(完整版)八年级数学三角形中位线培优专题训练

合集下载

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)三角形中位线专项训练(30道)(解析版)1. 题目解析三角形中位线是指连接一个三角形的两个非邻边中点的线段。

在这个专项训练中,我们将解答30道关于三角形中位线的问题,并提供详细的解析,帮助你更好地理解和掌握相关概念和解题方法。

2. 题目设置2.1 第一类题目:中位线长度计算2.1.1 题目1:已知一个三角形的三边长度分别为a, b, c,求其中位线长度。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以计算出中位线长度为(c²+a²-0.5b²)/(2c)。

2.1.2 题目2:已知一个等边三角形的边长为a,求其中位线长度。

解析:等边三角形中位线长等于边长的一半,即中位线长度为a/2。

2.1.3 题目3:已知一个等腰三角形的底边长度为a,腰长为b,求其中位线长度。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以计算出中位线长度为(a²+b²)/(2a)。

2.2 第二类题目:中位线位置关系2.2.1 题目4:在一个等边三角形中,证明中位线与底边垂直且分割底边的比例为2:1。

解析:根据等边三角形的性质,中位线和底边垂直。

利用中位线定义和几何性质,可以证明中位线分割底边的比例为2:1。

2.2.2 题目5:已知在一个等腰三角形中,中位线长为x,底边长为y,求腰长。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以得到腰长为2x-y。

2.2.3 题目6:已知在一个一般三角形中,中位线等分了三角形的面积,证明这个三角形是等腰三角形。

解析:假设中位线等分了三角形的面积,利用三角形面积公式可以得到一个关于中位线和底边的方程。

通过求解这个方程,可以证明这个三角形是等腰三角形。

3. 题目变体上述题目只是针对三角形中位线的一部分问题进行了训练和解析。

专题26三角形的中位线专项训练(30道)

专题26三角形的中位线专项训练(30道)

专题4.4 三角形的中位线专项训练(30道)【浙教版】1.(2021秋•淅川县期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点(含端点,但点M 不与点B 重合),点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .5C .7D .92.(2021秋•渝中区校级期末)如图,在△ABC 中,AB =CB =6,BD ⊥AC 于点D ,F 在BC 上且BF =2,连接AF ,E 为AF 的中点,连接DE ,则DE 的长为( )A .1B .2C .3D .43.(2021秋•龙岗区校级期末)如图,四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是( )A .AD +BC >2EFB .AD +BC ≥2EF C .AD +BC <2EF D .AD +BC ≤2EF4.(2021秋•荆门期末)如图,△ABC 的周长为20,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =8,则MN 的长度为( )A .32B .2C .52D .35.(2021秋•宛城区期中)如图,在△ABC 中,∠A =90°,AC >AB >4,点D 、E 分别在边AB 、AC 上,BD =4,CE =3,取DE 、BC 的中点M 、N ,线段MN 的长为( )A .2.5B .3C .4D .56.(2021•丹东模拟)如图,在△ABC 中,CE 是中线,CD 是角平分线,AF ⊥CD 交CD 延长线于点F ,AC =7,BC =4,则EF 的长为( )A .1.5B .2C .2.5D .37.(2021•碑林区校级模拟)如图,AD 为△ABC 的角平分线,BE ⊥AD 于E ,F 为BC 中点,连接EF ,若∠BAC =80°,∠EBD =20°,则∠EFD =( )A .26°B .28°C .30°D .32°8.(2021秋•广饶县期末)如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,若AC =4,则AF =( )A .85B .43C .1D .239.(2021春•平邑县期末)如图,在△ABC 中,AB =8,AC =6,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A .1B .2C .32D .12 10.(2021春•宽城县期末)如图,E ,F 是四边形ABCD 两边AB ,CD 的中点,G ,H 是对角线AC ,BD 的中点,若EH =6,则以下结论不正确的是( )A .BC =12B .GF =6C .AD =12 D .EH ∥GF二.填空题(共10小题)11.(2021秋•莱阳市期末)如图,D 、E 分别为△ABC 的边AB 、AC 的中点.连接DE ,过点B 作BF 平分∠ABC ,交DE 于点F .若EF =4,AD =7,则BC 的长为 .12.(2021秋•让胡路区校级期末)如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为 .如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是 .13.(2021春•安徽月考)如图,在四边形ABCD 中,AD =BC ,∠DAB =50°,∠CBA =70°,P 、M 、N 分别是AB 、AC 、BD 的中点,若BC =6,则△PMN 的周长是 .14.(2021秋•长春期中)如图所示,在△ABC 中,BC >AC ,点D 在BC 上,DC =AC =10,且AD BD =32,作∠ACB 的平分线CF 交AD 于点F ,CF =8,E 是AB 的中点,连接EF ,则EF 的长为 . 15.(2021•商丘四模)如图,四边形ABCD 中,点E 、F 分别为AD 、BC 的中点,延长FE 交CD 延长线于点G ,交BA 延长线于点H ,若∠BHF 与∠CGF 互余,AB =4,CD =6,则EF 的长为 .16.(2021•香坊区校级开学)如图,在△ABC 中,E 是AB 的中点,D 是AC 上一点,连接DE ,BH ⊥AC 于H ,若2∠ADE =90°﹣∠HBC ,AD :BC =4:3,CD =2,则BC 的长为 .17.(2021春•牡丹区期末)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=13,AC=8,则DF的长为.18.(2021春•洛阳期末)如图,D是△ABC的边BC的中点,AE平分∠BAC,BE⊥AE于点E,且AB=10cm,DE=2cm,则AC的长为cm.19.(2021春•盐湖区校级期末)如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,若∠MPN=130°,则∠NMP的度数为.20.(2021春•虹口区校级期末)如图,在△ABC中,BM、CN平分∠ABC和∠ACB的外角,AM⊥BM于M,AN ⊥CN于N,AB=10,BC=13,AC=6,则MN=.三.解答题(共10小题)21.(2019春•岐山县期末)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.22.(2021秋•桓台县期末)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.23.(2021秋•莱州市期末)已知:如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F 分别是AB、CD的中点,EF分别交BD、AC于点G、H.求证:OG=OH.24.(2021春•抚州期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.25.(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.26.(2021春•泰兴市月考)如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.27.(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.28.(2021春•莆田期末)如图,已知四边形ABCD的对角线AC与BD相交于点O,且AC=BD,M、N分别是AB、CD的中点,MN分别交BD、AC于点E、F.你能说出OE与OF的大小关系并加以证明吗?29.(2021春•城固县期末)如图,在四边形ABCD中,对角线AC=BD,E,F为AB、CD的中点,连接EF交BD、AC于P、Q,取BC中点G,连EG、FG,求证:OP=OQ.30.(2021春•三水区期末)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.。

