂直投影:一个点在一条线上的垂直投影是指从该点向垂直于线的方向下落,与线交于一点。

这个交点就是点在线上的垂直投影点。

(3)点在线的延长线上:当一个点不在一条线上,但点的连线与线的延长线相交时,我们可以说这个点在线的延长线上。

2. 点与面的关系面是由无数个点和线组成的集合,是二维的几何对象。

点与面之间存在着以下几种关系:(1)点在面上:当一个点与一个面上的点完全重合时,我们可以说这个点在这个面上。

(2)点在面的投影上:一个点在一个面上的投影是指从该点向面垂直方向投影,与面交于一点。

这个交点就是点在面上的投影点。

(3)点在面的上方或下方:当一个点不在面上,但点与面的连线与面平行时,我们可以根据点与面的位置关系,称这个点在面的上方或下方。

3. 线与面的关系线是由无数个点组成的集合,面是由无数个点和线组成的集合,线与面之间存在着以下几种关系:(1)线在面上:当一条线上的所有点都在一个面上时,我们可以说这条线在这个面上。

(2)线与面的交点:当一条线与一个面相交时,这个交点就是线与面的交点。

二、点线面在几何学中的应用1. 平面几何平面几何是几何学中的一个重要分支,与点线面的关系密切相关。

在平面几何中,我们研究平面上的点、直线和封闭曲线等几何对象之间的关系和性质,并应用它们来解决问题。

例如,通过研究点在线上的投影,我们可以得到很多有关垂直关系的定理;通过研究直线与平面的交点,我们可以得到很多有关平行关系的定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何的点线面的关系[键入文字] 课题教学目标立体几何的点线面的关系证明题目的方法教学内容立体几何热身训练:1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c 的位置关系是. 2.给出下列命题:①若平面?内的直线a与平面?内的直线b为异面直线,直线c是?与?的交线,那么直线c至多与a、b中的一条相交;②若直线a与b为异面直线,直线b与c平行,则直线a与c异面;③一定存在平面?和异面直线a、b同时平行. 其中正确命题的序号是. 3.已知a,b 是异面直线,直线c∥直线a,则c与b的位置关系. ①一定是异面直线③不可能是平行直线②一定是相交直线④不可能是相交直线 4.若P是两条异面直线l、m外的任意一点,则说法错误的有. ①过点P有且仅有一条直线与l、m都平行②过点P有且仅有一条直线与l、m都垂直③过点P有且仅有一条直线与l、m都相交④过点P有且仅有一条直线与l、m都异面 5.在正方体ABCD—A1B1C1D1中,E、F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1、EF、CD都相交的直线有条. 6.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为. 7.如图所示,在三棱锥C—ABD 中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是. 8.已知a、b为不垂直的异面直线,?是一个平面,则a、b在?上的射影可能是①两条平行直线;③同一条直线;②两条互相垂直的直线;④一条直线及其外一点. 则在上面的结论中,正确结论的编号是. 9.下列命题中,正确命题的个数是. ①若直线l上有无数个点不在平面?内,则l∥?;②若直线l与平面?平行,则l与平面?内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l与平面?平行,则l与平面?内的任意一条直线都没有公共点. 10.下列条件中,不能判断两个平面平行的是. ①一个平面内的一条直线平行于另一个平面②一个平面内的两条直线平行于另一个平面③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面11.对于平面?和共面的直线m、n,下列命题中假命题是. ①若m⊥?,m⊥n,则n∥?②若m∥?,n∥?,则m ∥n ③若m??,n∥?,则m∥n④若m、n与?所成的角相等,则m∥n 12.已知直线a,b,平面?,则以下三个命题:①若a∥b,b??,则a∥?;②若a∥b,a∥?,则b∥?;③若a∥?,b∥?,则a∥b. 其中真命题的个数是. 1 [键入文字] 解答题典例选讲:例1.如图,在正方体ABCD—A1B1C1D1中,M、N、G分别是A1A,D1C,AD 的中点;求证:MN//平面ABCD;MN⊥平面B1BG.BB1A1D1C1NMAGDC例2.(09江苏) 如图,在直三棱柱ABC?A1B1C1中,E、F分别是A1B、AC的中点,点D在B1C1上,1A1D?B1C。

