通信原理实验教程资料精

合集下载

通信原理实验

通信原理实验

通信原理实验通信原理实验是现代通信领域中非常重要的一环,通过实验可以更深入地了解通信原理的理论基础和实际应用。

本文将从实验的目的、实验内容和实验流程三个方面来介绍通信原理实验。

一、实验的目的通信原理实验的主要目的是让学生熟悉通信原理的基本知识,包括信号的产生、调制和解调过程,以及信道传输、噪声影响和信号处理等方面。

通过实验,学生可以了解通信系统中各部分的作用、特点和性能,掌握测量和判读信号质量的方法,提高理论与实践结合的能力。

二、实验内容通信原理实验的内容很丰富,主要包括以下几个方面。

1、信号产生和调制实验这部分实验主要是让学生了解不同类型的信号产生方法,掌握正弦波、方波、三角波等基本波形的产生方法。

同时,也要学会使用不同类型的调制方式产生调制信号,如幅度调制、频率调制和相位调制等。

2、信号传输和噪声实验这部分实验主要是让学生了解信道传输的基本原理和特点,包括信号衰减、色散和失真等问题。

还要了解不同类型的噪声对信号传输的影响和抵消方法。

3、解调和信号处理实验这部分实验主要是让学生了解信号解调的基本原理和方法,掌握不同类型的解调方法,如同步解调、频率解调和相干解调等。

同时,还要了解信号处理的基本方法和技术,包括滤波、采样和调整等。

三、实验流程通信原理实验的流程一般如下。

1、实验前准备在进行实验前,需要了解实验的目的和内容,学习相关理论知识和实验操作方法,准备适当的实验器材和仪器,并对实验进行设计和规划。

2、实验操作在实验操作过程中,需要遵循相应的实验步骤和操作要求,进行信号的产生、传输、解调和处理过程,记录实验数据和结果,并及时进行验证和分析。

3、实验总结在实验结束后,需要总结实验结果和教训,评价实验的成果和不足之处,并提出改进意见和建议。

同时,也需要归纳和掌握实验中的主要知识和技术,加深对通信原理的理解和应用。

四、实验注意事项在进行通信原理实验时,需要注意以下几个问题。

1、认真预习和准备实验操作,充分了解实验目的和内容。

通信原理实验

通信原理实验

通信原理实验一、实验目的。

本实验旨在通过实际操作,加深学生对通信原理知识的理解,提高学生的实际动手能力和解决问题的能力,培养学生的创新思维和实践能力。

二、实验内容。

1. 了解调制解调原理。

2. 学习使用示波器观察调制信号波形。

3. 熟悉频谱分析仪的使用方法。

4. 掌握解调电路的实验操作。

三、实验仪器和设备。

1. 示波器。

2. 频谱分析仪。

3. 信号发生器。

4. 解调电路实验箱。

四、实验步骤。

1. 调制解调原理的实验操作。

a. 将信号发生器输出正弦波信号,频率为1kHz,幅度为2V。

b. 将示波器的通道1和通道2分别连接到信号发生器的输出端和调制电路的输出端。

c. 调制电路采用调幅调制电路,调制信号频率为100Hz,调制深度为50%。

d. 观察示波器上的波形,记录调制信号的波形特点。

2. 使用示波器观察调制信号波形。

a. 将信号发生器输出正弦波信号,频率为1kHz,幅度为2V。

b. 将示波器的通道1和通道2分别连接到信号发生器的输出端和调制电路的输出端。

c. 调制电路采用调频调制电路,调制信号频率为100Hz,调制幅度为±1kHz。

d. 观察示波器上的波形,记录调制信号的波形特点。

3. 频谱分析仪的使用方法。

a. 将频谱分析仪的输入端连接到调制信号的输出端。

b. 调制信号频率为1kHz,幅度为2V。

c. 打开频谱分析仪,调节参数,观察频谱分析仪上的频谱图像。

4. 解调电路的实验操作。

a. 将调制信号的输出端连接到解调电路的输入端。

b. 调制信号频率为1kHz,幅度为2V。

c. 打开示波器,观察解调电路输出端的波形特点。

五、实验结果分析。

通过本次实验,我们深入了解了调制解调原理,掌握了使用示波器观察调制信号波形的方法,熟悉了频谱分析仪的使用方法,掌握了解调电路的实验操作。

通过观察波形和频谱图像,我们对调制信号的特点有了更深入的理解,为进一步学习通信原理奠定了基础。

六、实验注意事项。

1. 实验过程中注意安全,避免触电和短路。

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告通信原理实验实验报告一、引言通信原理是现代通信技术的基础,而通信原理实验则是学习和理解通信原理的重要途径之一。

本次实验旨在通过实际操作和数据分析,加深对通信原理的理解,并掌握相关实验技能。

二、实验目的本次实验的主要目的是通过实验验证通信原理中的一些基本概念和理论,包括调制、解调、信道传输特性等。

同时,通过实验数据的分析,探究不同参数对通信系统性能的影响。

三、实验原理1. 调制与解调调制是将要传输的信息信号转换成适合传输的调制信号的过程,解调则是将接收到的调制信号恢复成原始信息信号的过程。

常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

2. 信道传输特性信道传输特性是指信号在传输过程中受到的各种干扰和衰减的影响。

常见的信道传输特性包括衰减、失真、噪声等。

在通信系统设计中,需要考虑信道传输特性对信号质量的影响,并采取相应的措施进行补偿或抑制。

四、实验步骤1. 实验一:调制与解调在实验一中,我们选择了幅度调制(AM)作为调制方式。

首先,通过信号发生器产生一个正弦波作为基带信号,然后将其调制到无线电频率范围。

接下来,通过解调器将接收到的信号解调,并与原始信号进行比较分析。

2. 实验二:信道传输特性在实验二中,我们通过建立一个简单的传输系统来研究信道传输特性。

首先,我们将信号源连接到信道输入端,然后通过信道模拟器模拟信道的衰减、失真和噪声等特性。

最后,我们使用示波器观察信号在传输过程中的变化,并记录相关数据。

五、实验结果与分析1. 实验一:调制与解调通过实验一的数据分析,我们可以得出调制信号与原始信号的关系,并进一步了解幅度调制的特点。

同时,我们还可以观察到解调过程中的信号失真情况,并对解调算法进行改进。

2. 实验二:信道传输特性实验二的数据分析主要包括信号衰减、失真和噪声等方面。

通过观察示波器上的波形变化,我们可以了解信号在传输过程中的衰减程度,以及失真和噪声对信号质量的影响。

通信原理实验教程(MATLAB)

通信原理实验教程(MATLAB)

