概率统计辅导讲义(1)
概率统计复习讲义重点

概率论与数理统计总复习讲义第一讲 随机事件及其概率一 随机事件,事件间的关系及运算 1.样本空间和随机事件样本点,样本空间,随机事件,必然事件,不可能事件,基本事件. 2.事件关系和运算 ⑴事件的关系 ⑵事件的运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ⋂=⋃,B A B A ⋃=⋂; 二 概率的定义和性质 1.公理化定义(P12)2.概率的性质(P12.五个)⑴)(1)(A P A P -=; ⑵)()()()(AB P B P A P B A P -+=⋃;例题 ①设A,B 是两个独立事件,已知P(A) =0.5,P(B) =0.7,试求)(B A P ⋃. ②已知事件A 与B 独立,且1()9P AB =,()()P AB P AB =,求()P A ,()P B 。
3.古典概型和几何概型例题 ⑴总经理的五位秘书中有三位精通英语,今偶遇其中的两位秘书,设其中精通英语的人数为X ,求: ①X 的分布律; ②EX⑵两个人约定在下午3点到4点内在某地见面,先到者等对方20分钟后就离去,求两人能见面的概率; ⑶随机地向半圆220x ax y -<<内投掷一点,点落在半圆内任意区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率。
4.条件概率 )()()|(A P AB P A B P =三 常用的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P19.)例题 ⑴ 在一个人群中男女人数各半。
其中男性中有5%为色盲,女性中有0.25%为色盲。
现在从该人群中任意的挑选一人,求:①该人是色盲的概率; ②已知该人是色盲,求此人是男性的概率;⑵发报台分别以概率0.6和0.4发出信号“*”和“—”。
由于通讯系统受到干扰,当发出“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0 .2收到信号“*”和“—”; 同样,当发出信号“—”时,收报台分别以概率 0.9 和0.1收到信号“—”和“*”。
文都数学基础班概率统计 汤家凤

(4)
若 豸~Ⅳ (〃 ,σ 2),
贝刂P彻
(舀
兰钭
=尸(D)-F(四 )〓
Φ(至 宁
)-Φ (四
〃 云 )°
例题选讲
-、 选择题
1、 设 X1,X2的 审度为 /l←),尼 ←),分 布函数为 Fl←),凡 ←),下 列结论正确的是
]
∶∷
(/)Fl← )+Fz← )为 某随机变量的分布函数;
; (B)£ (jr,+尼 ←)为 某随机变量的密度函攀
ˉ
理
(一 )离 散型
整 网
惊呼 1、 二项分布一若随机变量 /的 分布律为 P(X=付 =C劳 p钅 (1-`)刀忄⑩ ≤乃兰⑷ ,
骨搬靓:
称随机变量X服 从二项分布,记 为X~刀 ⒄,p)。
2 丶
机变量
3 丶
机 变 旦里
( 1 丶
zO16考 研 数 学基础 班 概 率绕艹轱 阜 济义 称随 称随
·
@∈ Ω,总 存在唯一确定的£(@)与 之对应,称 舀为随机变量,若 乡的可能取值为有限个或
可列个,称 £为离散型随机变量,若 乡在某可区间上连续取值,称 £为连绔型随机变量。
∵
2、 分布函数一设ζ为一个随机变量,称 函数F←)=P(舀 ≤对(-∞ <艿 (+∞)为 随机
变量 豸的分布函数。 【注解 1】 分布函数的四个特征为
∴几 」 女厶 缶 2、 (1)/∪ /〓 /,/∩ Z〓 Z; :立 :1j厶 J9}∶i1厶 i厶 i1占
Lj乙
1占 :
3、 (1)Z=(Z-B)0彳 Ⅱ∴ ∶∷|∵ ∷∷《2)(犭 ˉB)0∷彳〓/-^B厶;
(3)/+B=(Ⅱ -B)∪ /′ ∪(B-Z)°
2021年《概率论与数理统计》考研复习笔记与辅导讲义

