3第二章 数字控制系统分析-2

合集下载

计算机控制系统复习资料(精简版 列出重点知识点)

计算机控制系统复习资料(精简版 列出重点知识点)

第一章概论,讲述计算机控制系统的发展过程;计算机控制系统在日常生活和科学研究中的意义;计算机控制系统的组成及工作原理;计算机控制的特点、优点和问题;与模拟控制系统的不同之处;计算机控制系统的设计与实现问题以及计算机控制系统的性能指标。

1.计算机控制系统与连续模拟系统类似,主要的差别是用计算机系统取代了模拟控制器。

2.计算机系统主要包括:.A/D转换器,将连续模拟信号转换为断续的数字二进制信号,送入计算机;.D/A转换器,将计算机产生的数字指令信号转换为连续模拟信号(直流电压)并送给直流电机的放大部件;.数字计算机(包括硬件及相应软件),实现信号的转换处理以及工作状态的逻辑管理,按给定的算法程序产生相应的控制指令。

3.计算机控制系统的控制过程可以归结为:.实时数据采集,即A/D变换器对反馈信号及指令信号的瞬时值进行检测和输入;.实时决策,即计算机按给定算法,依采集的信息进行控制行为的决策,生成控制指令;.实时控制,即D/A变换器根据决策结果,适时地向被控对象输出控制信号。

4.计算机控制系统就是利用计算机来实现生产过程自动控制的系统。

5.自动控制,是在没有人直接参与的情况下,通过控制器使生产过程自动地按照预定的规律运行。

6.计算机控制系统的特性系统规模有大有小系统类型多种多样系统造价有高有低计算机控制系统不断推陈出新7.按功能分类1)数据处理系统2)直接数字控制(DDC)3)监督控制(SCC)4)分散型控制5)现场总线控制系统按控制规律分类1)程序和顺序控制2)比例积分微分控制(PID)3)有限拍控制4)复杂控制5)智能控制按控制方式分类1)开环控制2)闭环控制9.计算机控制系统的结构和组成控制算法软件网络硬件11.硬件平台运算处理与存储部分:CPU,存储器(RAM,ROM,EPROM,FLASH-ROM,EEPROM以及磁盘等),时钟,中断,译码,总线驱动等。

输入输出接口部分:各种信号(模拟量,开关量,脉冲量等)的锁存、转换、滤波,调理和接线,以及串行通讯等。

微型计算机控制技术课后习题答案

微型计算机控制技术课后习题答案

第一章计算机控制系统概述习题及参考答案1.计算机控制系统的控制过程是怎样的?计算机控制系统的控制过程可归纳为以下三个步骤:(1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。

(2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。

(3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。

2.实时、在线方式和离线方式的含义是什么?(1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。

(2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。

(3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。

3.微型计算机控制系统的硬件由哪几部分组成?各部分的作用是什么?由四部分组成。

图1.1微机控制系统组成框图(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。

主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。

(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。

过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。

过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。

过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。

计算机控制技术课后题答案整理版(1到5章基本都有了)

计算机控制技术课后题答案整理版(1到5章基本都有了)

第一章1、计算机控制系统是由哪几部分组成的?画出方框图并说明各部分的作用。

答:计算机控制系统由工业控制机、过程输入输出设备和生产过程三部分组成;框图P3。

1)工业控制机主要用于工业过程测量、控制、数据采集、DCS操作员站等方面。

2)PIO设备是计算机与生产过程之间的信息传递通道,在两者之间起到纽带和桥梁的作用。

3)生产过程就是整个系统工作的各种对象和各个环节之间的工作连接。

2、计算机控制系统中的实时性、在线方式与离线方式的含义是什么?为什么在计算机控制系统中要考虑实时性?(1)实时性是指工业控制计算机系统应该具有的能够在限定时间内对外来事件做出反应的特性;在线方式是生产过程和计算机直接相连,并受计算机控制的方式;离线方式是生产过程不和计算机相连,并不受计算机控制,而是靠人进行联系并作相应操作的方式。

(2)实时性一般要求计算机具有多任务处理能力,以便将测控任务分解成若干并行执行的多个任务,加快程序执行速度;在一定的周期时间对所有事件进行巡查扫描的同时,可以随时响应事件的中断请求。