实验教程目录实验一:连续时间信号与系统的时域分析-------------------------------------------------6一、实验目的及要求---------------------------------------------------------------------------6二、实验原理-----------------------------------------------------------------------------------61、信号的时域表示方法------------------------------------------------------------------62、用MATLAB仿真连续时间信号和离散时间信号----------------------------------73、LTI系统的时域描述-----------------------------------------------------------------11三、实验步骤及内容--------------------------------------------------------------------------15四、实验报告要求-----------------------------------------------------------------------------26 实验二:连续时间信号的频域分析---------------------------------------------------------27一、实验目的及要求--------------------------------------------------------------------------27二、实验原理----------------------------------------------------------------------------------271、连续时间周期信号的傅里叶级数CTFS---------------------------------------------272、连续时间信号的傅里叶变换CTFT--------------------------------------------------283、离散时间信号的傅里叶变换DTFT -------------------------------------------------284、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------295、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33三、实验步骤及内容----------------------------------------------------------------------34四、实验报告要求-------------------------------------------------------------------------48 实验三:连续时间LTI系统的频域分析---------------------------------------------------49一、实验目的及要求--------------------------------------------------------------------------49二、实验原理----------------------------------------------------------------------------------491、连续时间LTI系统的频率响应-------------------------------------------------------492、LTI系统的群延时---------------------------------------------------------------------503、用MATLAB计算系统的频率响应--------------------------------------------------50三、实验步骤及内容----------------------------------------------------------------------51四、实验报告要求-------------------------------------------------------------------------58 实验四:调制与解调以及抽样与重建------------------------------------------------------59一、实验目的及要求--------------------------------------------------------------------------59二、实验原理----------------------------------------------------------------------------------591、信号的抽样及抽样定理---------------------------------------------------------------592、信号抽样过程中的频谱混叠----------------------------------------------------------623、信号重建--------------------- ----------------------------------------------------------624、调制与解调----------------------------------------------------------------------------------645、通信系统中的调制与解调仿真---------------------------------------------------------66三、实验步骤及内容------------------------------------------------------------------------66四、实验报告要求---------------------------------------------------------------------------75 实验五:连续时间LTI系统的复频域分析----------------------------------------------76一、实验目的及要求------------------------------------------------------------------------76二、实验原理--------------------------------------------------------------------------------761、连续时间LTI系统的复频域描述--------------------------------------------------762、系统函数的零极点分布图-----------------------------------------------------------------773、拉普拉斯变换与傅里叶变换之间的关系-----------------------------------------------784、系统函数的零极点分布与系统稳定性和因果性之间的关系------------------------795、系统函数的零极点分布与系统的滤波特性-------------------------------------------806、拉普拉斯逆变换的计算-------------------------------------------------------------81三、实验步骤及内容------------------------------------------------------------------------82四、实验报告要求---------------------------------------------------------------------------87 附录:授课方式和考核办法-----------------------------------------------------------------88实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