2022-2023学年初二数学第二学期培优专题14 三角形斜边中线与中位线

2022-2023学年初二数学第二学期培优专题14 三角形斜边中线与中位线

2022-2023学年初二数学第二学期培优专题14 三角形斜边中线与中位线结合【例题讲解】(1)如图1,已知△ABC中,F是BC上一点,AB=BF,BE⊥AF,垂足是E,D是AC的中点,请说明FC和DE有怎样的关系?(请写出详细的推理过程)(2)如图2,在△ABC中,M、D分别是边AB、AC的中点,E是线段MD上的一点.连接AE、BE,∠AEB =90°,且AB=8,BC=14,则DE的长是______.解:(1)12DE FC DE FC=∥,,理由如下:∵AB=BF,BE⊥AF,∴AE=EF,即点E是AF的中点,又∵D是AC的中点,∴DE是△ACF的中位线,∴12DE FC DE FC=∥,;(2)∵M、D分别是AB、AC的中点,∴MD是△ABC的中位线,∴172MD BC==,∵∠AEB=90°,AB=8,M是AB的中点,∴142ME AB==,∴DE=MD-ME=3.【综合演练】1.如图,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,DE是△ABC的中位线,若DE=10,则BF的长为()A .10B .5C .8D .62.如图,在ABC 中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点.E 若10AB =,=16BC ,则线段EF 的长为( )A .2B .3C .4D .53.如图,在RtΔABC 中,∠ACB =90,AC =6、BC =4,点F 为射线CB 上一动点,过点C 作CM ⊥AF 于M 交AB 于E , D 是AB 的中点,则DM 长度的最小值是( )A .3B .2C .1D .6-24.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为( )A .3B .4C .52D .72第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(共0分)5.已知,如图,在△ABC 中,D 、E 、F 分别是各边的中点,AH 是高,已知AB =6cm ,AC =8cm ,7cm 3CH BH -=,则△DHE 的周长为________cm .6.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,D ,E ,F 分别为AB ,AC ,AD 的中点,若6BC =,则EF 的长度为 _____.7.如图,菱形ABCD 中,DE AB ⊥,垂足为E ,点F 、G 分别为边AD 、DC 的中点,5,8EF FG ==,则ABCD S =菱形___________.8.如图,在ABC 和ABD △中,90ACB ADB ∠=∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,若1DE =,则FG =_________.9.如图,在正方形ABCD 中,F 在AB 上,E 在BC 的延长线上,AF =CE ,连接DF 、DE 、EF ,EF 交对角线BD 于点N ,M 为EF 的中点,连接MC ,下列结论:①△DEF 为等腰直角三角形;②∠FDB =∠FEC ;③直线MC 是BD 的垂直平分线;④若BF =2,则MC =2;其中正确结论的有_______.10.如图,ABC ∆中,90ACB ∠=,D 为AC 边上的中点,E 为AB 边上一点,4AB BE =,连接CE DE 、,延长DE 交CB 延长线于F ,若3BF =,10AB =,则CE =________.11.如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且4AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是_______.三、解答题(共0分)12.如图,在四边形ABCD 中,∠ABC =90°,AC=AD ,M ,N 分别是AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN;(2)若∠BAD=60°,AC平分∠BAD,AC=2.①求∠BMN的度数;②求BN的长.13.如图,D、E、F分别是△ABC三边中点,AH⊥BC于H.求证:(1)∠BDF=∠BAC;(2)DF=EH.14.在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点,连接BE、EF.BC;(1)求证:EF=12(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.15.如图,在平面直角坐标系中,A(0,4),B(4,0),C(6,2),连接AB,BC,平移BC至AD(点B 与点A对应,点C与点D对应),连接CD.(1)①直接写出点D的坐标为.②判断四边形ABCD的形状,并证明你的结论;(2)如图1,点E为AB边上一点,连接DE,DF平分∠EDC交BC于F,连接EF,若∠DFE=45°,求BE 的长;(3)如图2,N为BC边的中点,若∠AMC=90°,连接MN,请直接写出MN的取值范围.16.已知,在△ABC中,以△ABC的两边BC,AC为斜边向外测作Rt△BCD和Rt△ACE,使∠CAE=∠CBD,取△ABC边AB的中点M,连接ME,MD.特例感知:(1)如图1,若AC=BC,∠ACB=60°,∠CAE=∠CBD=45°,取AC,BC的中点F,G,连接MF,MG,EF,DG,则ME与MD的数量关系为______,∠EMD=______;(2)如图2,若∠ACB=90°,∠CAE=∠CBD=60°,取AC,BC的中点F,G,连接MF,MG,EF,DG,请猜想ME与MD的数量关系以及∠EMD的度数,并给出证明;类比探究:(3)如图3,当△ABC是任意三角形,∠CAE=∠CBD=α时,连接DE,请猜想△DEM的形状以及∠EMD 与α的数量关系,并说明理由.中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).17.