3.计算机控制系统有哪几种典型形式?各有什么主要特点?(1)操作指导控制系统(OIS)优点:结构简单、控制灵活和安全。

缺点:由人工控制,速度受到限制,不能控制对象。

(2)直接数字控制系统(DDC) (属于计算机闭环控制系统)优点:实时性好、可靠性高和适应性强。

(3)监督控制系统(SCC)优点:生产过程始终处于最有工况。

(4)集散控制系统优点:分散控制、集中操作、分级管理、分而自治和综合协调。

(5)现场总线控制系统优点:与DOS相比降低了成本,提高了可靠性。

(6)PLC+上位系统优点:通过预先编制控制程序实现顺序控制,用PLC代替电器逻辑,提高了控制是现代灵活性、功能及可靠性。

附加:计算机控制系统的发展趋势是什么?大规模及超大规模集成电路的发展,提高了计算机的可靠性和性能价格比,从而使计算机控制系统的应用也越来越广泛。

为更好地适应生产力的发展,扩大生产规模,以满足对计算机控制系统提出的越来越高的要求,目前计算机控制系统的发展趋势有以下几个方面。

《控制工程基础》电子教案

《控制工程基础》电子教案

《控制工程基础》电子教案第一章:绪论1.1 课程介绍解释控制工程的定义、目的和重要性概述控制工程的应用领域和学科范围1.2 控制系统的基本概念介绍控制系统的定义和组成解释输入、输出、反馈和控制器的概念1.3 控制工程的历史和发展回顾控制工程的发展历程和重要里程碑讨论现代控制工程的挑战和发展趋势第二章:数学基础2.1 线性代数介绍矩阵、向量的基本运算和性质讲解线性方程组的求解方法2.2 微积分复习微积分的基本概念和公式讲解导数和积分的应用2.3 离散时间信号介绍离散时间信号的定义和特点讲解离散时间信号的运算和处理方法第三章:连续控制系统3.1 连续控制系统的概述介绍连续控制系统的定义和特点解释连续控制系统的应用领域3.2 传递函数讲解传递函数的定义和性质介绍传递函数的绘制和分析方法3.3 控制器设计讲解PID控制器和模糊控制器的原理和方法讨论控制器设计的考虑因素和优化方法第四章:离散控制系统4.1 离散控制系统的概述介绍离散控制系统的定义和特点解释离散控制系统的应用领域4.2 差分方程和离散传递函数讲解差分方程的定义和求解方法介绍离散传递函数的定义和性质4.3 控制器设计讲解离散PID控制器和模糊控制器的原理和方法讨论控制器设计的考虑因素和优化方法第五章:状态空间方法5.1 状态空间模型的概述介绍状态空间模型的定义和特点解释状态空间模型的应用领域5.2 状态空间方程讲解状态空间方程的定义和求解方法介绍状态空间方程的稳定性分析5.3 状态控制器设计讲解状态控制器的原理和方法讨论状态控制器设计的考虑因素和优化方法第六章:频域分析6.1 频率响应介绍频率响应的定义和作用讲解频率响应的实验测量方法6.2 频率特性分析系统频率特性的性质和图形讨论频率特性对系统性能的影响6.3 滤波器设计讲解滤波器的基本类型和设计方法分析不同滤波器设计指标的选择和计算第七章:数字控制系统7.1 数字控制系统的概述介绍数字控制系统的定义和特点解释数字控制系统的应用领域7.2 数字控制器设计讲解Z变换和反变换的基本原理介绍数字PID控制器和模糊控制器的设计方法7.3 数字控制系统的仿真与实现讲解数字控制系统的仿真方法和技术讨论数字控制系统的实现和优化第八章:非线性控制系统8.1 非线性系统的概述介绍非线性系统的定义和特点解释非线性系统的应用领域8.2 非线性模型和分析方法讲解非线性系统的建模方法和分析技术分析非线性系统的稳定性和可控性8.3 非线性控制策略讲解非线性PID控制器和模糊控制器的原理和方法讨论非线性控制策略的设计和优化第九章:鲁棒控制9.1 鲁棒控制的概述介绍鲁棒控制的定义和目的解释鲁棒控制在控制工程中的应用领域9.2 鲁棒控制设计方法讲解鲁棒控制的基本设计和评估方法分析不同鲁棒控制策略的性能和特点9.3 鲁棒控制在实际系统中的应用讲解鲁棒控制在工业和航空航天等领域的应用案例讨论鲁棒控制在实际系统中的挑战和限制第十章:控制系统的设计与实践10.1 控制系统的设计流程讲解控制系统设计的基本流程和方法分析控制系统设计中的关键环节和技术选择10.2 控制系统实践案例分析不同控制系统实践案例的设计和实现过程讲解控制系统实践中的注意事项和优化方法10.3 控制系统的发展趋势讨论控制系统未来的发展方向和挑战分析新兴控制技术和方法在控制系统中的应用前景重点和难点解析重点环节1:控制系统的基本概念和组成控制系统定义和组成的理解输入、输出、反馈和控制器的相互作用重点环节2:传递函数和控制器设计传递函数的定义和性质PID控制器和模糊控制器的设计方法和应用重点环节3:差分方程和离散传递函数差分方程的求解方法离散传递函数的定义和性质重点环节4:状态空间模型的建立和分析状态空间方程的定义和求解状态空间模型的稳定性和可控性分析重点环节5:频率响应和滤波器设计频率响应的实验测量和分析滤波器设计方法和应用重点环节6:数字控制系统和控制器设计Z变换和反变换的应用数字PID控制器和模糊控制器的设计方法重点环节7:非线性系统的建模和控制策略非线性系统的建模方法非线性控制策略的设计和优化重点环节8:鲁棒控制的设计和评估鲁棒控制的基本设计和评估方法鲁棒控制策略的性能和特点重点环节9:控制系统的设计流程和实践案例控制系统设计的基本流程和方法控制系统实践案例的设计和实现过程重点环节10:控制系统的发展趋势和新兴技术控制系统未来的发展方向新兴控制技术和方法在控制系统中的应用前景本教案涵盖了控制工程基础的十个重点环节,包括控制系统的基本概念和组成、传递函数和控制器设计、差分方程和离散传递函数、状态空间模型的建立和分析、频率响应和滤波器设计、数字控制系统和控制器设计、非线性系统的建模和控制策略、鲁棒控制的设计和评估、控制系统的设计流程和实践案例以及控制系统的发展趋势和新兴技术。