通信原理的实验报告

通信原理的实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。

2. 掌握模拟通信和数字通信的基本技术。

3. 熟悉调制、解调、编码、解码等基本过程。

4. 培养实际操作能力和实验技能。

三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。

1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。

模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。

2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。

数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。

五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。

2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。

(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。

2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。

(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。

通信原理实验大全

通信原理实验大全

通信原理实验大全引言:通信原理是指利用一定的物理媒介将信息从发送者传递到接收者的过程。

通信原理实验是通信原理课程中的重要内容,通过实验可以加深对通信原理的理解,掌握通信原理的基本原理和技术。

本文将介绍几个通信原理实验的具体步骤和实验原理。

实验一:模拟调制与解调技术实验目的:熟悉模拟调制与解调技术的基本原理和方法,掌握AM,FM,PM的调制与解调过程。

实验步骤:1.使用函数发生器产生载波信号。

2.使用调制信号(如语音信号)对载波进行调制。

3.对调制后的信号进行解调,获得原始信号。

4.分析解调后的信号与原始信号的相似性。

实验原理:模拟调制是将载波信号与调制信号进行相互作用,在载波上叠加调制信号的变化。

调制信号可以是模拟信号,如语音信号,也可以是数字信号。

调制后的信号通过传输媒介传递到接收端,接收端通过解调技术将信号还原为原始信号。

实验二:数字调制与解调技术实验目的:熟悉数字调制与解调技术的基本原理和方法,掌握ASK,FSK,PSK等数字调制与解调过程。

实验步骤:1.使用函数发生器产生数字信号。

2.将数字信号进行调制,如ASK调制、FSK调制、PSK调制等。

3.对调制后的信号进行解调,获得原始数字信号。

4.分析解调后的信号与原始数字信号的相似性。

实验原理:数字调制是将数字信号转换为模拟信号的过程,通过将数字信号与载波进行相互作用,改变载波的一些特性来实现信号传输。

数值调制通常使用正弦波作为载波信号。

解调则是将调制信号还原为原始数字信号的过程。

实验三:信道编码和解码技术实验目的:熟悉信道编码和解码技术的基本原理和方法,掌握卷积码、纠错码等编码与解码过程。

实验步骤:1.使用编码器将原始信息进行编码。

2.对编码后的信息添加噪声进行模拟信道传输。

3.使用解码器对接收到的编码信息进行解码。

4.比较解码后的信息与原始信息的相似性。

实验原理:信道编码是为了提高信道传输的可靠性和容错性,通过在原始信息中添加冗余数据,使得在传输中出现的错误可以被检测和纠正。

通信原理实践教程

通信原理实践教程一、引言在现代社会中,通信技术的发展与应用已经成为人们生活中不可或缺的一部分。

通信原理作为通信技术的基础,对于我们理解和应用通信技术起着至关重要的作用。

本文将以通信原理实践教程为主题,介绍通信原理的基本概念、原理和实践应用,帮助读者深入了解通信原理,并能够将其应用于实际工程中。

二、通信原理基础知识1. 信号与噪声通信中,信号是指携带信息的电流、电压或电磁波,而噪声是指干扰信号的各种杂散电流、电压或电磁波。

了解信号与噪声的特性对于进行有效的通信至关重要。

2. 调制与解调调制是指将原始信号转换为适合传输的信号形式,解调则是将传输过程中的信号还原为原始信号。

常见的调制解调方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

3. 信道与传输介质信道是指信息传输的路径,传输介质是指信号传输所需要的物质媒介。

不同的信道和传输介质对信号传输的质量和速率有着重要影响。

三、通信原理的实践应用1. 无线通信无线通信是指通过无线电波进行信息传输的通信方式。

常见的无线通信技术包括蓝牙、Wi-Fi和移动通信等。

了解无线通信的原理和技术,可以帮助我们更好地使用和维护无线通信设备。

2. 光纤通信光纤通信是指利用光纤作为传输介质进行信息传输的通信方式。

光纤通信具有传输速率高、抗干扰能力强等优点,广泛应用于长距离通信和高速宽带接入等领域。

3. 数字通信数字通信是指将传输的信息离散化为数字信号进行传输的通信方式。

数字通信具有抗干扰能力强、传输质量稳定等优点,已成为现代通信的主流方式。

四、通信原理实践案例分析1. 手机通信手机通信是一种无线通信方式,通过基站与手机之间的信号传输实现通信。

手机通信涉及到无线信号的调制与解调、信道传输、信号处理等多个环节,是通信原理实践的重要应用之一。

2. 光纤网络光纤网络是一种利用光纤进行信息传输的通信网络。

光纤网络通过光纤传输信号,利用调制解调技术实现信号的传输与处理。

光纤网络的建设和维护需要对光纤通信原理有深入的理解和应用。

通信原理实验大全完整版

通信实验指导书电气信息工程学院目录实验一AM调制与解调实验 (1)实验二FM调制与解调实验 (5)实验三ASK调制与解调实验 (8)实验四FSK调制与解调实验 (11)实验五时分复用数字基带传输 (14)实验六光纤传输实验 (19)实验七模拟锁相环与载波同步 (27)实验八数字锁相环与位同步 (32)实验一 AM调制与解调实验一、实验目的理解AM调制方法与解调方法..二、实验原理本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号;载波为20KHZ正弦交流信号;两者通过相乘器实现调制过程..本实验中AM解调方法:非相干解调包络检波法..三、实验所需部件调制板、解调板、示波器、计算机数据采集设备..四、实验步骤1.熟悉实验所需部件..2.按下图接线..3.用示波器或计算机分别测出上图所示的几个点的波形;并绘制于下面各图中..4.结合上述实验结果深入理解AM调制方法与解调方法..实验一参考结果实验二 FM调制与解调实验一、实验目的理解FM调制方法与解调方法..二、实验原理本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号;让其通过V/F 电压/频率转换;即VCO压控振荡器实现调制过程..本实验中FM解调方法:鉴频法电容鉴频+包络检波+低通滤波三、实验所需部件调制板、解调板、示波器、计算机数据采集设备..四、实验步骤1.熟悉实验所需部件..2.按下图接线..3.用示波器或计算机分别测出上图所示的几个点的波形;并绘制于下面各图中..4.结合上述实验结果深入理解FM调制方法与解调方法..实验二参考结果实验三 ASK调制与解调实验一、实验目的理解ASK调制方法与解调方法..二、实验原理本实验中ASK调制方法:键控法原始数字信号采用250HZ方波信号代替;载波为2KHZ正弦交流信号;利用方波信号切换开关电路实现调制过程..本实验中ASK解调方法:非相干解调包络检波法..三、实验所需部件调制板、解调板、示波器、计算机数据采集设备..四、实验步骤1.