在ABC(2)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:AM=AN(3)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:∠EMD=∠FND.18.(1)如图1,已知△ABC中,F是BC上一点,AB=BF,BE⊥AF,垂足是E,D是AC的中点,请说明FC和DE有怎样的关系?(请写出详细的推理过程)(2)如图2,在△ABC中,M、D分别是边AB、AC的中点,E是线段MD上的一点.连接AE、BE,∠AEB =90°,且AB=8,BC=14,则DE的长是______.答案与解析【例题讲解】(1)如图1,已知△ABC中,F是BC上一点,AB=BF,BE⊥AF,垂足是E,D是AC的中点,请说明FC和DE有怎样的关系?(请写出详细的推理过程)(2)如图2,在△ABC中,M、D分别是边AB、AC的中点,E是线段MD上的一点.连接AE、BE,∠AEB =90°,且AB=8,BC=14,则DE的长是______.解:(1)12DE FC DE FC=∥,,理由如下:∵AB=BF,BE⊥AF,∴AE=EF,即点E是AF的中点,又∵D是AC的中点,∴DE是△ACF的中位线,∴12DE FC DE FC=∥,;(2)∵M、D分别是AB、AC的中点,∴MD是△ABC的中位线,∴172MD BC==,∵∠AEB=90°,AB=8,M是AB的中点,∴142ME AB==,∴DE=MD-ME=3.【综合演练】1.如图,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,DE是△ABC的中位线,若DE=10,则BF的长为()A.10 B.5 C.8 D.6【分析】根据三角形中位线定理求出AC ,根据直角三角形的斜边上的中线等于斜边的一半计算,得到答案.【解答】解:∵DE 是△ABC 的中位线,若DE =10,∴AC =2DE =20,在Rt △ABC 中,∠ABC =90°,BF 是AC 边上的中线,∴BF =12AC =10,故选:A . 【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.2.如图,在ABC 中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点.E 若10AB =,=16BC ,则线段EF 的长为( )A .2B .3C .4D .5 【答案】B【分析】先求出152DF AB AD BD ====,然后证明DE BC ∥,根据平行线分线段成比例可得=AE EC ,再根据三角形中位线定理求出DE 即可.【解答】解:AF BF ⊥,90AFB ∴∠=︒,10AB =,D 为AB 中点,152DF AB AD BD ∴====, ABF BFD ∠∠∴=,又BF 平分ABC ∠,ABF CBF ∠∠∴=,CBF DFB ∠∠∴=,∴DE BC ∥,∴=AD AE DB EC,182DE BC ∴==, 853EF DE DF ∴=-=-=,故选:B .【点评】本题考查了直角三角形斜边中线的性质,等腰三角形的判定和性质,平行线的判定,平行线分线段成比例定理以及三角形中位线定理等知识,证明DE BC ∥是解答本题的关键.3.如图,在RtΔABC 中,∠ACB =90,AC =6、BC =4,点F 为射线CB 上一动点,过点C 作CM ⊥AF 于M 交AB 于E , D 是AB 的中点,则DM 长度的最小值是( )A .3B .2C .1D .6-2【答案】C【分析】取AC 的中点T ,连接DT ,MT .利用三角形的中位线定理求出DT ,利用直角三角形的中线的性质求出MT ,再根据DM MT DT ≥-,可得结论.【解答】解:如图,取AC 的中点T ,连接DT ,MT .∵AD DB =,AT TC =,∴122DT BC ==. ∵CE AF ⊥,∴90AMC ∠=︒,∴132TM AC ==, ∴点M 的运动轨迹是以T 为圆心,TM 为半径的圆,∴321DM TM DT ≥-=-=,∴DM 的最小值为1,故选:C .【点评】本题考查点与圆的位置关系,三角形中位线定理,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线,直角三角形斜边中线解决问题.4.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为( )A .3B .4C .52D .72 【答案】D【分析】先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论.【解答】∵CE=5,△CEF 的周长为18,∴CF+EF=18-5=13.∵F 为DE 的中点,∴DF=EF .∵∠BCD=90°,∴CF=12DE ,∴EF=CF=12DE=6.5,∴DE=2EF=13,∴CD=2212DE CE -=,∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=12(BC-CE)=12(12-5)=3.5,故选D.【点评】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.使用勾股定理是解决这个问题的关键.5.已知,如图,在△ABC中,D、E、F分别是各边的中点,AH是高,已知AB=6cm,AC=8cm,7 cm 3CH BH-=,则△DHE的周长为________cm.【答案】496##186【分析】根据直角三角形斜边上的中线的性质求出DH,根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【解答】解:∵AH是△ABC的高,∴∠AHB=90°,∵点D是AB的中点,∴DH=12AB=12×6=3cm,∵D、E分别是BA、BC的中点,∴DE是△ABC的中位线,∴DE=12AC=12×8=4cm,∵BE=EC,CH-BH=73 cm,∴HE=76 cm,∴△DHE的周长=DH+DE+HE=496cm,故答案为:496.