求证:EF // 平面ABC;平面A1FD?平面BB1C1C.例3.如图,在三棱柱ABC?A1B1C1中,AB?BC,BC?BC1,AB?BC1,E,F,G分别为线段AC1,AC11,BB1的中点,求证:平面ABC?平面ABC1;EF//面BCC1B1;GF?平面AB1C1 2 [键入文字] 例4.如图,在四棱锥P?ABCD中,底面ABCD中为菱形,?BAD?60?,Q为AD的中点。

P若PA?PD,求证:平面PQB?平面PAD;点M在线段PC上,PM?tPC,试确定实数DQMCt的值,使得PA//平面MQB A B 例5.如图,在直角梯形PBCD中,PB//CD,CD?BC,BC?PB?2CD,A是PB的中点. 现沿AD把平面PAD折起,使得PA?AB,E、F分别为BC、AB边的中点. 求证:PA?平面ABCD;求证:平面PAE?平面PDE;在PA上是否存在一点G,使得FG//平面PDE.解答题解题策略:解答题以中档题为主,因而对证题的书写规范要求较高,运用定理所需条件要写全,通常在证明过程中推理缺少条件,每个扣一分;解决问题中应注意以下几点:线线关系?线面关系?面面关系的转化;解题过程要遵循一作、二证、三计算;见等腰三角形要联想到作底边的高;给出中点,一般要想到中位线;条件中如给出一些线段的长度,则可能需要通过计算证垂直。

巩固练习:1:给定下列四个命题;其中,为真命题的是①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.2:若?,?、?是三个互不重合的平面,l是一条直线,则下列四个命题中,正确命题的序号是①若l??,l//?,则???;②若???,l??,则l//?;③若???,?//?,则???;④若l上有两个点到?的距离相等,则l//?。

3:如图,设平面????EF,垂足分别为B、D,若增加一个条件,就能推出BD?EF,AB??,CD??,3 [键入文字] 现有:①AC??;②AC与?,?所成的角相等③AC与CD在?内的射影在同一直线上;④AC∥EF 那么上述几个条件中能成为增加条件的是4:已知长方体ABCD?A1B1C1D1的顶点都在直径为3的球面上,AA1?AB?2,AD=1,E 为DD1的中点,则异面直线A1E与B1D 所成角的大小为5:如图,在正三棱柱ABC?A1B1C1中,D为棱AA1的中点,若截面?BC1D是面积为6的直角三角形,则此三棱柱的体积为。

6:如图,在棱长为2的正方体ABCD?A1B1C1D1中,E、F分别为DD1、DB的中点.求证:EF//平面ABC1D1;求证:EF?B1C.7:在斜三棱柱A1B1C1-ABC中, 底面是等腰三角形, AB=AC, 侧面BB1C1C⊥底面ABC. (1)若D是BC的中点,求证:AD⊥CC1; 4 [键入文字] (2)过侧面BB1C1C的对角线BC1的平面交侧棱于M, 若AM=MA1,求证:截面MBC1⊥侧面BB1C1C; A M C1 B1 A18:如图,在直三棱柱ABC?A1B1C1中,AB?BB1,AC1?平面A1BD,D为AC的中点.求证:B1C//平面A1BD;求证:B1C1?平面ABB1A1;A1A 9:如图,在五面体ABCDEF中,FA ?平面ABCD, 1AD//BC//FE,AB?AD,M 为EC的中点,AF=AB=BC=FE=AD 2 C D B B1 C1 B D C 5[键入文字] (I) 求异面直线BF与DE所成的角的大小;(II) 证明平面AMD?平面CDE;10:已知等腰梯形PDCB中,PB?3,DC?1,PD?2,A为PB边上一点,且DA?PB,将?PAD沿AD折起,使PA?AB 求证:CD//面PAB;CB?面PAC11.如图,菱形ABCD所在平面与矩形ACEF 所在平面相互垂直,点M是线段EF的中点。