熟悉实验所需部件..2.按下图接线..3.用示波器或计算机分别测出上图所示的几个点的波形;并绘制于下面各图中..4.结合上述实验结果深入理解ASK调制方法与解调方法..实验三参考结果实验四 FSK调制与解调实验一、实验目的理解FSK调制方法与解调方法..二、实验原理本实验中FSK调制方法:键控法原始数字信号采用250HZ方波信号代替;载波分别为2KHZ和1KHZ正弦交流信号;利用方波信号切换开关电路实现调制过程..本实验中FSK解调方法:PLL电路+低通滤波+抽样判决器..三、实验所需部件调制板、解调板、示波器、计算机数据采集设备..四、实验步骤1.熟悉实验所需部件..2.按下图接线..3.用示波器或计算机分别测出上图所示的几个点的波形;并绘制于下面各图中..4.结合上述实验结果深入理解FSK调制方法与解调方法..实验四参考结果实验五时分复用数字基带传输一、实验目的掌握时分复用数字基带通信系统的基本原理及数字信号传输过程..二、实验原理本实验用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统;使系统正常工作..用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号..三、实验所需部件调制板、解调板、示波器、计算机数据采集设备..四、实验步骤1、熟悉实验所需部件..2、按下图接线..3、用示波器或计算机分别测出上图所示的几个点的波形;并绘制于下面各图中..4、结合上述实验结果深入理解PCM调制方法与解调方法..实验五参考结果实验六光纤传输实验一、实验目的掌握抽样定理;了解时分复用原理;了解光纤的基本原理及传输过程..二、实验原理本实验用PCM调制及解调板、光通信发射及接收板、光纤通信模块组成音乐光纤传输通信系统;使系统正常工作..用示波器观察各测试信号..三、实验所需部件调制板、解调板、发射板、接收板、光纤通信模块、示波器、计算机数据采集设备..四、实验步骤1、熟悉实验所需部件..2、按下图接线..3、用示波器或计算机分别测出上图所示的几个点的波形;并绘制于下面各图中..4、结合上述实验结果深入理解光纤传输方法..实验六参考结果实验七模拟锁相环与载波同步一、实验目的掌握模拟锁相环的工作原理;以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念..掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法..了解相干载波相位模糊现象产生的原因..二、实验原理通信系统中常用平方环或同相正交环科斯塔斯环从2DPSK信号中提取相干载波..本实验系统的载波同步提取模块用平方环;原理方框图如图7-1所示..模块内部使用+5V、+12V、-12V电压;所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起..图7-1 载波同步方框图本模块上有以下测试点及输入输出点:• MU 平方器输出测试点;V>1VP-P>0.2V• VCO VCO输出信号测试点;VP-P鉴相器输出信号测试点• Ud• CAR-OUT 相干载波信号输出点/测试点图7-1中各单元与电路板上主要元器件的对应关系如下:•平方器U25:模拟乘法器MC1496•鉴相器U23:模拟乘法器MC1496;U24:运放UA741•环路滤波器电阻R25、R68;电容C11•压控振荡器CRY2:晶体;N3、N4:三极管3DG6•放大整形N5、N6:3DG6;U26:A:74HC04•÷2 U27:D触发器7474•移相器U28:单稳态触发器7474•滤波器电感L2;电容C30下面介绍模拟锁相环原理及平方环载波同步原理..锁相环由鉴相器PD、环路滤波器LF及压控振荡器VCO组成;如图7-2所示..u o (t)图7-2 锁相环方框图模拟锁相环中;PD 是一个模拟乘法器;LF 是一个有源或无源低通滤波器..锁相环路是一个相位负反馈系统;PD 检测u i t 与u o t 之间的相位误差并进行运算形成误差电压u d t;LF 用来滤除乘法器输出的高频分量包括和频及其他的高频噪声形成控制电压u c t;在u c t 的作用下、u o t 的相位向u i t 的相位靠近..设u i t=U i sin ωi t+θi t;u o t=U o cos ωi t+θo t;则u d t=U d sin θe t;θe t=θi t-θo t;故模拟锁相环的PD 是一个正弦PD..设u c t=u d tFP;FP 为LF 的传输算子;VCO 的压控灵敏度为K o ;则环路的数学模型如图7-3所示..θi (t)o (t)图7-3 模拟环数学模型当6)(πθ≤t e 时;e d e d U t U θθ=)(sin ;令K d =U d 为PD 的线性化鉴相灵敏度、单位为V/rad;则环路线性化数学模型如图7-4所示..θi (t)θo (t)图7-4 环路线性化数学模型由上述数学模型进行数学分析;可得到以下重要结论:• 当u i t 是固定频率正弦信号θi t 为常数时;在环路的作用下;VCO 输出信号频率可以由固有振荡频率ωo 即环路无输入信号、环路对VCO 无控制作用时VCO 的振荡频率;变化到输入信号频率ωi ;此时θo t 也是一个常数;u d t 、u c t 都为直流..我们称此为环路的锁定状态..定义Δωo =ωi -ωo 为环路固有频差;Δωp 表示环路的捕捉带;ΔωH 表示环路的同步带;模拟锁相环中Δωp <ΔωH ..当|Δωo |<ΔωP 时;环路可以进入锁定状态..当|Δωo |<ΔωH 时环路可以保持锁定状态..当|Δωo |>ΔωP 时;环路不能进入锁定状态;环路锁定后若Δωo 发生变化使|Δωo |>ΔωH ;环路不能保持锁定状态..这两种情况下;环路都将处于失锁状态..失锁状态下u d t 是一个上下不对称的差拍电压;当ωi >ωo ;u d t 是上宽下窄的差拍电压;反之u d t 是一个下宽上窄的差拍电压..• 环路对θi t 呈低通特性;即环路可以将θi t 中的低频成分传递到输出端;θi t 中的高频成分被环路滤除..或者说;θo t 中只含有θi t 的低频成分;θi t 中的高频成分变成了相位误差θe t..所以当u i t 是调角信号时;环路对u i t 等效为一个带通滤波器;离ωi 较远的频率成分将被环路滤掉..• 环路自然谐振频率ωn 及阻尼系数ζ具体公式在下文中给出是两个重要参数..ωn 越小;环路的低通特性截止频率越小、等效带通滤波器的带宽越窄;ζ越大;环路稳定性越好..• 当环路输入端有噪声时;θi t 将发生抖动;ωn 越小;环路滤除噪声的能力越强..实验一中的电荷泵锁相环4046的性能与模拟环相似;所以它可以将一个周期不恒定的信号变为一个等周期信号..对2DPSK 信号进行平方处理后得2/)2cos 1(cos )()(222t t t m t S c c ωω+==;此信号中只含有直流和2ωc 频率成分;理论上对此信号再进行隔直流和二分频处理就可得到相干载波..锁相环似乎是多余的;当然并非如此..实际工程中考虑到下述问题必须用锁相环:• 平方电路不理想;其输出信号幅度随数字基带信号变化;不是一个标准的二倍频正弦信号..即平方电路输出信号频谱中还有其它频率成分;必须滤除.. • 接收机收到的2DPSK 信号中含有噪声本实验系统为理想信道;无噪声;因而平方电路输出信号中也含有噪声;必须用一个窄带滤波器滤除噪声..• 锁相环对输入电压信号和噪声相当于一个带通滤波器;我们可以选择适当的环路参数使带通滤波器带宽足够小..对于本模拟环;ωn 、ζ、环路等效噪声带宽B L 及等效带通滤波器的品质因数Q 的计算公式如下:L n L n d n B fQ B C R C R R K K o21168116825o,)41(8,2,)(=+==+=ζζωωζω 式中f o =4.433×106HZ;等于载频的两倍..设计环路时通过测量得到K d 、K o ;一般选ζ值为0.5~1;根据任务要求选定ωn后即可求得环路滤波器的元件值..