2021年《概率论与数理统计》考研复习笔记与辅导讲义第1章随机事件和概率一、考研辅导讲义1.随机现象与样本空间(1)随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.(2)样本空间随机现象的一切可能的基本结果,组成的集合,称是由基本结果构成的样本空间,记作,又称样本点.(3)随机事件样本空间的子集称为随机事件,简称事件,常用大写字母A,B,C等表示.注:①随机事件是由样本空间中的样本点组成,由一个样本点组成的子集是最简单件,称为基本事件.②随机事件既然由样本点组成,因此,随机事件是由基本事件组成.③如果一次试验的结果为某一基本事件出现,就称该基本事件出现或发生.如果组成事件A的一个基本事件出现或发生,也称事件A出现或发生.④把Ω看成一事件,则每次试验必有Ω中某一基本事件(即样本点)发生,也就是每次试验Ω必然发生,称Ω为必然事件.⑤把不包含任何样本点的空集看成一个事件,称为不可能事件.(4)随机变量表示随机现象结果的变量称为随机变量,常用大写字母X,Y,Z,或者ξ,η等表示.2.事件间的关系(1)包含关系如果事件A发生必然导致事件B发生,则称事件B包含事件A,或称事件A包含于事件B,记为或.(2)事件相等若与同时成立,则称事件A与事件B相等,记作A=B.(3)互斥事件(互不相容事件)若事件A与事件B满足关系,即A与B同时发生是不可能事件,则称事件A和事件B为互斥或互不相容,即两互斥事件没有公共样本点.注:事件的互斥可以推广到有限多个事件或可数无穷多个事件的情形:①若n个事件中任意两个事件均互斥,即,i≠j,i,j =1,2,…,n,则称这n个事件是两两互斥或两两互不相容.②如果可数无穷多个事件…中任意两个事件均互斥,即,i≠j,i,j=1,2,…,n,…,则称这可数无穷个事件是两两互斥或两两互不相容.【例】对任意两个互不相容的事件A与B,必有().A.如果P(A)=0,则P(B)=0B.如果P(A)=0,则P(B)=1C.如果P(A)=1,则P(B)=0D.如果P(A)=1,则P(B)=1【答案】C查看答案【解析】.(4)对立事件如果事件A与事件B有且仅有一个发生,则称事件A与事件B为对立事件或互逆事件,记为或.注:①如果A与B为对立事件,则A,B不能同时发生,且必有一个发生,即A、B满足A∪B=Ω且.②在样本空间中,集合是由所有不属于事件A的样本点构成的集合.【例】设随机事件A和B满足条件,则().A.B.C.D.【答案】A查看答案【解析】,所以即而,故,也就有即A∪B=Ω.3.事件间的运算(1)事件的交(积)如果事件A与事件B同时发生,则称这样的一个事件为事件A与事件B的交或积,记为A∩B或AB,即集合A∩B是由同时属于A与B的所有公共样本点构成.注:事件的交可以推广到有限多个事件或可数无穷多个事件的情形:(2)事件的并如果事件A与事件B至少有一个发生,则称这样一个事件为事件A与事件B的并或和,记为A∪B,即集合A ∪B是由属于A与B的所有样本点构成.注:事件的并可推广到有限多个事件或可数无穷多个事件的情形:(3)完备事件组如果有限个事件满,且,则称为Ω的一个完备事件组或完全事件组.注:可以推广完备事件组到可数无穷多个事件的情形:且.(4)事件的差事件A发生而事件B不发生的事件称为事件A与事件B的差,记为A-B.即在样本空间中集合A-B是由属于事件A而不属于事件B的所有样本点构成的集合.显然.(5)事件的运算规律交换律结合律分配律对偶律【例】A,B,C为任意三随机事件,则事件(A-B)∪(B-C)等于事件().A.A-CB.A∪(B-C)C.(A∪B)-CD.(A∪B)-BC【答案】D查看答案【解析】因,故.而图1-14.概率的概念及基本性质(1)概率的公理化定义设为一个样本空间,F为的某些子集组成的一个事件域.如果对任一事件F,定义在F上的一个实值函数满足:①非负性公理:若F,则,②正则性公理:③可列可加性公理:若互不相容,则,则称为事件A的概率,称三元素F为概率空间.(2)概率性质①;②若两两互斥,则有③;④,则P(A)≤P(B);⑤0≤P(A)≤1【例】若A,B为任意两个随机事件,则().【2015数一、数三】A.B.C.D.【答案】C查看答案【解析】由于,按概率的基本性质,有且,从而.(3)事件独立性设A,B两事件满足等式P(AB)=P(A)P(B),则称A与B相互独立.注:对n个事件,如果对任意k(1<k≤n),任意满足等式则称为相互独立的事件.事实上,n个事件相互独立需要个等式成立.(4)相互独立的性质①A与B相互独立A与或与B或与相互独立.将相互独立的n个事件中任何几个事件换成它们相应的对立事件,则新组成的n个事件也相互独立.【例】设,,为三个随机事件,且与相互独立,与相互独立,则与相互独立的充分必要条件是().[数三2017研]A.与相互独立B.与互不相容C.与相互独立 D.与互不相容【答案】C查看答案【考点】相互独立【解析】由,得.【例】已知随机事件A,B,C中,满足P(AB)=1.则事件().A.相互独立B.两两独立,但不一定相互独立C.不一定两两独立D.