二次函数图像及图像变换
二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向
二次函数的图象课件

二次函数的标准式和一般式
二次函数可以表示为标准式 y = a(x - h)^2 + k 或一般式 y = ax^2 + bx + c,其中 (h, k) 表示顶点 坐标。
二次函数图像的相关属性
1
开口方向和范围
2
开口向上的二次函数的最小值是负无穷大,
开口向下的二次函数的最大值是正无穷大。
范围是 y 值的取值范围。
3
最值和最值点
4
最值是函数的最高或最低点的 y 值,最值
点是函数的最高或最低点的坐标。
5
对称轴和顶点
二次函数的对称轴是通过顶点并垂直于 x 轴的直线,顶点是抛物线的最高或最低点。
零点和交点
零点是函数与 x 轴相交的点,交点是函数 与其他曲线相交的点。
总结与回顾
本次课程的主要内容 和要点
我们学习了二次函数的概念、 图像的属性、平移和伸缩的影 响,以及绘制和分析二次函数 图像的方法。
二次函数图像的应用 和拓展
二次函数图像的形态和属性在 物理、经济和工程等领域有广 泛的应用,可以用于建模和解 决实际问题。
课后习题和练习建议
通过练习,并结合实际应用进 行深入思考和拓展,加深对二 次函数图像的理解和掌握。
渐近线和渐近值
渐近线是抛物线的非实际部分趋近于的直 线,渐近值是渐近线的 y 值。
二次函数的平移和伸缩
1
伸缩变换对二次函数图像的影响
ห้องสมุดไป่ตู้
2
伸缩改变了抛物线的形状和大小,可以 使抛物线变得更宽或更窄,更高或更低。
平移变换对二次函数图像的影响
平移改变了抛物线的位置,会使得抛物 线在 x、y 轴上的相应坐标发生变化。
二次函数图像的变换

二次函数图像的变换第一环节 【知识储备】一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称 2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.第二环节 【新知探究】【问题一】 平移变换求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位。
二次函数(一般式)的图像和性质

解释二次函数图像的平移公式,如何改变图像的 位置。
介绍二次函数图像的垂直伸缩公式,如何改变图 像的高度。
详细说明二次函数图像的水平伸缩公式,如何改 变图像的宽度。
讨论二次函数图像的反比例伸缩公式,如何改变 图像的比例。
介绍二次函数图像的对称公式,如何实现图像的 对称变换。
二次函数的性质
1 单峰函数
3
二次函数的应用
展示二次函数在实际问题中的应用,如 物理、经济等领域。
二次函数的性质
例题解析
通过解析例题,进一步理解二次函数的性质和应用。
阐述二次函数的性质,它 是一个单峰函数。
2 奇偶性及对称轴
讲解二次函数的奇偶性质 以及对称轴的位置。
3 导数及斜率
介绍二次函数的导数和斜 率,深入理解函数的变化 速度。
二次函数的性质
1
凹凸性及拐点
探讨二次函
到曲线的变化点。
介绍最小二乘法在二次函数中的应用,
用于拟合数据和函数。
平移变换
详细说明二次函数图像的平移 变换,改变图像的位置。
二次函数的性质
垂直伸缩变换
使用垂直伸缩变换改变二次函数 图像的高度。
水平伸缩变换
介绍二次函数图像的水平伸缩变 换,改变图像的宽度。
反比例伸缩变换
讨论二次函数图像的反比例伸缩, 改变图像的比例。
二次函数的性质
平移公式 垂直伸缩公式 水平伸缩公式 反比例伸缩公式 对称公式
二次函数(一般式)的图像 和性质
二次函数是一般式的函数,定义了二次函数的特性和图像。我们将深入探讨 二次函数的各个方面,包括开口方向、对称轴、零点、顶点和最值等。
二次函数的一般式
定义和图像
通过一般式的定义,了解二次函数的图像特征和 形状。
二次函数的像变换

二次函数的像变换二次函数是数学中的一种特殊函数形式,其表达式为f(x) = ax^2 +bx + c,其中a、b、c为常数,且a ≠ 0。
二次函数的图像呈现出一种特殊的形状——拱形或抛物线,且拥有一条对称轴。
在学习二次函数时,我们会涉及到像变换,即通过对函数图像进行平移、缩放或翻转等操作,从而改变函数图像的位置、大小和方向。
一、平移变换平移变换指的是将函数图像沿x轴或y轴方向进行移动,可以使图像向左、向右、向上或向下平移。
1. 向左平移将函数图像沿x轴的正方向平移k个单位,可记作f(x - k),其中k为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向左平移k个单位后的新函数为y = a(x + k)^2 + b(x + k) + c,图像相对于原函数的平移方向相反,距离为k。
2. 向右平移将函数图像沿x轴的负方向平移k个单位,可记作f(x + k),其中k为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向右平移k个单位后的新函数为y = a(x - k)^2 + b(x - k) + c,图像相对于原函数的平移方向相反,距离为k。
3. 向上平移将函数图像沿y轴的正方向平移k个单位,可记作f(x) + k,其中k 为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向上平移k个单位后的新函数为y = a(x)^2 + b(x) + (c + k),图像相对于原函数的平移方向相同,距离为k。
4. 向下平移将函数图像沿y轴的负方向平移k个单位,可记作f(x) - k,其中k 为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向下平移k个单位后的新函数为y = a(x)^2 + b(x) + (c - k),图像相对于原函数的平移方向相同,距离为k。
二、缩放变换缩放变换指的是改变函数图像的大小,可以使图像变窄或变宽,变高或变矮。
二次函数图像的转化与性质