当固有频差为0时;模拟环输出信号的相位超前输入相位90︒;必须对除2电路输出信号进行移相才能得到相干载波..移相电路由两个单稳态触发器U28:A 和U28:B 构成..U28:A 被设置为上升沿触发;U28:B 为下降沿触发;故改变U28:A 输出信号的宽度即可改变U28:B 输出信号的相位;从而改变相干载波的相位..此移相电路的移相范围小于90︒..在锁定状态下微调C 34也会改变输出信号与输入信号的相位关系为什么;请思考..可对相干载波的相位模糊作如下解释..在数学上对cos2ωct进行除2运算的结果是cosωc t或-cosωct..实际电路也决定了相干载波可能有两个相反的相位;因二分频器的初始状态可以为“0”也可以是“1”..三、实验所需部件数字信源单元、数字调制单元和载波同步单元..四、实验步骤环路锁定时ud为直流、环路输入信号频率等于反馈信号频率此锁相环中即等于VCO信号频率..环路失锁时ud为差拍电压;环路输入信号频率与反馈信号频率不相等..本环路输入信号频率等于2DPSK载频的两倍;即等于调制单元CAR信号频率的两倍..环路锁定时VCO信号频率等于CAR-OUT信号频率的两倍..所以环路锁定时调制单元的CAR和载波同步单元的CAR-OUT频率完全相等..根据上述特点可判断环路的工作状态;具体实验步骤如下:1观察锁定状态与失锁状态打开电源后用示波器观察ud ;若ud为直流;则调节载波同步模块上的可变电容C 34;ud随C34减小而减小;随C34增大而增大为什么请思考;这说明环路处于锁定状态..用示波器同时观察调制单元的CAR和载波同步单元的CAR-OUT;可以看到两个信号频率相等..若有频率计则可分别测量CAR和CAR-OUT频率..在锁定状态下;向某一方向变化C34;可使ud由直流变为交流;CAR和CAR-OUT频率不再相等;环路由锁定状态变为失锁..接通电源后ud 也可能是差拍信号;表示环路已处于失锁状态..失锁时ud的最大值和最小值就是锁定状态下ud的变化范围对应于环路的同步范围..环路处于失锁状态时;CAR和CAR-OUT频率不相等..调节C34使ud的差拍频率降低;当频率降低到某一程度时ud会突然变成直流;环路由失锁状态变为锁定状态..2测量同步带与捕捉带环路处于锁定状态后;慢慢增大C34;使ud增大到锁定状态下的最大值ud1此值不大于+12V;继续增大C34;ud变为交流上宽下窄的周期信号;环路失锁..再反向调节减小C34;ud的频率逐渐变低;不对称程度越来越大;直至变为直流..记环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud2;继续减小C34;使ud减小到锁定状态下的最小值ud3;再继续减小C34;ud变为交流下宽上窄的周期信号;环路再次失锁..然后反向增大C34;记环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud4..令ΔV1=ud1- ud3;ΔV2=ud2- ud4;它们分别为同步范围内及捕捉范围内环路控制电压的变化范围;可以发现ΔV1>ΔV2..设VCO的灵敏度为KHZ/V;则环路同步带ΔfH及捕捉带ΔfP 分别为:ΔfH=KΔV1/2 ;ΔfP=KΔV2/2 ..应说明的是;由于VCO是晶体压控振荡器;它的频率变化范围比较小;调节C34时环路可能只能从一个方向由锁定状态变化到失锁状态;此时可用ΔfH =Kud1-6或Δf H =K 06-u d3、Δf P =K 0u d2-6或Δf P =K 06-u d4来计算同步带和捕捉带;式中6为u d 变化范围的中值单位:V..作上述观察时应注意:• u d 差拍频率低但幅度大;而CAR 和CAR-OUT 的频率高但幅度很小;用示波器观察这些信号时应注意幅度旋钮和频率旋钮的调整..• 失锁时;CAR 和CAR-OUT 频率不相等;但当频差较大时;在鉴相器输出端电容的作用下;u d 幅度较小..此时向某一方向改变C 34;可使u d 幅度逐步变大、频率逐步减小、最后变为直流;环路进入锁定状态..• 环路锁定时;u d 不是一个纯净的直流信号;在直流电平上叠加有一个很小的交流信号..这种现象是由于环路输入信号不是一个纯净的正弦信号所造成的.. 4. 观察环路的捕捉过程先使环路处于失锁定状态;慢慢调节C 34;使环路刚刚进入锁定状态后;关闭电源开关;然后再打开电源;用示波器观察u d ;可以发现u d 由差拍信号变为直流的变化瞬态过程..u d 的这种变化表示了环路的捕捉过程..5. 观察相干载波相位模糊现象使环路锁定;用示波器同时观察调制单元的CAR 和载波同步单元的CAR-OUT 信号;调节电位器P 1或微调电容C 34使两者成为反相或同相..反复断开、接通电源可以发现这两个信号有时同相、有时反相..五、实验报告要求1. 总结锁相环锁定状态及失锁状态的特点..2. 设K 0=18 HZ/V ;根据实验结果计算环路同步带Δf H 及捕捉带Δf P ..3. 由公式116825o )(C R R K K d n +=ω及n CR ωζ21168=计算环路参数ωn 和ζ;式中K d =6 V/rad;K o =2π×18 rad/s.v;R 25=2×104 Ω;R 68=5×103 Ω;C 11=2.2×10-6 F ..f n =ωn /2π应远小于码速率;ζ应大于0.5..4. 总结用平方环提取相干载波的原理及相位模糊现象产生的原因..5. 设VCO 固有振荡频率f 0 不变;环路输入信号频率可以改变;试拟订测量环路同步带及捕捉带的步骤..实验八数字锁相环与位同步一、实验目的掌握数字锁相环工作原理以及触发式数字锁相环的快速捕获原理..掌握用数字环提取位同步信号的原理及对信息代码的要求..掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念..二、实验原理可用窄带带通滤波器;锁相环来提取位同步信号..实验一中用模数混合锁相环电荷泵锁相环提取位同步信号;它要求输入信号是一个准周期数字信号..实验三中的模拟环也可以提取位同步信号;它要求输入准周期正弦信号..本实验使用数字锁相环提取位同步信号;它不要求输入信号一定是周期信号或准周期信号;其工作频率低于模数环和模拟环..用于提取位同步信号的数字环有超前滞后型数字环和触发器型数字环;此实验系统中的位同步提取模块用的是触发器型数字环;它具有捕捉时间短、抗噪能力强等特点..位同步模块原理框图如图8-1所示..其内部仅使用+5V电压..图8-1 位同步器方框图位同步模块有以下测试点及输入输出点:• S-IN 基带信号输入点/测试点2个• BS-OUT 位同步信号输出点/测试点3个图8-1中各单元与电路板上元器件的对应关系如下:•晶振CRY3:晶体;U39:7404•控制器U48:或门7432;U41:计数器74190•鉴相器U40:D触发器7474•量化器U45:可编程计数器8254•数字环路滤波器由软件完成•数控振荡U46、U45:8254•脉冲展宽器U47:单稳态触发器74123位同步器由控制器、数字锁相环及脉冲展宽器组成;数字锁相环包括数字鉴相器、量化器、数字环路滤波器、数控振荡器等单元..下面介绍位同步器的工作原理..数字锁相环是一个单片机系统;主要器件是单片机89C51及可编程计数器8254..环路中使用了两片8254;共六个计数器;分别表示为8254A 0、8254A 1、8254A 2、8254B 0、8254B 1、8254B 2..它们分别工作在M 0、M 1、M 2三种工作模式..M 0为计数中断方式;M 1为单稳方式;M2为分频方式..除地址线、数据线外;每个8254芯片还有时钟输入端C 、门控信号输入端G 和输出端O ..数字鉴相器电原理图及波形图如图8-2a 、图8-2b 所示..输出信号宽度正比于信号u i 及u o 上升沿之间的相位差;最大值为u i 的码元宽度..