求证:AM // 平面BDE; 6 [键入文字] 当BD为何值时,平面DEF?平面BEF?并证明你的结论。

AFE M F B C A D 1.答案:②、④ 2.答案:①、③.3.答案:①、③解析:对于①AC??,知AC?EF,?AB?EF,∴EF?平面ABDC,则BD?EF;②、④不能推出BD?EF;对于③知平面ABDC??,平面ABDC??,∴EF?平面ABDC,∴BD?EF 4.答案:? 4解析:取CC1的中点F,易知B1F∥A1E,则?DB1F为异面直线A1E与B1D所成的角,B1D2?B1F2?DF22?,? ?AA1?AB?2,AD=1,?B1D?3,B1F?2,DF?5,则COS?DB1F?2B1D?B1F2?DB1F??4 5.答案:83解析:正三棱柱推知BD?DC1,所以?BC1D为等腰直角三角形,?BDC1?900,BD?DC1?12,BC1?24,22??a?8?a?b?12?设底边长a,高为2b,?2 ,V?Sh?83 ?2??b?2?a?4b?246.略证:连结BD1,在?DD1B中,E、F 分别为D1D,DB的中点,则7 [键入文字] ??D1B?平面ABC1D1??EF//平面ABC1D1 EF?平面ABC1D1??EF//D1B ??B1C?BC1???B1 C?平面ABC1D1AB,B1C?平面ABC1D1??AB?BC1?B? ?BD1?平面ABC1D1,?B1C?BD1B1C?AB 7.略证:(1)∵AB=AC, D是BC的中点,∴AD⊥BC.∵底面ABC⊥平面BB1C1C, 面ABC?面BB1C1C?BC ∴AD⊥侧面BB1C1C. ?CC1?面BB1C1C∴AD⊥CC1.(2)延长B1A1与BM交于N, 连结C1N. ∵AM=MA1, ∴NA1=A1B1,则A1C1= A1N=A1B1. ∴C1N⊥C1B1 ∵截面N B1C1⊥侧面BB1C1C, 又?EF//BD1则EF?B1C?面N B1C1?面BB1C1C= C1B1∴C1N⊥侧面BB1C1C.?C1N? 面C1NB ∴截面C1NB⊥侧面BB1C1C. 即截面MBC1⊥侧面BB1C1C.8.略证:证明:连接AB1与A1B相交于M,则M 为AB1的中点,连结MD,又D为AC 的中点,∴B1C//MD,又B1C?平面A1BD,∴B1C//平面A1BD.∵AB?B1B,∴四边形ABB1A1为正方形,∴A1B?AB1,又∵AC1?面A1BD,∴AC1?A1B,∴A1B?面AB1C1,∴A1B?B1C1,又在直棱柱ABC?A1B1C1中BB1?B1C1,∴B1C1?平面ABB1A 9.略证:题设知,BC//EF且BC=EF,?四边形BCEF为平行四边形,则BF//CE,?∠CED为异面直线BF与DE所成的角。

////AP,//PC;取AD的中点P,连结EP,PC,EP,同理AB?又FA⊥平面ABCD,? FE??FA??EP⊥平面ABCD。

?AB⊥AD,?PC⊥AD设FA=a,则EP=PC=PD=a,CD=DE=EC=2a,?∠CED=60°。

即异面直线BF与DE所成的角的大小为60?M为EC的中点,PC=PE,?CE?MP,DC?DE,同理可得CE?MD 又?MP?DM?M,故CE?平面AMDCE?平面CDE,?平面AMD?平面CDE. 10.略证:?CD//AB,CD?平面PAB,AB?平面PAB,?CD//面PAB 证明:等腰梯形PDCB中,PB?3,DC?1,PD?2,DA?PB,?PA?AD?1,则8 [键入文字] AC2?BC2?AB2?4,?BC?AC 又?PA?AD,PA?AB,?PA?平面ABD,?BC?平面ABD?BC?PA 又PA?AC?A PA,AC?平面PAC?CB?平面PAC 11.略证:取AC与BD的交点N,连接EN,题意知:EN // AM,又EN在平面BDE 内,所以AM // 平面BDE BD当?2时,平面DEF?平面BEF AF四边形ACEF 为矩形,?FA、EC都垂直于平面ABCD,又四边形ABCD?平面ACEF?平面ABCD,是菱形,??FAD??ECD,则DF =DE,M为EF的中点,得DM?EF,同理BM?EF,则DM?BM时,就有DM?平面BEF BD∴?DMB=900时,平面DEF?平面BEF ,此时?2AF9。

相关文档
最新文档