自动化仪表与过程控制课程设计

自动化仪表与过程控制课程设计

自动化仪表与过程控制课程设计引言自动化是现代科学技术的重要分支之一,是制造业和生产过程中提高企业自动化水平的重要手段。

而在自动化过程中,仪表的作用愈发重要,是自动化控制的重要组成部分。

因此,在工科专业中,自动化仪表与过程控制课程的设计至关重要。

本文将介绍一份适用于大学本科工科专业的自动化仪表与过程控制课程设计,主要针对课程设置、课程内容及教学方法进行说明。

课程设置本课程适用于大学自动化、机电、电子等工科专业及相关专业的本科生。

设置为必修课程。

课时数:64学时,分为48学时的理论课和16学时的实验课。

课程内容第一章仪表基础知识1.1 仪表的定义及分类1.2 量的概念1.3 误差及其类型1.4 仪表的精度1.5 温度补偿技术1.6 信号变换与传输第二章传感器2.1 传感器的概述2.2 压力传感器2.3 温度传感器2.4 液位传感器2.5 光电传感器2.6 传感器的选择和应用第三章过程控制基础3.1 进程控制的基本概念3.2 线性控制系统3.3 非线性控制系统3.4 离散控制系统3.5 工艺数学模型3.6 控制系统的组成要素第四章模拟控制技术4.1 信号的超前/滞后、反向作用及校正4.2 模拟控制系统的组成4.3 PID控制器4.4 模拟控制器的调节4.5 工业过程控制的典型应用第五章数字控制技术5.1 数字控制系统的组成5.2 采样定理及信号处理5.3 数字控制器5.4 数字化控制系统的参数调节5.5 数字化控制器的应用第六章实验6.1 传感器基本实验及性能测试6.2 测量实验6.3 PID控制实验6.4 数字化控制实验教学方法本课程采用理论授课与实验相结合的教学方法。