称此鉴相器为触发器型鉴相器;称包含有触发器型鉴相器的数字环路为触发器型数字锁相环..u i (b) 波形(a) 电路u du o图8-2 数字鉴相器量化器把相位误差变为多进制数字信号;它由工作于M 0方式、计数常数为N 0的8254 B 2完成N 0为量化级数;此处N 0=52..u d 作为8254B 2的门控信号;u d 为高电平时8254B 2进行减计数;u d 为低电平时禁止计数;计数结束后从8254B 2读得的数字为N d = N 0-N ’d 8-1式中N ’d 为u d 脉冲宽度的量化值下面用量化值表示脉冲宽度和时间间隔;N 0≥N ’d ;读数结束后再给8254B 2写入计数常数N 0..读数时刻由8254A 2控制;它工作在M 1模式;计数常数为N 0;u i 作为门控信号..一个u i 脉冲使8254A 2产生一个宽度为N 0的负脉冲;倒相后变为正脉冲送到89C51的1INT 端;而89C51的外中断1被设置为负跳变中断申请方式..由于8254A 2产生的脉冲宽度不小于u d 脉冲宽度且它们的前沿处于同一时刻;所以可以确保中断申请后对8254B 2读数时它已停止计数..数字环路滤波器由软件完成..可采用许多种软件算法;一种简单有效的方法是对一组N 0作平均处理..设无噪声时环路锁定后u i 与u o 的相位差为N 0/2;则在噪声的作用下;锁定时的相位误差可能大于N 0/2也可能小于N 0/2..这两种情况出现的概率相同;所以平均处理可以减小噪声的影响;m 个N d 值的平均值为∑==mi did m NN 18-2数字滤波器的输出为N c = N o / 2 + N d 8-3数控振荡器由四个8254计数器及一些门电路构成;其原理框图如图8-3所示;图中已注明了各个计数器的工作方式和计数常数..以下分析环路的锁定状态及捕捉过程;此时不考虑噪声的影响..图8-3 数控振荡器环路开始工作时;软件使8254B0和8254B1输出高电平;从而使8254A1处于计数工作状态、8254B1处于停止计数状态;G6处于开启状态;8254A1输出一个周期为N的周期信号..若环路处于锁定状态;则N’d =N/2;由式8-1及式8-2得Nd=N/2..此时89c51的P1.4口不输出触发脉冲;8254A输出端仍保持初始化时的高电平;从而使8254B0的门控端G保持低电平、输出端O保持高电平..这样可保持8254A1、8254B1的工作状态不变、环路仍处于锁定状态..若环路失锁;则N’d ≠N/2;Nd≠N/2;P1.4口输出一个正脉冲u2;在u2作用下;8254A输出一个宽度为N的负脉冲;倒相后变为正脉冲u3送给与门G2..G2的另一个输入信号u1来自8254A1..在G1输出的宽度为N的正脉冲持续时间内;8254A1一定有也只有一个负脉冲信号输入;此负脉冲经G4倒相后与G1输出的正脉冲相与后给8254B的G端送一个触发信号u4..在u4的作用下;8254B0输出一个宽度为N-2的负脉冲..在这段时间内;8254A1停止计数工作;8254B1进行减计数且在此时间内的最后一个时钟周期输出一个负脉冲..8254B输出的负脉冲的后沿重新启动8254A1;使它重新作÷N分频..设m=1;上述过程的有关波形如图8-4所示;图中uO为环路锁定状态下数控振荡器的输出信号..由图8-4可见;不管失锁时相位误差多少不会大于N;只要对数控振荡器作一次调整;就可使环路进入锁定状态;从而实现快速捕捉..程序流程如图8-5所示;输入信号ui 使IE1置“1”;且使8254B2计数;对IE1进行位操作时又使之置“0”..由于量化误差;故当Nd 为N/2;N/2+1或N/2-1时;环路皆处于锁定状态;不对数控振荡器进行调整..程序中令m=16;进行16次鉴相后做一次平均运算;若发现环路失锁;则对数控振荡器进行一次调整..控制器的作用是保证每次对8254B2进行读操作之前鉴相器只输出一个正脉冲;它由或门7432U5:B及16分频器74190U13组成..uiu1u 2u 3u4u5u6uOu’O图8-4 捕获过程波形当数字环输入信号的码速率与数控振荡器的固有频率完全相同时;环路锁定后输入信号与反馈信号即位同步信号的相位关系是固定的且符合抽样判决器的要求当然开环时它们的相位误差也是固定的;但不符合抽样判决器的要求..输入信号码速率决定于发送端的时钟频率;数控振荡器固有频率决定于位同步器的时钟频率和数控振荡器固有分频比..由于时钟信号频率稳定度是有限的;故这两个时钟信号的频率不可能完全相同;因此锁相环输入信号码速率与数控振荡器固有频率不可能完全相等即环路固有频差不为0..数字环位同步器是一个离散同步器;只有当输入信号的电平发生跳变时才可能对输入信号的相位和反馈信号的相位进行比较从而调整反馈信号的相位;在两次相位调整的时间间隔内;反馈信号的相位相对于输入信号的相位是变化的;即数字环位同步器提取的位同步信号的相位是抖动的;即使输入信号无噪声也是如此..图8-5 锁相环程序流程显然;收发时钟频率稳定度越高;数字环的固有频差就越小;提取的位同步信号的相位抖动范围越小..反之;对同步信号的相位抖动要求越严格;则收发时钟的频率稳定度也应越高..位同步信号抖动范围还与数字位同步器输入信号的连“1”或“0”个数有关;连“1”或“0”个数越多;两次相位调整之间的时间间隔越长;位同步信号的相位抖动越大..对于NRZ码来说;允许其连“1”、连“0”的个数决定于数字环的同步保持时间tc ..tc与收发时钟频率稳定度ε、码速率RB、允许的同步误差最大值πη2的关系为:t C =η/2RBεt C 的定义是:位同步器输入信号断开后;收发位同步信号相位误差不超过πη2的时间..用模拟环位同步器或模数环位同步器提取的位同步信号的相位抖动与固有频差无关;但随信息码连“1”、连“0”的个数增多而增大..三、实验所需部件数字信源单元和位同步单元..四、实验步骤1、熟悉位同步单元工作原理..将数字信源单元的NRZ-OUT连接到位同步单元的S-IN点;接通实验箱电源..调整信源模块的K1、K2、K3开关;使NRZ-OUT的连“0”和连“1”个数较少..2、观察数字环的锁定状态和失锁状态..将示波器的两个探头分别接数字信源单元的NRZ-OUT和位同步单元的BS-OUT;调节位同步单元上的可变电容C;观察数字环的锁定状态和失锁状态..锁定时2BS-OUT信号上升沿位于NRZ-OUT信号的码元中间且在很小范围内抖动;失锁时;BS-OUT的相位抖动很大;可能超出一个码元宽度范围;变得模糊混乱..3、观察位同步信号抖动范围与位同步器输入信号连“1”或连“0”个数的关系..调节可变电容使环路锁定且BS-OUT信号相位抖动范围最小即固有频差最小;增大NRZ-OUT信号的连“0”或连“1”个数;观察BS-OUT信号的相位抖动变化情况..4、观察位同步器的快速捕捉现象、位同步信号相位抖动大小及同步保持时间与环路固有频差的关系..先使BS-OUT信号的相位抖动最小;按一下复位键;观察NRZ-OUT与BS-OUT信号的之间的相位关系变化快慢情况;再按一下复位键;观察快速捕捉现象位同步信号BS-OUT的相位一步调整到位..再微调位同步单元上的可变电容即增大固有频差当BS-OUT相位抖动增大时按一下复位键;观察NRZ-OUT信号与BS-OUT信号的相位关变化快慢情况并与固有频差最小时进行定性比较..五、实验报告要求1、数字环位同步器输入NRZ码连“1”或连“0”个数增加时;提取的位同步信号相位抖动增大;试解释此现象..的η倍;2、设数字环固有频差为Δf;允许同步信号相位抖动范围为码元宽度TS及允许输入的NRZ码的连“1”或“0”个数最大值..求同步保持时间tC3、数字环同步器的同步抖动范围随固有频差增大而增大;试解释此现象..4、若将AMI码或HDB码整流后作为数字环位同步器的输入信号;能否提取出位3同步信号为什么对这两种码的信息代码中连“1”个数有无限制对AMI码的信码的信息代码中连“0”个数有无限制为息代码中连“0”个数有无限制对HDB3什么5、试提出一种新的环路滤波器算法;使环路具有更好的抗噪能力..6、试解释本实验使用的数字锁相环快速捕捉机理;并与超前滞后型数字环进行比较..。