【点评】本题考查的是三角形中位线定理、直角三角形斜边上的中线的性质,掌握三角形中位线等于第三边的一半是解题的关键.6.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,D ,E ,F 分别为AB ,AC ,AD 的中点,若6BC =,则EF 的长度为 _____.【答案】3【分析】根据含30°的直角三角形的性质求出CD ,根据直角三角形的性质求出CD ,根据三角形中位线定理计算,得到答案.【解答】解:∵∠ACB =90°,∠A =30°,∴AB =2BC =12.∵∠ACB =90°,D 为AB 的中点,∴CD =12AB =6,∵E ,F 分别为AC ,AD 的中点,∴EF 为△ACD 的中位线,∴EF =12CD =3.故答案为:3.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7.如图,菱形ABCD 中,DE AB ⊥,垂足为E ,点F 、G 分别为边AD 、DC 的中点,5,8EF FG ==,则ABCD S =菱形___________.【答案】96【分析】连接,AC BD ,交于点O ,先根据直角三角形斜边上的中线等于斜边的一半可得10AD =,再根据三角形的中位线定理可得16AC =,然后根据菱形的性质和勾股定理可得12BD =,最后利用菱形的面积公式即可得.【解答】解:如图,连接,AC BD ,交于点O ,,5DE AB EF ⊥=,且点F 为边AD 的中点,210AD EF ∴==,点,F G 分别为边,AD DC 的中点,8FG =,216AC FG ∴==,四边形ABCD 是菱形,1,8,22AC BD OA AC BD OD ∴⊥===, 226OD AD OA ∴=-=,12BD ∴=,1116129622ABCD S AC BD ∴=⋅=⨯⨯=菱形, 故答案为:96.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半、三角形的中位线定理、勾股定理、菱形的性质,熟练掌握菱形的性质是解题关键.8.如图,在ABC 和ABD △中,90ACB ADB ∠=∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,若1DE =,则FG =_________. 【答案】1【分析】由直角三角形斜边中线的性质得出AB =2DE ,再由三角形中位线的性质可得FG 的长;【解答】解:∵Rt △ABC 中,点E 是AB 的中点,DE =1,∴AB =2DE =2,∵点F 、G 分别是AC 、BC 中点,∴112FG AB ==,故答案为:1【点评】本题考查了直角三角形的性质及三角形中位线的性质等知识;熟练掌握中位线定理是解题的关键. 9.如图,在正方形ABCD 中,F 在AB 上,E 在BC 的延长线上,AF =CE ,连接DF 、DE 、EF ,EF 交对角线BD 于点N ,M 为EF 的中点,连接MC ,下列结论:①△DEF 为等腰直角三角形;②∠FDB =∠FEC ;③直线MC 是BD 的垂直平分线;④若BF =2,则MC =2;其中正确结论的有_______.【答案】①②③④【分析】先根据SAS 定理证出ADF CDE ≅,再根据全等三角形的性质可得,DF DE ADF CDE =∠=∠,然后根据等腰直角三角形的判定即可判断①;先根据等腰直角三角形的性质可得45DEF DFE ∠=∠=︒,再根据对顶角相等可得DNF BNE ∠=∠,然后根据三角形的内角和定理即可得判断②;连接BM DM ,,先根据直角三角形斜边上的中线等于斜边的一半可得12BM DM EF ==,再根据线段垂直平分线的判定即可判断③;取BE 的中点O ,连接MO ,先根据三角形中位线定理可得11,2MO BF MO BF ==∥,再根据等腰三角形的三线合一可得1452BCM BCD ∠=∠=︒,然后在Rt MOC 中,利用勾股定理即可得.【解答】解:四边形ABCD 是正方形,,90,45AB AD CD BC A ABC BCD ADC CBD ∴===∠=∠=∠=∠=︒∠=︒,在ADF △和CDE 中,90AD CD A DCE AF CE =⎧⎪∠=∠=︒⎨⎪=⎩,()SAS ADF CDE ∴≅,,DF DE ADF CDE ∴=∠=∠,90EDF CDE CDF ADF CDF ADC ∴∠=∠+∠=∠+∠=∠=︒,DEF ∴为等腰直角三角形,结论①正确;45DEF DFE ∴∠=∠=︒,又45,CBD DNF BNE ∠=︒∠=∠,180180DNF CBD BN E E DF ∴︒-∠=︒-∠-∠∠-,即FDB FEC ∠=∠,结论②正确;如图,连接BM DM ,,M 为Rt DEF △和Rt BEF △斜边EF 上的中点,12BM DM EF ∴==, 又BC CD =,∴直线MC 是BD 的垂直平分线,结论③正确;如图,取BE 的中点O ,连接MO ,1121,22MO BF MO BF ∴==⨯=∥,90MOC ABC ∴∠=∠=︒,直线MC 是BD 的垂直平分线,BC CD =,1452BCM BCD ∴∠=∠=︒(等腰三角形的三线合一), Rt COM ∴是等腰直角三角形,且1OC MO ==,222MC MO OC ∴=+=,结论④正确;综上,正确结论的有①②③④,故答案为:①②③④.【点评】本题考查了正方形的性质、三角形全等的判定与性质、等腰直角三角形的判定与性质、勾股定理、线段垂直平分线的判定、三角形中位线定理等知识点,熟练掌握各判定与性质是解题关键.10.如图,ABC ∆中,90ACB ∠=,D 为AC 边上的中点,E 为AB 边上一点,4AB BE =,连接CE DE 、,延长DE 交CB 延长线于F ,若3BF =,10AB =,则CE =________.【答案】972【分析】取AB 的中点G ,连接DG ,则AB =2BG ,可得BE =EG ,再利用三角形中位线定理得BC =2DG ,DG BF ∥,利用ASA 证明△GDE ≌△BFE ,得DG =BF =3,DE =EF ,从而解决问题.