理论授课重点讲解基础理论知识,注重理论与实际应用的结合,引导学生了解自动化及仪表测控原理,为后续应用理论打下基础。

实验课重点围绕课程内容,从器件的使用、检测及调整、故障分析与处理等角度进行讲解,让学生实际操作并获得实际经验。

在平时教学过程中,老师应设置互动环节,引导学生思考、发问、交流,以达到更好的教学效果。

数字控制理论及应用(讲稿)第二章 数字控制系统的组成

数字控制理论及应用(讲稿)第二章  数字控制系统的组成

第二章 数字控制系统的组成第一节 数字控制系统硬件及软件组成一、 硬件部分计算机控制系统的硬件包括主机、接口电路、过程输入/输出通道、外部设备、操作台等。

1、主机它是过程计算机控制系统的核心,由中央处理器(CPU)和内存储器组成。

主机根据输入通道送来的被控对象的状态参数,按照预先制定的控制算法编好的程序,自动进行信息处理、分析、计算,并作出相应的控制决策,然后通过输出通道发出控制命令,使被控对象按照预定的规律工作。

2、接口电路它是主机与外部设备、输入/输出通道进行信息交换的桥梁。

在过程计算机控制系统中,主机接收数据或者向外发布命令和数据都是通过接口电路进行的,接口电路完成主机与其它设备的协调工作,实现信息的传送。

3、过程输入/输出通道过程输入输出(I/O)通道在微机和生产过程之间起着信号传递与变换的纽带作用,它是主机和被控对象实现信息传送与交换的通道。

模拟量输入通道把反映生产过程或设备工况的模拟信号转换为数字信号送给微机;模拟量输出通道则把微机输出的数字控制信号转换为模拟信号(电压或电流)作用于执行设备,实现生产过程的自动控制。

微机通过开关量(脉冲量、数字量)输入通道输入反映生产过程或设备工况的开关信号(如继电器接点、行程开关、按纽等)或脉冲信号;通过开关量(数字量)输出通道控制那些能接受开关(数字)信号的电器设备。

1)、模拟量输入(AI)通道:生产过程中各种连续的物理量(如温度、流量、压力、液位、位移、速度、电流、电压以及气体或液体的PH值、浓度、浊度等),只要由在线仪表将其转换为相应的标准模拟量电信号,均可送入模拟量输入通道进行处理。

2)、模拟量输出(AO)通道:模拟量输出通道一般是输出4~20mA(或1~5V)的连续的直流电流信号,用来控制各种直行程或角行程电动执行机构的行程,或通过调速装置(如各种变频调速器)控制各种电机的转速,亦可通过电-气转换器或电-液转换器来控制各种气动或液动执行机构,例如控制气动阀门的开度等等。

计算机控制技术课后习题详解答案.

第一章计算机控制系统概述习题参考答案1.计算机控制系统的控制过程是怎样的?计算机控制系统的控制过程可归纳为以下三个步骤:(1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。

(2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。

(3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。

2.实时、在线方式和离线方式的含义是什么?(1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。

(2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。

(3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。

3.微型计算机控制系统的硬件由哪几部分组成?各部分的作用是什么?由四部分组成。

(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。

主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。

图1.1微机控制系统组成框图(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。

过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。

过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。

过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。

于海生---微型计算机控制技术课后习题答案

第一章计算机控制系统概述习题及参考答案1.计算机控制系统的控制过程是怎样的计算机控制系统的控制过程可归纳为以下三个步骤:(1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。

(2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。

!(3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。

2.实时、在线方式和离线方式的含义是什么(1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。

(2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。

(3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。

3.微型计算机控制系统的硬件由哪几部分组成各部分的作用是什么—由四部分组成。

图微机控制系统组成框图(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。

主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。

(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。

过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。

过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。

过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。

计算机控制系统复习要点

计算机控制系统复习要点计算机控制系统复习要点第一章自动控制系统:被控对象检测传感装置控制器控制器:模拟控制器数字控制器(计算机实现)计算机控制系统:采用了数字控制器的自动控制系统包括计算机(硬件软件和网络)和生产过程(被控对象检测传感器执行机构)文档收集自网络,仅用于个人学习计算机控制系统执行控制程序过程:实时数据采集实时计算实时控制实时管理计算机控制系统存在两种信号:模拟信号和数字信号需要用离散控制理论对计算机控制系统进行分析和设计计算机控制系统硬件:主机外部设备过程通道生产过程。