二次函数图像的转化与性质二次函数是初中数学中的重要内容,它的图像具有独特的特点和性质。
在学习二次函数时,我们不仅需要了解它的基本形式和图像特点,还需要学习如何进行图像的转化。
本文将介绍二次函数图像的转化方法以及转化后的性质,帮助中学生更好地理解和应用二次函数。
一、平移变换平移变换是指将二次函数的图像沿着横轴或纵轴方向移动一定的单位长度。
平移变换可以改变二次函数图像的位置,但不改变其形状。
常见的平移变换有水平平移和垂直平移两种。
1. 水平平移水平平移是指将二次函数的图像沿着横轴方向移动。
具体操作是,在二次函数的自变量x中加上一个常数h,即可实现水平平移。
例如,对于二次函数y=x^2,若要将其向右平移2个单位,则可得到新的函数y=(x-2)^2。
这样,二次函数的图像将整体向右平移2个单位。
2. 垂直平移垂直平移是指将二次函数的图像沿着纵轴方向移动。
具体操作是,在二次函数的因变量y中加上一个常数k,即可实现垂直平移。
例如,对于二次函数y=x^2,若要将其向上平移3个单位,则可得到新的函数y=x^2+3。
这样,二次函数的图像将整体向上平移3个单位。
二、翻折变换翻折变换是指将二次函数的图像沿着横轴或纵轴方向翻折。
翻折变换可以改变二次函数图像的形状,但不改变其位置。
常见的翻折变换有关于x轴翻折和关于y 轴翻折两种。
1. 关于x轴翻折关于x轴翻折是指将二次函数的图像沿着x轴翻折。
具体操作是,将二次函数的因变量y取相反数,即可实现关于x轴翻折。
例如,对于二次函数y=x^2,若要将其关于x轴翻折,则可得到新的函数y=-x^2。
这样,二次函数的图像将关于x 轴对称。
2. 关于y轴翻折关于y轴翻折是指将二次函数的图像沿着y轴翻折。
具体操作是,将二次函数的自变量x取相反数,即可实现关于y轴翻折。
例如,对于二次函数y=x^2,若要将其关于y轴翻折,则可得到新的函数y=(-x)^2。
这样,二次函数的图像将关于y 轴对称。
三、性质分析通过平移变换和翻折变换,我们可以改变二次函数图像的位置和形状,从而得到新的二次函数。
二次函数图像变换

二次函数图像变换
二次函数图像变换有3种:平移、对称、旋转。
一、专用解法
1、平移:左加右减自变量,上加下减常数项
2、对称、旋转:取原抛物线上一点(x,y),然后根据对称或旋转规律找到对应点,
将对应点坐标代入原抛物线解析式,然后化解得到的解析式即所求。
例1:原抛物线上y=ax^2+bx+c有一点(x,y),其关于x轴对称的点坐标为(x,-y),将(x,-y)代入到原解析式得到-y=ax^2+bx+c,即y=-ax^2-bx-c
例2:原抛物线上y=x^2+2x绕点(1,0)旋转180°,求旋转后的解析式解:设点(x,y)是原抛物线y=x^2+2x上一点,(x,y)绕点(1,0)旋转180°,通过中点坐标公式得出对应点为(2-x,-y),将(2-x,-y)代入y=x^2+2x得到
-y=(2-x)^2+2(2-x),即y=-x^2+6x-8
注意:以上方法也适用于一次函数
二、通用解法
①将解析式化顶点式y=a(x-h)^2+k,得到顶点(h,k)
②将顶点(h,k)按照要求进行平移、对称、旋转,得到新的顶点(h’,k’)
③平移a不变;X轴对称a变号,Y轴对称a不变;旋转a变号,特别的原点对称就是绕(0,0)旋转180
注意:这里的旋转肯定是180°,因为如果不是180°得到的就不是二次函数了
④知道了a和顶点,设顶点式就可以得到新抛物线的解析式
注意:无论平移、对称、旋转都可以用,如果是一次函数可以将顶点(h,k)替换为直线与y轴交点,a替换为k,整体思路是一样的。
二次函数的图像及其性质