一定不两两独立【答案】A查看答案【解析】讨论事件的独立性,可等价的考虑A,B,C的独立性.因为P(AB)=1.可知P(A)=P(B)=1,而概率等于1的事件与所有的事件相互独立.所以成立:P(AB)=P(A)P(B);P(AC)=P(A)P(C);P (BC)=P(B)P(C).又因P(AB)=1.所以事件AB与C也相互独立,P(ABC)=P(AB)P(C)=P(A)P(B)P(C).总之A,B,C相互独立.②当0<P(A)<1时,A与B独立P(B|A)=P(B)或成立.③若相互独立,则必两两独立,反之,若两两独立,则不一定相互独立.④当相互独立时,它们的部分事件也是相互独立的.【例】设随机事件A与B相互独立,且,则().A.0.1B.0.2C.0.3D.0.4【答案】B查看答案【解析】因为事件A,B相互独立,则.故于是,则.(5)概率的运算公式①加法公式P(A∪B)=P(A)+P(B)-P(AB);P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P (ABC).②减法公式P(A-B)=P(A)-P(AB);③乘法公式当P(A)>0时,P(AB)=P(A)P(B|A);当>0时,有④全概率公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,有【例】甲袋中有2个白球3个黑球,乙袋中一半白球一半黑球.现从甲袋中任取2球与从乙袋中任取一球混合后,再从中任取一球为白球的概率为().A.B.C.D.【答案】C查看答案【解析】设事件A为最后取出的球为白球,事件B为球来自甲袋,显然,为球来自乙袋.且B,构成一个Ω的完备事件组,由全概率公式,因为最后三个球中二个球是从甲袋中来.所以取出的球来自甲袋概率为,当然.,这是因为已知取出的球来自甲袋的条件下,取出的为白球的概率,就相当于从甲中取出一白球的概率,甲中5个球2个为白,故,同理.因为乙中半白半黑,总之⑤贝叶斯公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,且P (A)>0有【例】设A、B为随机概率,若,则的充分必要条件是().[数一2017研]A.B.C.D.【答案】A查看答案【考点】概率公式计算【解析】因为,得,化简得.A项,,因为,所以.5.古典概型、几何概型、条件概率及伯努利试验(1)古典型概率当试验结果为有限n个样本点,且每个样本点的发生具有相等的可能性,称这种有限等可能试验为古典概型.此时如果事件A由个样本点组成,则事件A的概率称P(A)为事件A的古典型概率.【例】袋中有1个红球,2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.求P{X =1︱Z=0};解:由于本题是有放回地取球,则基本事件总数为.(2)几何型概率当试验的样本空间是某区域(该区域可以是一维,二维或三维等等),以L(Ω)表示样本空间Ω的几何度量(长度、面积、体积等等).L(Ω)为有限,且试验结果出现在Ω中任何区域的可能性只与该区域几何度量成正比.称这种拓广至几何度量上有限等可能试验为几何概型.此时如果事件A的样本点表示的区域为,则事件A的概率称这种P(A)为事件A的几何型概率.【例】在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为______.【答案】【解析】本题是几何型概率.不妨假定随机地取出两个数分别为X和Y.显然X与Y是两个相互独立的随机变量.如果把(X,Y)看成平面上的一个点的坐标,则由于0<X<1,0<Y<1,所以(X,Y)为平面上正方形0<X<1,0<Y<1中的一个点.而X与Y两个数之差的绝对值小于的点(X,Y)对应于正方形中的区域.图1-2在区间(0,1)中随机选取的所有可能的两个数X和Y.这些(X,Y)点刚好是图1-3单位正方形中满足的点的区域,就是图中阴影标出的区域D.根据几何型概率(3)条件概率设A,B为两事件,且P(A)>0,称为在事件A发生的条件下事件B发生的条件概率.【例】设A、B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则().【2016数三】【答案】A查看答案【解析】根据条件得P(AB)=P(B),则【例】设A,B,C是随机事件,A与C互不相容,P(AB)=,P=,则P(AB|)=______.