1操作指导控制系统(odc)2直接数字控制系统(ddc):为闭环控制3计算机监督系统(scc):被控对象给定值可变4集散控制系统(dcs):草果管理功能的集中和控制功能的分散。

5现场总线控制系统(fcs):1,系统内各设备的信号传输实现了全数字化,提高了信号传输的速度,精度和距离,是系统的可靠性提高;2.实现了控制功能的彻底分散,把控制功能分散到各现场设备和仪表中,使现场设备和仪表成为具有综合功能的只能设备和仪表。

文档收集自网络,仅用于个人学习6工业过程计算机集成制造系统1.2.计算机控制系统性能系统稳定性,能空性,能观性,动态特性及稳态特性。

G(s):控制通道Km:放大系数Tm:惯性时间常数T:滞后时间常数Gn(s):扰动通道Kn:放大系数Tn 惯性时间常数T:滞后时间常数控制系统性能采用超调量阿尔法(a%)调节时间ts 稳态误差ess来表示Kn越小,ess越小,控制精度越高Km对性能无影响Tn加大超调量减小Tm越小系统反应越灵敏性能越好Tn对性能无影响。

T使超调量增大ts延长T越大控制性能越差第二章2.1输入输出过程通道概述过程通道起到了cpu和被控对象之间的信息传送和变换的桥梁作用。

过程通道包括:模拟量输入通道模拟量输出通道数字量输入通道数字量输出通道2.2模拟量输入通道(将模拟信号转换为数字信号)普遍采用共用程控放大器和A/D转换器的结构形式主要由:传感器信号调理单元多路转换开关程控放大器采样保持器A/D转换器和I/O 接口电路。

东电考研大纲841、842、843、844、845、846

(1)841 自动控制原理一、考试形式与试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟2、考试方式考试方式为闭卷、笔试3、试卷的题型结构选择填空题,分析计算题,综合设计题二、考察的知识及范围第一章自动控制系统导论内容:(1)自动控制系统的一般性概念和基本工作原理;(2)反馈控制系统的基本组成、分类及对控制系统的基本要求;(3)《自动控制原理》课程研究的主要内容及其发展现状。

重点掌握:自动控制系统的一般性概念和基本工作原理;反馈控制系统的基本组成、分类及对控制系统的基本要求第二章控制系统的数学模型内容:(1)复数和复变函数的基本概念,拉普拉斯变换和拉普拉斯反变换;(2)控制系统研究中几种主要数学模型:微分方程、传递函数和频率特性的内在联系;(3)典型环节的数学模型;(4)常见电气系统和一般机械系统的数学建模;(5)方块图的化简法则;(6)利用梅逊公式求取系统的传递函数。

重点掌握:传递函数的概念、结构图的建立与等效变换、梅逊公式第三章自动控制系统的时域分析内容:(1)系统阶跃响应性能指标;(2)一阶、二阶系统阶跃响应的特点及一阶、二阶系统动态性能;(3)高阶系统动态性能(4)线性系统稳定的充要条件;(5)利用劳斯判剧判别系统的稳定性;(6)稳态误差的定义;(7)稳态误差系数的求取及减小或消除系统稳态误差的方法;重点掌握:稳定性、稳态误差、系统阶跃响应的特点及动态性能与系统参数间的关系等有关概念,有关的计算方法。