单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图像及图像变换专题
1、抛物线y=3x 2
+6的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ,当x= 时,取得最 值,这个值等
于 。
2、抛物线3-1x 2-y 2
)(
+=的开口________,对称轴是_________,顶点坐标是_______,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ,当x =____时,函数有最_____值为________。
3、二次函数y=-3(x-4)2的图像是由抛物线y= -3x 2向 平移 个单位得到的;开口 ,对称轴是 ,当x= 时,y 有最 值,是 .
4、将二次函数y=2x 2的图像向左平移3个单位后得到函数 的图像,其对称轴是 ,
顶点是 ,当x 时,y 随x 的增大而增大;
5、抛物线9x 7y 2-= 与抛物线2x 7y =的__________相同,__________不同;抛物线9x 7y 2-=可由抛物线2x 7y =向_______平移______个单位得到。
6、抛物线42x 31y 2++=)(可以通过将抛物线2x 31y =
向 平移 个单位、再向 平移 个单位得到。
7、把抛物线y =122
12-+x x 先向 平移 个单位,再向 平移 个单位的抛物线的解析式为52
12--=x x y 。
8、(1)将函数42x 3
1y 2
++=)(的图象沿y 轴翻折后得到的函数解析式是 ; (2)将函数42x 3
1y 2++=)(的图象沿x 轴翻折后得到的函数解析式是 。
9、抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______。
10、若二次函数y =ax 2
+4x +a 的最大值是3,则a =______。
11、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )
12、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )
13、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )
14、在同一坐标系中,直线 y=ax+b(a ≠0) 与抛物线y=ax 2+bx+c(a ≠0)的图象可能是 ( )
A B C D
15、函数y=(x-1)2+k 与y=x
k -(k ≠0)在同一坐标系中的大致图象是 ( )
A B C D
16、二次函数c bx ax y 2++=的图象如图所示,则一次函数ac 4-b bx y 2+=与反比例函数x
c b a y ++=
在同一坐标系内的图象大致为( )
17、二次函数()02≠++=a c bx ax y 的图像如图,则点M (b ,a c )在第_______象限。
18、如图,给出八个结论:①a >0;②b >0;③c >0; ④a+b+c=0;⑤abc <0;⑥2a+b >0;⑦a+c=1;⑧a >1.其
中正确的结论的序号是 。
19、已知抛物线y=ax 2+bx+c(a<0)经过点(-1,0)且满足4a+2b+c>0以下结论:①a+b>0,②a+c>0,③-a+b+c>0,④
b 2-2ac>5a 2其中正确的个数有 个
20、已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有 ( )
A.042>-ac b
B.042=-ac b
C.042<-ac b
D.042
≥-ac b
21、二次函数c bx ax y ++=2的图象如图所示,若c b a M ++=24,c b a N +-=,b a P 24+=, 则( )
A .0,0,0>>>P N M B. 0,0,0><>P N M
C. 0,0,0>><P N M
D. 0,0,0<<P N M <
22、已知二次函数c bx ax y ++=2
的图象与x 轴交于点(-2,0)、(1x ,0),且1<1x <2,与y 轴的正半轴的
交点在(2,0)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论有_ __ (填序号)。
23、已知函数()02≠++=a c bx ax y 的图象如图所示,则下列判断不正确的是( ) A 、abc >0 B 、b 2
– 4ac >0 C 、2a +b >0 D 、4a – 2b + c <0
24、下列式子正确的有________________(填序号)
① 0>abc ;② c a b +<;③ 024>+-c b a ;④ 023<+c b ;⑤ )(b am m b a +>-,(1m ≠-的实数)
25、如图,二次函数
c bx ax y ++=2的图象开口向上,图像经过点(-1,2)和(1,0)且与y 轴交于负半轴. 给出四个结论:①a >0;②b >0;③c >0;④0=++c b a ;⑤0<abc ;⑥02>+b a ;
⑦1=+c a ;⑧1>a 其中正确的结论的序号是
26、已知二次函数
)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论: ① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数) 其中正确的结论有 ( )A. 2个
B. 3个
C. 4个
D. 5个
27、二次函数y=ax 2
+bx+c(a ≠0)的图象如图所示,判定下列各式的大小:
a___0;b___0;c____0;abc___0;2a+b___0;a+b+c___0;
a-b+c___0;b 2-4ac___0 ;4a+2b+c____0。
28、点(1,4)在抛物线y=a(x+3)2上,则点 也必在抛物线y=a(x+3) 2上。
29、若对任何实数x ,二次函数y=(m 一1)x 2的值总是非正数,则m 的取值范围是
30、已知二次函数2(1)y m x =+的图有最低点,则m 的取值范围 31、已知二次函数y=x 2-2kx +k 2
+k -2.
(1)当实数k为何值时,图象经过原点?
(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?。