【答案】【解析】由条件概率的定义知,P(AB︱)=,其中P()=1-P (C)=1-=,P(AB)=P(AB)-P(ABC)=-P(ABC),由于A,C互不相容,即AC=Ø,ABC AC,得P(ABC)=0,代入得P(AB)=,故将P()=和P(AB)=,代入公式,得P(AB)==.(4)伯努利试验如果试验E只有两个可能的结果:A及,并且P(A)=p,(其中0<p<1),把E独立地重复n次的试验就构成了一个试验,这个试验称作n重伯努利试验,又称n次独立重复试验,并记作B.一个伯努利试验的结果可以记作ω=(ω1,ω2,…,ωn)其中的ωi(1≤i≤n)的全体就是这个伯努利试验的样本空间Ω,对于ω=(ω1,ω2,…,ωn)∈Ω,如果ωi(1≤i≤n)中有k个为A,则必有n-k个为,于是由独立性即得如果要求“n重伯努利试验中事件B出现k次”这一事件的概率为【例】设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为.【2016数三】【答案】【解析】根据题意,取球次数恰好为4,则前三次恰好取到三种颜色中的两种,第四次取到剩下一种颜色的球.故前三次中取到的两种颜色取到的次数分别为1次和2次.综上,取球次数恰好为4的概率为【例】在伯努利试验中,每次试验成功的概率为p,则在第n次成功之前恰失败了m次的概率为______.图1-3【答案】【解析】为了分析试验的结构,可以作图形分析:“第n次成功之前失败了m次”这事件意味着第n次成功前有(n-1)次成功和m次失败.总共做了(n +m)次试验.最后一次是成功,前n+m-1次试验中有m次失败和(n-1)次成功,故事件的概率应为。
(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。
它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。
1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。
概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。
1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。
方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。
1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。
这些性质能够帮助我们更好地理解随机事件的规律和特征。
二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。
统计学广泛应用于社会调查、市场研究以及科学实验等领域。
2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。
它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。
2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。
点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。
2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。
它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。
2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。
方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。
三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。
通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。
3.2 医学研究数理统计在医学研究中具有广泛的应用。
考研数学基础班概率统计讲义汤家凤

考研数学基础班概率统计讲义—汤家凤考研数学基础班概率统计讲义第一章随机事件与概率一、随机试验与随机事件(一)基本概念1、随机试验—具备如下三个条件的试验:(1)相同条件下可重复。
(2)试验的可能结果是多样的且是确定的。