第四章根轨迹法内容:(1)根轨迹的定义、幅值和相角条件;(2)根轨迹的绘制法则;(3)利用根轨迹分析系统的特性。

重点掌握:根轨迹的绘制方法,利用根轨迹分析系统的特性。

第五章线性系统的频域分析法内容:(1)频率特性的定义、求法及性质;(2)线性系统极坐标图画法;Nyquist图稳定判据的应用;(3)线性系统伯德图的画法;最小相位系统的定义及性质;(4)利用Bode图求取系统稳态误差;增益裕量和相位裕量的定义、物理意义和求取;重点掌握:正确理解频率响应、频率特性的概念及特点,明确频率特性的物理意义;熟练掌握运用奈奎斯特稳定判据和对数频率判据判定系统稳定性的方法;熟练掌握计算稳定裕度的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ge Sibo,Department of Automation
11
2.2.1 线性差分方程描述----差分和差商的定义
∆y f (t + ∆ t ) − f (t ) dy lim = lim = ∆t → 0 ∆ t ∆t → 0 ∆t dt
∆t →0 ∆t →0
(2.2 − 12)
lim ∆y = lim[ f (t + ∆t ) − f (t )] = dy (2.2 −13)
Ge Sibo,Department of Automation
2
2.2.1 线性差分方程描述
连续系统: 连续系统: 运动方程用微分方程描述。 离散控制系统: 离散控制系统:系统输入输出在采样时刻的数学关系用差 分方程描述.
凡能满足叠加原理的离散控制系统称为线性离散控制 系统,线性离散系统用线性差分方程描述。
ie. . (2.2−26)
y(K) −a1y(K −1) −L−an y(K −n) = bu(K) +bu(K −1) +L+bn−1u(K −n +1) +bnu(K −n) (2.2−7) 0 1
Ge Sibo,Department of Automation 18
2.2.1 线性差分方程描述----差分方程求解(经典法)
14
2.2.1 线性差分方程描述----差分方程建立
由式(2.2-16)可得:
dy (t ) k 1 = u ( KT0 ) − y ( KT0 ) dt T t = KT0 T
将(2.2-18)代入(2.2-17)可得:
(2.2 − 18)
T0 T0 y[( K + 1)T0 ] − (1 − ) y( KT0 ) = ku( KT0 ) (2.2 − 19) T T
∆2 y = [ f (t + 2∆t ) − f (t + ∆t )] − [ f (t + ∆t ) − f (t )] = f (t + 2∆t ) − 2 f (t + ∆t ) + f (t )
高阶差商、高阶差分依次类推。
(2.2 − 15)
Ge Sibo,Department of Automation
y(K ) − a1 y(K −1) − a2 y(K − 2) −L− an y(K − n) = 0 (2.2 − 25)
通解具有Aλ K的形式,代入(2.2-25)可得:
Aλ K −a1Aλ K−1 −a2 Aλ K−2 −L−an Aλ K−n = 0
K λ Aλ ( 0 −a1λ −1 −a2λ −2 −L−anλ −n) = 0
Y ( z ) b0 z n + b1 z n −1 + b2 z n − 2 + L + bn = n 即 U (z) z − a1 z n −1 − a 2 z n − 2 − L − a n
当b0=0时,分子分母差一阶,即
b1 z n−1 + b2 z n−2 + L + bn Y ( z) = n U ( z ) z − a1 z n−1 − a2 z n−2 − L − an
dy (t ) T + y (t ) = ku (t − τ ) (2.2 − 20) dt
在离散系统中,若求具有纯滞后的差分方程,只需对没有纯滞后的差 分方程略加修改,将纯滞后时间换算成滞后若干个采样周期,即将输 入作用时间减去若干个采样周期即可。(2.2-20)对应的差分方程为:
T0 T0 y( K + 1) − (1 − ) y( K ) = ku (k − l) (2.2 − 21) T T τ where l = T0
二阶差商、二阶差分的形式为:
f (t + 2 ∆ t ) − f ( t + ∆ t ) f ( t + ∆ t ) − f ( t ) − ∆2 y ∆t ∆t = ∆t 2 ∆t f (t + 2 ∆ t ) − 2 f (t + ∆ t ) + f (t ) = (2.2 − 14) 2 ∆t
Ge Sibo,Department of Automation
7
2.2.1 线性差分方程描述----线性差分方程的一般表达式 采样周期为一个单位时,线性差分方程简化为