【解答】解:取AB 的中点G ,连接DG ,则AB =2BG ,∵AB =4BE ,∴BE =EG ,∵D 为AC 边上的中点,G 为AB 的中点,∴DG 为△ABC 的中位线,∴BC =2DG ,DG BF ∥, ∴∠GDE =∠F ,在△GDE 和△BFE 中,GDE F DEG FEB GE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△GDE ≌△BFE (ASA ),∴DG =BF =3,DE =EF ,∴BC =6,∴CF =9,由勾股定理得,AC =8,∴CD =4,在Rt △CDF 中,由勾股定理得,DF =22224997CD CF +=+=,∵∠ACB =90°,EF =DE ,∴CE =12DF =972, 故答案为:972. 【点评】本题主要考查了勾股定理,三角形中位线定理,全等三角形的判定与性质,直角三角形斜边上中线的性质等知识,证明点E 是DF 的中点是解题的关键.11.如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且4AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是_______.【答案】3m 7≤≤【分析】取AB 的中点M ,连接QM 、CM ,得到QM 是△APB 的中位线,CM 是Rt ABC 斜边上的中线,求得QM 、CM 的长,在△QMC 中利用三角形三边关系得到CQ 的范围即可.【解答】取AB 的中点M ,连接QM 、CM ,∴QM 是△APB 的中位线,CM 是Rt ABC 斜边上的中线,∴122QM AP ==,12CM AB =, 在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,∴226810AB =+=,∴CM =5,∵点P 是平面内一个动点,∴点Q 是动点,且点Q 以点M 为圆心,QM 长为半径的圆上运动,∴C 、Q 、M 可以三点共线,∴CM -MQ ≤CQ ≤CM +MQ ,∴3m 7≤≤,故答案为:3m 7≤≤.【点评】本题考查勾股定理、直角三角形斜边中线的性质,中位线定理、三角形三边关系等知识,分析点Q 的运动是解题的关键.12.如图,在四边形ABCD 中,∠ABC =90°,AC=AD ,M ,N 分别是AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)若∠BAD =60°,AC 平分∠BAD ,AC =2.①求∠BMN 的度数;②求BN 的长.题的关键是灵活应用三角形的中位线平行于第三边,并且等于第三边的一半.13.如图,D、E、F分别是△ABC三边中点,AH⊥BC于H.求证:(1)∠BDF=∠BAC;(2)DF=EH.【答案】(1)见解析;(2)见解析.【分析】(1)根据三角形中位线定理得到DF//AC,根据平行线的性质证明结论;AC,等量代换证明结论.(2)根据直角三角形的性质得到EH=12【解答】(1)∵D、F分别是△ABC两边中点,∴DF是△ABC的中位线,AC,∴DF//AC,DF=12∴∠BDF=∠BAC;(2)∵AH⊥BC于H,E是AC的中点,AC,∴EH=12由(1)得,DF=12 AC,∴DF=EH.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点,连接BE、EF.BC;(1)求证:EF=12(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.∴EBFG是平行四边形,连接CG,∵G是OD的中点,而CO=12AC=12BD=AB=CD,∴CG⊥OD,而F是BC的中点,∴GF=12BC=BF,∴平行四边形EBFG是菱形.【点评】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.15.如图,在平面直角坐标系中,A(0,4),B(4,0),C(6,2),连接AB,BC,平移BC至AD(点B 与点A对应,点C与点D对应),连接CD.(1)①直接写出点D的坐标为.②判断四边形ABCD的形状,并证明你的结论;(2)如图1,点E为AB边上一点,连接DE,DF平分∠EDC交BC于F,连接EF,若∠DFE=45°,求BE 的长;(3)如图2,N为BC边的中点,若∠AMC=90°,连接MN,请直接写出MN的取值范围.段CD上取一点G,使DG=DE,∵∠FDE=∠FDG,DF=DF,∴△DFE≌△DFG(SAS),∴∠DFE=∠DFG=45°,EF=GF,∴∠EFG=90°,∵∠EFB+∠GFC=90°,∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∵∠EBF=∠FCG=90°,EF=GF,∴△EBF≌△FCG(AAS),∴EB=FC,BF=CG,设EB=FC=x,则22BF CG BC x x==-=-,∴222222(42)(22)DE AE AD x DG=+=-+=,∵222()(4222)DG CD GC x=-=-+,∴222 (4222)(42)(22)x x-+=-+,解得:423x,即423BE=;(3)解:如图,连接AC,取AC的中点H,连接MH,NH,∵点A(0,4),B(4,0),D(2,6),∴42,210AB AC==,∵H为AC的中点,N为BC边的中点,∴1122,1022NH AB HM AC====,∵HM-NH≤MN≤HM+NH,∴MN的取值范围为10222210MN-≤≤+.【点评】本题是四边形综合题,主要考查了平行四边形和矩形的性质、三角形全等、勾股定理的运用,直角三角形的性质,三角形中位线定理等,综合性强,难度较大,熟练掌握相关知识点是解题的关键.16.已知,在△ABC中,以△ABC的两边BC,AC为斜边向外测作Rt△BCD和Rt△ACE,使∠CAE=∠CBD,取△ABC 边AB 的中点M ,连接ME ,MD .