(3)某次试验之前不确定具体发生的结果,这样的试验称为随机试验,记为E。
2、样本空间—随机试验的所有可能的基本结果所组成的集合,称为随机试验的样本空间。
3、随机事件—样本空间的子集称为随机事件。
(二)事件的运算12312312341、对事件A,有P(A)??0(非负性)。
2、P(?)??1(归一性)。
??3、设A1,A2,L,A n,L为不相容的随机事件,则有P(U A n)????P(A n)(可列可加性)。
n?1n?1(二)概率的基本性质1、P(?)??0。
n n2、设A1,A2,L,A n为互不相容的有限个随机事件列,则P(U A k)????P(A k)。
k?1 k?13、P(A)??1??P(A)。
4、(减法公式)P(A??B)??P(A)??P(AB)。
Array 1((23((1相互独立。
2(((3)设P (A )??0,P (B )??0,若A ,B 独立,则A ,B 不互斥;若A ,B 互斥,则A ,B 不独立。
四、全概率公式与Bayes 公式1、完备事件组—设事件组A 1,A 2,L ,A n 满足:(1)A i A j ???(i ,j ??1,2,L ,n ,i ?j );n(2)U A i ????,则称事件组A 1,A 2,L ,A n 为一个完备事件组。
i ?12、全概率公式:设A 1,A 2,L ,A n 是一个完备事件组,且P (A i )??0(i ??1,2,L ,n ),B 为事件,则nP (B )????P (A i )P (B |A i )。
i ?13、贝叶斯公式:设A 1,A 2,L ,A n 为一个完备事件组,且P (A i )??0(i ??1,2,L ,n ),B 为任一随机事件,P (B )P (A i )P (B |A i )1(2概率为3???9,16则P (A 45不发生B1(C)P(AB)??P(A)P(B);(D)P(AB)??P(A)P(B)。
概率论与数理统计讲义稿

第一章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只一个,且都是事先可以知道的;(3)每一次试验都会出现上述可能结果中的某一个结果,至于是哪一个结果则事前无法预知。
为简单计,今后凡是随机试验皆简称试验,并记之以英文字母E。
称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别用希腊字母ω和Ω表示样本点及样本空间。
必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的目的。
假设抛掷一枚硬币两次,出于某些目的,也许只需要考虑三种可能的结果就足够了,两次都是正面,两次都是反面,一次是正面一次是反面。
于是这三个结果就构成了样本空间Ω。
但是,如果要知道硬币出现正反面的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正面-正面、反面-反面、正面-反面、反面-正面。
如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。
经常使用比绝对必要的样本空间较大的样本空间,因为它便于使用。
比如,在前面的例子中,由四个可能结果组成的样本空间便于问题的讨论,因为对于一个“均匀”的硬币这四个结果是“等可能”的。
尽管这在有3种结果的样本空间内是不对的。
例 1.1.1 1E :从最简单的试验开始,这些试验只有两种结果。
在抛掷硬币这一试验中出现“正面”或“反面”;在检查零件质量时,可能是“合格”或“不合格”;当用来模拟电子产品旋转的方向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正面,反面}。
2E :更复杂一些,有的随机试验会产生多种可能的结果,比如掷一颗骰子,观察出现的点数。
样本空间为:{1,2,3,4,5,6}Ω=。
3E : 掷两枚硬币(或者观察两个零件或两个电子产品),可以得到Ω={(正面,正面)、(反面,反面)、(正面,反面)、(反面,正面) } 读者可以将其推广到掷n 个硬币,样本空间里有多少样本点呢?4E :再复杂一些,一名射手向某目标射击,直至命中目标为止,观察其命中目标所进行的射击次数。
概率论与数理统计讲义稿

第一章随机事件与概率§随机事件随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只一个,且都是事先可以知道的;(3)每一次试验都会出现上述可能结果中的某一个结果,至于是哪一个结果则事前无法预知。