y(K + n) − a1 y(K + n −1) −L− an y(K ) = b0u(K + n) + bu(K + n −1) +L+ bn−1u(K +1) + bnu(K) 1
Ge Sibo,Department of Automation
17
2.2.1 线性差分方程描述----差分方程求解(经典法)
3.差分方程求解 (1)经典解法 基本原理: 基本原理:用经典法解线性差分方程与用经典法解微分方 程相似,其解包括齐次差分方程的通解加上非齐次差分方 程的一个特解。与式(2.2-7)对应的齐次差分方程为:
τ为纯滞后时间。 具有纯滞后的离散系统: 具有纯滞后的离散系统:一般用n阶常系数线性差分方程来描述:
y[( K + n)T0 ] − a1 y[( K + n − 1)T0 ] − L − an y ( KT0 ) = b0u[( K + m − l)T0 ] + b1u[( K + m − l − 1)T0 ] + L + bmu[( K − l)T0 ] (2.2 − 23)
13
2.2.1 线性差分方程描述----差分方程建立
例题2.2-1:系统差分方程的建立,被控对象的微分方程描述为:
dy(t ) T + y(t ) = ku(t ) (2.2 −16) dt
式中T为时间常数;k为静态放大倍数;y(t)被控量;u(t)为控制量。 设系统的采样周期为T0 ,当T0很小时有: 或表示为:
(2.2 − 5) Fig.2.14 u(t)的数值积分法
KT0 (K+1)T0
t
方程(2.2-5)描述了系统的输入u(t)和输出y(t)在采样时 刻kT0和(k+1)T0之间的数学关系,称为差分方程。
Ge Sibo,Department of Automation 6
2.2.1 线性差分方程描述
数字控制系统
-分析、设计与实现 分析、
2.2 数字控制系统的数学描述 [2.2.1,2.2.1]
2011年2月 gesibo@
2.2 数字控制系统的数学描述
研究一个现实世界的物理系统必须首先建立相应的数学 模型、解决数学描述和分析工具的问题。 数字控制系统数学描述的三种方法:差分方程,Z传递 函数,状态方程。
使系数 ai (i
b = 1, 2,..., n) , i (i = 0,1, 2,L , n)
为已知的时变函数,
则这个递推关系利用计算机也容易计算。 容易计算 容易计算
Ge Sibo,Department of Automation
8
2.2.1 线性差分方程描述
对差分方程进行Z变换得:
z nY ( z) − a1 z n−1Y ( z) −L − anY ( z) = b0 z nU ( z) + b1 z n−1U ( z) + L + bnU ( z) Y ( z)[ z n − a1 z n−1 −L − an ] = U ( z)[b0 z n + b1 z n−1 + L + bn ]
上例的积分求面积问题可以表 示为一个系统的输入输出的问 题,即:
u(t) u(t) u(τ)
ห้องสมุดไป่ตู้
∫ u (t )dt
0
t
0
Ge Sibo,Department of Automation
2T0
4T0
6T0
KT0 (K+1)T0
t
Fig.2.14 u(t)的数值积分法
5
2.2.1 线性差分方程描述
u (τ ) = u (iT0 ), i = 0,1,2,...
Ge Sibo,Department of Automation 16
2.2.1 线性差分方程描述----差分方程建立
具有纯滞后的连续系统: 具有纯滞后的连续系统:一般被描述为n阶常系数线性微分方程:
d n y(t ) d n−1 y(t ) + c1 + L + cn y(t ) = u(t − τ ) (2.2 − 22) n n −1 dt dt
Ge Sibo,Department of Automation
10
2.2.1 线性差分方程描述----差分和差商的定义
差分:一个函数的两值之差;差商 差商:一个函数的两值之差 差分 差商 除以对应自变量的增量所得的商。设函数 y = f (t) , t 为自 变量,自变量的增量 ∆ t ,则函数 f (t) 在 t 时刻的差商和差 分分别为: ∆y f (t + ∆t ) − f (t ) = (2.2 −10) ∆t ∆t ∆y = f (t + ∆t ) − f (t ) (2.2 − 11) 当 ∆t → 0 时,(2.2-10),(2.2-11)分别表示为:
y[( K + 1)T0 ] − y ( KT0 ) dy (t ) ≈ dt t = KT0 T0
因此,由上式可得:
y [( K + 1)T 0 ] − y ( K T 0 ) = T 0
Ge Sibo,Department of Automation
dy ( t ) dt
t = K T0
(2.2 − 17 )
相关文档
最新文档