特例感知:(1)如图1,若AC =BC ,∠ACB =60°,∠CAE =∠CBD =45°,取AC ,BC 的中点F ,G ,连接MF ,MG ,EF ,DG ,则ME 与MD 的数量关系为______,∠EMD =______;(2)如图2,若∠ACB =90°,∠CAE =∠CBD =60°,取AC ,BC 的中点F ,G ,连接MF ,MG ,EF ,DG ,请猜想ME 与MD 的数量关系以及∠EMD 的度数,并给出证明;类比探究:(3)如图3,当△ABC 是任意三角形,∠CAE =∠CBD =α时,连接DE ,请猜想△DEM 的形状以及∠EMD 与α的数量关系,并说明理由. 【答案】(1)ME=MD ,∠EMD=90°;(2)ME=MD ,∠EMD=120°;(3)△DEM 是等腰三角形,∠EMD=2α.【分析】(1)如图1,证明△EAM ≌△DBM ,可得EM=DM ,先根据三角形的中位线得:11FM AC MG BC 22===,由直角三角形斜边中线等于斜边一半可得12EF AC =,得EF=FM ,且顶角∠EFM=150°,得∠FEM=∠FME=15°,同理∠DMG=15°,相加可得结论;(2)如图2,证明△MEF ≌△DMG ,可得EM=DM ,∠EMF=∠MDG=15°,相加可得∠EMD=120°;(3)如图,作辅助线,取AC ,BC 的中点F ,G ,连接MF ,MG ,EF ,DG ,同理可证出EF=MG ,DG=FM ,∠3=2∠2,∠4=2∠1,证明△MEF ≌△DMG .则EM=DM ,∠EMF=∠MDG .表示∠EMD=∠MDG+∠DMG+∠ACB ,代入可得结论.【解答】解:(1)ME=MD ,∠EMD=90°;理由是:如图1,∵AC=BC ,∠ACB=60°,∴△ABC 是等边三角形,∴∠CAB=∠CBA=60°,在 Rt △BCD 和Rt △ACE 中,∠CAE=∠CBD=45°,∴AC=2AE,BC=2BD,∴AE=BD,∵M是AB的中点,∴AM=BM,∵∠EAM=45°+60°=105°,∠DBM=45°+60°=105°,∴∠EAM=∠DBM,∴△EAM≌△DBM,∴EM=DM,∵F、G分别是AC、BC的中点,∴FM=MG=12AC=CF=CG,∴四边形CFMG是菱形,∴∠FMG=∠BCA=60°,Rt△ACE中,∵F是斜边AC的中点,∴EF=12AC=FM,∵∠EFM=90°+60°=150°,∴∠FEM=∠FME=15°,同理∠DMG=15°,∴∠EMD=60°+15°+15°=90°,故答案为EM=DM,90°;(2)ME=MD,∠EMD=120°;证明:∵F,G,M是△ABC的三边AC,BC,AB的中点,∴FM=12BC=CG,FM∥BC,MG=12AC=CF,MG∥AC.∴四边形CFMG是平行四边形,∴∠AFM=∠FMG=∠ACB=∠MGD=90°.∵∠AEC=∠BDC=90°,F,G是AC,BC的中点,∴EF=AF=FC=12AC,CG=BG=DG=12BC.∴∠2=∠CEF,∠1=∠CDG,EF=MG,DG=FM.∴∠3=∠2+∠CEF=2∠2,∠4=∠1+∠CDG=2∠1.∵∠2+∠EAC=90°,∠1+∠CBD=90°,∠CAE=∠CBD=60°,∴∠1=∠2=30°.∴∠3=∠4=60°.∴∠EFM=∠3+∠AFM=150°,∠DGM=∠4+∠CGM=150°∴∠EFM=∠DGM.又∵EF=MG,FM=DG,∴△MEF≌△DMG.∴EM=DM,∠EMF=∠MDG=15°.∴∠EMD=90°+2×15°=90°30°=120°;(3)△DEM是等腰三角形,∠EMD=2α.证明:取AC,BC的中点F,G,连接MF,MG,EF,DG,同(2)证法相同,可证出EF=MG,DG=FM,∠3=2∠2,∠4=2∠1.∵∠2+∠EAC=90°,∠1+∠CBD=90°,∠CAE=∠CBD=α,∴∠1=∠2=90°-α.∴∠3=∠4=2(90°-α).∴∠EFM=∠3+∠AFM=∠3+∠ACB,∠DGM=∠4+∠BGM=∠4+∠ACB.∴∠EFM=∠DGM.又∵EF=MG,FM=DG,∴△MEF≌△DMG.∴EM=DM,∠EMF=∠MDG.∴△DEM是等腰三角形;∵∠EMD=∠FME+∠FMG+∠DMG,由(2)知∠FMG=∠ACB,∴∠EMD=∠MDG+∠DMG+∠ACB.∵∠MDG+∠DMG=180°-∠DGM=180°-(∠4+∠ACB )=180°-2(90°-α)-∠ACB=2α-∠ACB.∴∠EMD=2α-∠ACB+∠ACB=2α.【点评】本题是三角形的综合题,考查了三角形全等的性质和判定、三角形中位线定理、直角三角形斜边中线的性质、平行四边形的性质、等边三角形的性质等知识,并运用了类比的思想依次解决问题.∆中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).17.在ABC(1)如图①,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四形;(2)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:AM=AN(3)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:∠EMD=∠FND.【答案】(1)证明见解析(2)证明见解析(3)证明见解析【分析】(1)根据两直线平行内错角相等求得∠DBE=∠DCH,然后依据ASA求得BDE≅CDH得出ED=HD,最后根据有一组对边平行且相等的四边形是平行四边形求得.(2)连接FD、ED,延长ED交CF于点H,根据直角三角形斜边的中线定理和三角形的中位线定理求得ME=DN,MD=NF,从而证得AM=AN;(3)在(2)的条件下根据SSS 即可证明MED ≅NDF ,最后根据全等三角形的对应角相等求得∠EMD =∠FND . (1)如图①,∵D 为BC 的中点,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCH ,在BDE 与CDH 中,DBE DCH BD CD BDE CDH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BDE ≅CDH (AAS ),∴ED =HD ,∴四边形BECH 是平行四边形;(2)如图②连接FD 、ED ,延长ED 交CF 于点H ,∵BE ⊥AE ,CF ⊥AE ,)可知BDE≅CDHRt EHFRt AEBRt ACF在MED与NDF∴MED≅NDF。