为简单计,今后凡是随机试验皆简称试验,并记之以英文字母E。
称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别用希腊字母ω和Ω表示样本点及样本空间。
必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的目的。
假设抛掷一枚硬币两次,出于某些目的,也许只需要考虑三种可能的结果就足够了,两次都是正面,两次都是反面,一次是正面一次是反面。
于是这三个结果就构成了样本空间Ω。
但是,如果要知道硬币出现正反面的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正面-正面、反面-反面、正面-反面、反面-正面。
如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。
经常使用比绝对必要的样本空间较大的样本空间,因为它便于使用。
比如,在前面的例子中,由四个可能结果组成的样本空间便于问题的讨论,因为对于一个“均匀”的硬币这四个结果是“等可能”的。
尽管这在有3种结果的样本空间内是不对的。
例 1E :从最简单的试验开始,这些试验只有两种结果。
在抛掷硬币这一试验中出现“正面”或“反面”;在检查零件质量时,可能是“合格”或“不合格”;当用来模拟电子产品旋转的方向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正面,反面}。
2E :更复杂一些,有的随机试验会产生多种可能的结果,比如掷一颗骰子,观察出现的点数。
样本空间为:{1,2,3,4,5,6}Ω=。
3E : 掷两枚硬币(或者观察两个零件或两个电子产品),可以得到Ω={(正面,正面)、(反面,反面)、(正面,反面)、(反面,正面) } 读者可以将其推广到掷n 个硬币,样本空间里有多少样本点呢4E :再复杂一些,一名射手向某目标射击,直至命中目标为止,观察其命中目标所进行的射击次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计考研辅导讲义目录第1讲随机事件和概率第2讲随机变量及其分布第3讲多维随机变量及其分布第4讲随机变量的数字特征与中心极限定理第5讲数理统计第1讲 随机事件和概率1.随机现象及其统计规律性在客观世界中存在着两类不同的现象:确定性现象和随机现象.在一组不变的条件S 下,某种结果必定发生或必定不发生的现象称为确定性现象.这类现象的一个共同点是:事先可以断定其结果.在一组不变的条件S 下,具有多种可能发生的结果的现象称为随机现象.这类现象的一个共同点是:事先不能预言多种可能结果中究竟出现哪一种.一般来说,随机现象具有两重性:表面上的偶然性与内部蕴含着的必然规律性.随机现象的偶然性又称为它的随机性.在一次实验或观察中,结果的不确定性就是随机现象随机性的一面;在相同的条件下进行大量重复实验或观察时呈现出来的规律性是随机现象必然性的一面,称随机现象的必然性为统计规律性.2.随机试验与随机事件为了叙述方便,我们把对随机现象进行的一次观测或一次实验统称为它的一个试验.如果这个试验满足下面的三个条件:(1)在相同的条件下,试验可以重复地进行.(2)试验的结果不止一种,而且事先可以确知试验的所有结果.(3)在进行试验前不能确定出现哪一个结果.那么我们就称它是一个随机试验,以后简称为试验.一般用字母E 表示.在随机试验中,每一个可能出现的不可分解的最简单的结果称为随机试验的基本事件或样本点,用ω表示;而由全体基本事件构成的集合称为基本事件空间或样本空间,记为Ω.随机事件:是样本空间Ω的一个子集,随机事件简称为事件,用字母A ,B ,C 等表示.因此,某个事件A 发生当且仅当这个子集中的一个样本点ω发生,记为ω∈A .3 事件之间的关系与运算事件之间的关系有:“包含”、“等价(或相等)”、“互不相容(或互斥)”以及“独立”四种.事件之间的基本运算有:“并”、“交”以及“逆”.事件的包含关系与等价关系:设A ,B 为两个事件.如果A 中的每一个样本点都属于B ,那么称事件B 包含事件A ,或称事件A 包含于事件B ,记为A ⊂B 或B ⊃A .如果A ⊃B 与B ⊃A 同时成立,那么称事件A 与事件B 等价或相等,记为A =B .事件的并与交:设A ,B 为两个事件.