通信原理实验教程

通信原理实验教程一、实验内容通信原理实验通常包括以下内容:1. 信号的产生与调制:实验通过信号发生器产生不同频率的正弦波信号,然后通过调制电路将正弦波信号调制成不同调制方式的信号,如调频、调幅、调相等。

2. 信号解调与恢复:实验通过解调电路将调制信号进行解调,恢复成原始的信息信号,然后通过滤波电路对信号进行滤波处理,使其更加稳定。

3. 通信系统的性能分析:实验通过各种测试仪器对通信系统进行性能分析,包括信噪比、误码率等指标的测试和分析。

4. 数字通信系统的实验:实验通过数字信号发生器产生数字信号,然后通过数字调制解调技术将数字信号传输到接收端,并对接收信号进行解码等操作。

二、实验仪器设备通信原理实验需要使用的主要仪器设备包括:1. 信号发生器:用于产生各种信号,包括正弦波信号、方波信号、三角波信号等。

2. 示波器:用于观察和测量信号波形,包括幅度、频率、相位等参数。

3. 信号调制解调实验箱:用于进行信号的调制解调实验操作,包括调幅、调频、调相等。

4. 滤波器:用于对信号进行滤波处理,去除杂波,使信号更加稳定。

5. 锁相环电路:用于信号的同步处理,提高信号的稳定性和抗干扰性。

6. 数字信号发生器:用于产生数字信号,进行数字通信系统实验。

三、实验步骤通信原理实验一般按以下步骤进行:1. 信号产生与调制实验:(1) 将信号发生器设置为正弦波形式,并调节频率和幅度。

(2) 将信号通过调制电路进行调幅、调频、调相等操作。

(3) 在示波器上观察和测量调制后的信号波形。

2. 信号解调与恢复实验:(1) 将调制后的信号通过解调电路进行解调操作,恢复成原信号。

(2) 使用示波器观察解调后的信号波形,并进行滤波处理。

(3) 对信号进行稳定性测试,包括信噪比、误码率等指标的测量和分析。

3. 数字通信系统实验:(1) 使用数字信号发生器产生数字信号,并进行数字调制操作。

(2) 将数字信号通过数字调制解调技术传输到接收端,并对接收信号进行解码等操作。

通信原理实验课件


实验三 二相(PSK,DPSK)解调器系 统实验
• 一、实验目的
• l、掌握二相(PSK、DPSK)解调器的工作原理 与系统电路组成
• DPSK是利用前后相邻码元对应的载波相对相移来表示数 字信息的一种相移键控方式。设载波相对相移用△ 表示, (定义为本码元初相与前—码元初相之差),而且:
• △ψ= π 时,表示数字信息“1”。 • △ψ= 0 时,表示数字信息“0”。 • 则数字信息序列与DPSK信号的相位关系可举例说明如下:
• (6)做二相PSK实验时,必须把开关K700的1脚与2脚相连 接.做二相DPSK实验时,必须把开关K700的2脚与3脚相 连接。
T700 T702 T703
f =512 KHz f =512 KHz
f =512 KHz
K7004-5
T706
K7005-6
T706
f=128KHz (1010码)
1台
2、通信原理实验箱 1台
三、实验原理 1、基本概念:
2、四种基本码型
数字基带信号的常用码型
10100110 +E 0
( a( ( ( ( NRZ(
+E -E
(b)( ( ( NRZ(
+E 0
(c)( ( ( RZ(
+E -E
(d)( ( ( RZ(
+E -E
(e)( ( (
+E -E
(f)AMI(
对具有变压器或其它交流隅合的传输信道来说, 不易受隔直特性的影响。 ➢ 若接收端收到的码元极性与发送端的完全相反, 也能正确判决。
➢ 便于观察误码情况。
6. HDB3码 AMI码有一个重要缺点,即它可能出现长的连
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信原理实验目录实验1 实验平台介绍及实验注意事项 (2)实验2 基带信号的常见码型变换实验 (10)实验3 AMI/HDB3编译码实验 (20)实验4 抽样定理及其应用实验 (24)实验5 PCM编译码系统实验 (29)实验6 ADPCM编译码系统实验 (33)实验7 CVSD编译码系统实验 (38)实验8 FSK(ASK)调制解调实验 (44)实验9 PSK DPSK调制解调实验 (49)实验10 QPSK OQPSK调制解调实验 (57)实验11 位同步提取实验 (62)实验12 眼图观察测量实验 (67)实验13 数字频率合成实验 (72)实验14 卷积编译码及纠错能力验证实验 (78)实验15 汉明、交织码、循环码编译码及纠错能力验证实验 (85)实验16 频分复用/解复用实验 (93)实验17 时分复用/解复用(TDM)实验 (97)实验18 码分复用/解复用实验 (102)实验19 手动频域均衡实验 (107)实验20 PCM、HDB3传输系统实验 (109)实验21 PCM、CVSD,汉明、交织码传输系统实验 (111)实验22 CVSD、信道编码、PSK传输系统实验 (114)实验23 通信信道误码仪测试实验* (118)拨码器开关设置一览表 (120)实验1 实验平台介绍及实验注意事项一、实验目的1.了解实验箱的功能分布,掌握实验箱的操作注及意事项;2.了解DDS信号源的组成及工作原理;掌握其使用方法;3.了解用户电话模块的工作原理;掌握音频及拨号信号特性;4.熟悉测试接收滤波器与功放电路模块的频率特性。

二、实验仪器1.RZ8681实验平台 1台2.各个实验模块配套3.电话机 1台3.100M双踪示波器 1台三、实验原理A. 实验平台1. 实验平台整体功能介绍RZ8681型现代通信技术平台是由底板+模块组成的模块化可定制的系统平台,平台底板提供了基本的信源和信宿并预留了外接接口,中间设置了9个模块放置区,在实验时可以通过选择不同的实验模块,完成不同的实验内容,或者通过多个模块的组合完成综合通信实验内容,另外可以提供底板的接口标准,以便学生基于该平台进行设计,开发。

图1-1 RZ8681底板功能分布图实验底板主要由几个部分组成:(1)USB接口:可将电脑端的数据发送到实验箱上进行传输。

(2)DDS信号源:产生常见的各种信号,并且频率幅度可调。

另外为抽样定理实验提供了抽样脉冲信号。

(3)电话接口:产生真实的语音信号。

(4)电源指示:指示不同电压的工作状态,开电后,3个灯常亮为正常状态,闪烁说明有故障。

(5)模块分布图:指示了底板9个模块放置位置的分布图,序号为A-I。

(6)调制接口:外部调制信号输入和输出铆孔。

(7)光纤接口:可选配置接口,可以通过光纤完成系统的全双工通信。

(8)眼图电路:眼图观察电路,相当于一个参数可调的信道。

(9)滤波器及功放:包含一个参数可调(2.6k和5k)的低通滤波器,滤波器输出信号连接到扬声器。

(10)模块安放区:共9个位置,用来放置实验模块,对应上述的模块分布图。

2.实验注意事项(1)在实验中,测量点主要分为两类:Pxx和TPxx。

其中Pxx是指可插线的测量铆孔,而TPxx则是测量针。

(2)实验中连线时需要注意,连线铆孔分输入孔和输出孔,在铆孔上有箭头标注。

不能将两个输出孔或输入孔连接在一起。

(3)实验步骤中,标号一般以“4P01(G)”形式给出,其中标号代表实际操作中对应的连线或测量标号,而后面括号中的“G”是指:按照要求安放模块后,4P01标号会在G号位安放的板子上找到,这样便于操作时查找。