三角形的中位线专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】

三角形的中位线专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.3三角形的中位线专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•岱岳区期末)如图,在△ABC中,点D、E分别是AB、AC边的中点,∠B=60°,则∠ADE 的度数为()A.60°B.70°C.80°D.50°2.(2022秋•长沙期中)如图,在△ABC中,D,E分别是AB,AC的中点,F,G分别是AD,AE的中点,且FG=2cm,则BC的长度是()A.4cm B.6cm C.8cm D.10cm3.(2022秋•射洪市期中)如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为30m,那么AB的长度为()A.30m B.60m C.120m D.160m4.(2022春•开福区校级期中)如图,在四边形ABCD中,点E、F分别是AB、AC的中点,连接EF,若EF=4,则BC的长为()A.2B.4C.6D.85.(2022春•南岗区校级期中)如图,在△ABC中,D,E分别是AB,AC的中点,连接ED,F是ED延长线上一点,连接AF、CF,若∠AFC=90°,DF=1,AC=6,则BC的长度为()A.2B.3C.4D.56.(2022春•鹿城区校级期中)如图,在△ABC中,D,E分别是BC,AC的中点,F是AB边上的一个动点,连结DE,EF,FD.若△ABC的面积为20,则△DEF的面积是()A.3B.4C.5D.67.(2021秋•潍坊期末)如图,已知△ABC中,∠BAC=80°,AD平分∠BAC,BD⊥AD,垂足为D,点E 为BC的中点,连结DE.则∠BDE的度数为()A.130°B.125°C.120°D.100°8.(2022春•大足区期末)如图,在Rt△ABC中∠ACB=90°,∠A=30°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC,若EF=2,则DE的长为()A.2B.1C.D.9.(2022春•朝天区期末)如图,在△ABC中,AB=BC=10,BD平分∠ABC交AC于点D,点F在BC上,且BF=4,连接AF,E为AF的中点,连接DE,则DE的长为()A.1B.2C.3D.410.(2022春•乐陵市期末)数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试作了一种辅助线,如图1,2.其中辅助线作法能够用来证明三角形中位线定理的是()图1为小丽的辅助线作法:延长DE到F,使EF=DE,连接DC、AF、FC.图2为小亮的辅助线作法:过点E作GE∥AB,过点A作AF∥BC,GE与AF交于点F.A.小丽和小亮的辅助线作法都可以B.小丽和小亮的辅助线作法都不可以C.小丽的辅助线作法可以,小亮的不可以D.小亮的辅助线作法可以,小丽的不可以二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022秋•思明区校级月考)如图,在△ABC中,BC=4cm,点D是AB的中点,过点D作DE∥BC交AC于点E,则DE=cm.12.(2022秋•普陀区期中)如图,在△ABC中,CD平分∠ACB,且CD⊥AB于点D,DE∥BC交AC于点E,BC=3cm,AB=2cm.那么△ADE的周长为cm.13.(2022秋•思明区校级期中)如图,在△ABC中,AB=8,BC=14,D,E分别是边AB,AC的中点,点F在DE上,且∠AFB=90°,则EF的长是.14.(2021秋•新泰市期末)如图,在△ABC中,CE是中线,CD是角平分线,AF⊥CD交CD延长线于点F,EF=1,BC=4,则AC的长为.15.(2022秋•镇平县期中)在Rt△ABC中,∠C=90°,AC=6,BC=8,点N是BC边上一点,点M为AB边上的动点,点D、E分别为CN,MN的中点,则DE的最小值是.16.(2022秋•南昌期中)如图,在Rt△ABC中,∠C=90°,∠A=60°,D,E分别是AC,AB的中点.将线段DE绕着点E逆时针能转角α(0°<α≤180°)得到线段ED',连接BD′,若△D'BE是直角三角形,则α=°.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022•扬州模拟)如图,在△ABC中,点D是AC的中点,DE∥BC交AB于点E,DF∥AB交BC于点F,说明△ADE与△DCF全等的理由.18.