我们把至少属于A 或B 中一个的所有样本点构成的集合称为事件A 与B 的并或和,记为A ∪B 或A +B .事件的互不相容关系与事件的逆:设A ,B 为两个事件,如果A ·B =,那么称事件A 与B 是互不相容的(或互斥的).对于事件A ,我们把不包含在A 中的所有样本点构成的集合称为事件A 的逆(或A 的对立事件),记为.A 我们规定它是事件的基本运算之一.在一次试验中,事件A 与A 不会同时发生(即A ·A =,称它们具有互斥性),而且A 与A 至少有一个发生(即A +A =Ω,称它们具有完全性).这就是说,事件A 与A 满足:⎪⎩⎪⎨⎧=+∅=⋅.,ΩA A A A 根据事件的基本运算定义,这里给出事件之间运算的几个重要规律:(1) (交换律)A B B A +=+, BA AB =(2) (结合律))()(C B A C B A ++=++, )()(BC A C AB =.(3) (分配律)(B +C )=AB +AC . A +BC =(A +B )(A +C ).(4) (德·摩根律)B A B A ⋅=+. B A B A +=⋅.n n A A A A A A 2121⋅=+++, n n A A A A A A +++= 2121事件AB 为事件A 与B 的差,记为A -B .可见,事件A -B 是由包含于A 而不包含于B 的所有样本点构成的集合.【例1】设A ,B 是任意二事件,完成运算:(1)、))()()((B A B A B A B A ++++; (2)、AB B A B A B A AB -⋅+++【例2】从一批产品中任取3个,观察其中的合格数,记A ={三件产品都是合格品},B ={三件产品至多有一件是合格品},i C ={第i 件是合格品},3,2,1=i 。
试用i C 来表示A ,A ,B ,B 。
4.概率的公理化定义:设E 是一个随机试验,Ω为它的样本空间,以E 中所有的随机事件组成的集合为定义域,定义一个函数P (A )(其中A 为任一随机事件),且P (A )满足以下三条公理,则称函数P (A )为事件A 的概率.公理1(非负性) 0≤P (A )≤1.公理2(规范性) P (Ω)=1.公理3(可列可加性) 若A 1,A 2,…,A n ,…两两互斥,则).()(11i i i i A P A P ∑∞=∞==由上面三条公理可以推导出概率的一些基本性质.性质1(有限可加性) 设A 1,A 2,…,A n 两两互斥,则).()(11ini i n i A P A P ∑=== 性质2(加法公式) 设A ,B 为任意两个随机事件,则P (A +B )=P (A )+P (B )-P (AB ).性质3 设A 为任意随机事件,则P (A )=1-P (A ).性质4 设A ,B 为两个任意的随机事件,若A ⊂B ,则P (B -A )=P (B )-P (A ).由于P (B -A )≥0,根据性质4可以推得,当A ⊂B 时,P (A )≤P (B ).请注意以下常见结论:A A =+φ,A A A =+,A AB A =+,φφ=A ,A AA =,A B A A B A +=+-)(;【例3】A ,B 是两随机事件,5.0)(=A P ,7.0)(=B P ,则≤≤)(AB P 。
【例4】A ,B 是两随机事件,3.0)(=A P ,5.0)(=⋃B A P ,则=)(B A P 。
【例5】A ,B 是两随机事件,)()(B A P AB P ⋅=,p A P =)(,则=)(B P 。
【例6】A ,B 是两随机事件,当A ,B 发生时事件C 发生,则以下正确的是( )A )、)()(C P AB P ≥ B )、)()()(AB PC P AB C P -=-C )、)()(C P B A P ≤⋃D )、)()(C P B A P ≥⋃【例7】A ,B ,C 是三随机事件,已知4.0)()()(===C P B P A P ,且A ,B ,C 至少有两个发生的概率为3.0,A ,B ,C 同时发生的概率为5.0,则A ,B ,C 都不发生的概率为( )A )、216.0B )、15.0C )、1.0D )、85.06.概率的统计定义:在一组不变的条件S 下,独立地重复做n 次试验.设μ是n 次试验中事件A 发生的次数,当试验次数n 很大时,如果A 的频率f n (A )稳定地在某一数值p 附近摆动;而且一般说来随着试验次数的增多,这种摆动的幅度会越来越小,则称数值p 为事件A 在条件组S 下发生的概率,记作.)