(4)为实验箱加电前,要简单检查一下实验箱是否有明显的损坏现象;加电时,观察实验箱右上角的电源指示灯是否正常显示,如果指示灯闪烁,请立即关闭实验箱,并检查故障原因。

(5)实验箱盖子翻开后,可以取下。

但是取下和安装时,都需要注意后端的卡轴是否完全卡好。

在没有完全卡好卡轴的情况下关闭实验箱,会对卡轴造成损坏。

另外,每台实验箱的盖子和箱体编号是对应的(箱体和盖子后端均有编号),不对应无法安装,因此实验时应妥善保管实验箱盖子,以防弄混。

(6)实验模块放置时,应该确认模块接口(防呆口)和底板接口已对应一致才下压,否则会损坏接口。

另外不同模块放置的具体位置应参考具体实验内容的说明。

(7)实验箱上参数可调的元器件,如电位器,拨码开关,轻触开关,要小心使用,尽量避免用力过大,造成元器件损坏。

以上元器件为磨损器件,在使用时掌握使用技巧,请不要频繁按动或旋转。

B. DDS信号1.DDS信号产生原理直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。

时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM 的地址线位数,幅度量化噪声取决于ROM的数据位字长和D/A转换器位数。

图1-2 DDS信号产生原理DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。

在该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03.P04)。

抽样脉冲形成电路(P09)信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已调信号与载波信号。

对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。

实验箱的DDS信号源能够输出抽样脉冲(PWM)、正弦波、三角波、方波、扫频信号、调幅波(AM)、双边带(DSB)、调频波(FM)及对外部输入信号进行AM调制输出。

2.DDS信号源使用及信号生成表DDS信号源主要包含以下几个部分:LCD:显示输出信号的频率。

调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。

若箭头背离铆孔,说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。

P03:DDS各种信号输出铆孔。

P04:20KHZ载波输出铆孔。

P09:抽样脉冲输出铆孔。

SS01:复合式按键旋纽。

按键用来选择输出信号种类;旋纽用来改变信号频率。

W01(幅度调节):用来调节输出信号的幅度。

DDS信号产生的种类如下表所示:输出序号调制输入P03(输出)P04(输出)P09(输出)LED1:亮 0:灭D4 D3 D2 D11 ³³2K正弦波抽样脉冲(PWM)(频率0.1-20KHZ可调)0 0 0 12 ³正弦波2K正弦波抽样脉冲(频率为初始设定值)0 0 1 03 ³三角波2K正弦波0 0 1 14 ³方波2K正弦波0 1 0 05 ³扫频2K正弦波0 1 0 16 ³调幅待调信号(2K正弦波)0 1 1 07 ³双边带待调信号(2K正弦波)0 1 1 18 ³调频待调信号(2K正弦波)1 0 0 09 外部调制信号外输入信号AM调制20K载波 1 0 0 110 内置误码仪,P02输出32KKZ随机码,P01接收信道回送随机码 1 0 1 011 USB转串口 1 0 1 1初始时输出序号为0001,对应“抽样”输出状态。

按下复合式按键旋纽SS01,可切换不同的信号输出状态,按一次输出序号递增,DDS最大序号为9,正好与l0种输出信号状态对应。

序号10为内置误码仪测试功能,序号11为USB转串口数据通道。

序号为11后,继续按复合按键旋纽,则返回初始序号1。

D0l、D02.D03.D04四个指示灯将显示输出的序号状态。

(1)信号输出类型调节通过按下复合旋钮SS01,调节P03的输出类型,使其分别输出1.正弦波,2.三角波,3.方波,4.扫频信号,5.调幅信号,6.双边带信号,7.调频信号等。

(2)信号频率调节旋转复合式按键旋纽SS01,在“抽样”、“正弦波”、“三角波”、“方波”等输出状态时,可步进式调节输出信号的频率,顺时针旋转频率每步增加100HZ,逆时针减小100HZ;在其它DDS信号源序号,旋转复合式按键旋纽SS01无操作。

.对于调幅、双边带、调频信号,载波频率固定为20KHz,内部产生调制信号频率固定为2KHz,由外部“调制输入”的调制信号频率由外部输入信号决定。

扫频信号的扫频范围是300Hz—50KHz。

(3)输出信号幅度调节调节调幅旋钮W01,可改变P03.P04输出的各种信号幅度。

C.用户电话接口本模块提供用户模拟电话接口,图1-3是其电路结构示意图。

J02A是电话机的水晶头接口,U01是PBL38614专用电话集成电路。

它的工作原理是:当对电话机的送话器讲话时,该话音信号从PBL38614的TR对应的引脚输入,经U01内部二四线转换处理后从T端输出。

T端的模拟电话输出信号经P05铜铆孔送出,可作为语音信号输出用。

当接收对方的话音时,送入U01芯片R端的输入信号可由P06铜铆孔送入。

此时,在电话听筒中即可听到送入信号的声音。

图1-3 用户电话结构示意图图1-4 用户电话电路原理图J02A:用户电话的水晶头接口。

P05: 用户电话语音发送信号输出铆孔。

P06: 用户电话语音接收信号输入铆孔。

D.接收滤波器与功放模块本实验模块位于底板的右下侧,由低通滤波器、低频功放、喇叭等组成。

可作为PAM 、PCM 、CVSD 等通信模块的接收终端。

其组成结构示意图,如图1-5所示。

图1-5 终端滤波放大器结构示意图图1-6 终端滤波放大器原理图外加信号通过P14铆孔送入低通滤波器电路,低通滤波器带宽有2.6KHZ 和5KHZ 两种,由K601拔动开关上位、中位人工手动设置,经过低通滤波器滤波后的信号,可在P15测试点进行观测。

滤波后的信号接着送入LM386构成的低频功率放大器,驱动小喇叭播放出声音,W09可调节喇叭音量大小,K601拔动开关下位可断开喇叭。

实验者通过本模块喇叭播放功能,可感性的判断音频信号经编解码信道的传输质量。

K601:上位,低通滤波器带宽为2.6KHZ中位,低通滤波器带宽为5KHZ 下位,断开喇叭。

W09:音频功率放大器输出功率的调节电位器,注意音量不可调节太大。

P14:外加模拟信号输入连接铆孔。

P15:经滤波器滤波后输出连接铆孔。

低 通 滤波器功 率 放大器P15P14K601下位4SW02 拨码器K601上、中位四、实验内容及步骤1.用示波器观察DDS信号源产生的信号,并记录波形。

相关文档
最新文档