(p A P =问题 (1)试判断下式 p nn =∞→μl i m 成立吗?为什么?(2)野生资源调查问题 池塘中有鱼若干(不妨假设为x 条),先捞上200条作记号,放回后再捞上200条,发现其中有4条带记号.用A 表示事件{任捞一条带记号},问下面两个数 2004,200x 哪个是A 的频率?哪个是A 的概率?为什么? 7.古典概型:古典型试验:(Ⅰ)结果为有限个;(Ⅱ)每个结果出现的可能性是相同的.定义 设古典概型随机试验的基本事件空间由n 个基本事件组成,即Ω={ω1,ω2,…,ωn }.如果事件A 是由上述n 个事件中的m 个组成,则称事件A 发生的概率为 ⋅=nm A P )( 8.几何概型:几何型试验:(Ⅰ)结果为无限不可数;(Ⅱ)每个结果出现的可能性是均匀的.定义 设E 为几何型的随机试验,其基本事件空间中的所有基本事件可以用一个有界区域来描述,而其中一部分区域可以表示事件A 所包含的基本事件,则称事件A 发生的概率为 ,)()()(Ω=L A L A P 其中L (Ω)与L (A )分别为Ω与A 的几何度量.【例7】一袋中有10件产品,其中3件次品,7件正品,从中不放回地取3次,则“至少有两件次品的概率”为 。
【例8】从5双不同的鞋子中任取4只,则此4只鞋子中至少有两只鞋子配成一双的概率为 。
【例9】设有n 个人,每个人都等可能的被分配到N 个房间中的任意一间去住N n ≤,求(1)、指定的n 个房间各有一个人住的概率为 。
(2)、恰有n 个房间各有一个人住的概率为 。
【例10】从)1,0(中任取两个数x 和y ,则满足条件的41<xy 的概率为 。
【例11】从长度为a 的线段内任取两个点,将其分成三段,求它们可以构成一个三角形的概率为 。
9.条件概率前面我们所讨论的事件B 的概率P S (B ),都是指在一组不变条件S 下事件B 发生的概率(但是为了叙述简练,一般不再提及条件组S ,而把P S (B )简记为P (B )).在实际问题中,除了考虑概率P S (B )外,有时还需要考虑“在事件A 已发生”这一附加条件下,事件B 发生的概率.与前者相区别,称后者为条件概率,记作P (B |A ),读作在A 发生的条件下事件B 的概率.在一般情况下,如果A ,B 是条件S 下的两个随机事件,且P (A )≠0,则在A 发生的前提下B 发生的概率(即条件概率)为)()()|(A P AB P A B P =,并且满足下面三个性质: (1)(非负性)P (B |A )≥0; (2)(规范性)P (Ω|A )=1; (3)(可列可加性)如果事件B 1,B 2,…互不相容,那么).|()|(11A B P A B P i i i i ∑∞=∞==条件概率仍具有概率的其他性质:①、)|(1)|(A B P A B P -=;②、)|()|()|()|(212121A A A P A A P A A P A A A P -+=+10.概率的乘法公式:在条件概率公式(1-3)的两边同乘P (A ),即得P (AB )=P (A )P (B |A ).【例12】一袋中有5件产品,其中2件次品,3件正品,从中不放回地取2次,设A ={第一次取得正品},B ={第二次取得正品},则=)|(A B P 。
【例13】A ,B 是两随机事件,1)(0<<B P ,且B A AB ⋅=,p A P =)(,则=+)|()|(B A P B A P 。
【例14】A ,B ,C 是三个随机事件,其中1)(),(),(0<<C P B P A P ,且已知)|()|()|(C B P C A P C B A P +=⋃,则以下正确的是( )A )、)|()|()|(CB PC A P C B A P +=⋃ B )、)()()(AB P AC P AB AC P +=⋃C )、)()()(B P A P B A P +=⋃D )、)|()()|()()(B C P B P A C P A P C P +=【例15】A ,B ,C 是三个随机事件,设以下条件概率均有意义,则以下不正确的是( )A )、)|(1)|(C A P C A P -=B )、1)|()|(=+C A P C A PC )、)|()|()|()|(C AB P C B P C A P C B A P -+=⋃D )、)|()|()|()|()|(C B A P C B P BC A P C B P C A P +=【例16】为了防止意外,在矿内同时有两个报警系统A ,B 。