(2022春•望城区期末)如图,Rt△ABC,∠BAC=90°,D,E分别为AB,BC的中点,点F在CA的延长线上,∠FDA=∠B.(1)求证:AF=DE;(2)若AC=6,BC=10,求四边形AEDF的周长.19.(2017秋•岱岳区期末)如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF 的中点,求证:GH⊥EF.20.已知如图,在四边形ABCD中,AD∥BC,BC>AD,BD平分∠ABC,E、F分别是BD、AC的中点.求证:(1)AE⊥BD(2)EF=.21.(2022春•东莞市期中)如图,在四边形ABCD中,AD=BC,P是BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.22.(2022春•江油市期中)如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.若∠ACB=90°,AC=12cm,DE=4cm.(1)求证:DE=BF;(2)求四边形DEFB的周长.23.(2022秋•郸城县期中)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=10,CD=24,∠ABD=30°,∠BDC=120°,求EF的长.(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.24.(2022秋•安溪县期中)在四边形ABCD中,AB=CD,点E,F分别是边AD,BC的中点.(1)如图1,点P为对角线BD的中点,连接PE,PF,若∠PEF=26°,则∠EPF=度;(2)如图2,直线EF分别与BA,CD的延长线交于点M,N.求证:∠BMF=∠CNF.。

初中数学八年级下三角形中位线定理专项训练题集二

初中数学八年级下三角形中位线定理专项训练题集二

初中数学八年级下三角形中位线定理专项训练题集二一、单选题1、如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A、4B、8C、D、2、如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:其中正确的个数有()A、1个B、2个C、3个D、4个3、如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A、6B、5C、4D、34、如图,已知E、F、G分别是△ABC各边的中点,△EBF的面积为2,则△ABC 的面积为[ ]A、2B、4C、6D、85、下列长度的三条线段,能组成三角形的是[ ]A、1cm,2cm,3cmB、2cm,3cm,6cmC、4cm,6cm,8cmD、5cm,6cm,12cm6、下列说法中正确的有①等边三角形有三条对称轴;②四边形有四条对称轴;③等腰三角形的一边长为4,另一边长为9,则它的周长是17或22;④一个三角形中三个不同顶点的外角中至少有两个锐角[ ]A、4个B、3个C、2个D、1个7、现有两根棍子长分别为3厘米,5厘米,若要选第三根棍子,使其与前两根拼成一个三角形,则它的长可为[ ]A、1厘米B、2厘米C、5厘米D、10厘米8、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为[ ]A、5个B、6个C、7个D、8个9、将一张三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可能是()A、三角形B、平行四边形C、矩形D、正方形10、如果一个四边形的对角线相等,那么顺次连接这个四边形各边中点所得的四边形一定是()A、梯形B、矩形C、菱形D、正方形11、已知△ABC中,动点P在BC边上由点B向点C运动,若动点P运动的速度为2cm/s,则线段AP的中点Q运动的速度为()A、1cm/sB、2cm/sC、3cm/sD、4cm/s12、顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD 的对角线AC和BD只需满足的条件是()A、相等B、互相垂直C、相等且互相垂直D、相等且互相平分13、顺次连接等腰梯形各边中点所得的四边形一定是()A、等腰梯形B、矩形C、菱形D、正方形二、填空题1、如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M 是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN 与ME相交于点O.若△OMN是直角三角形,则DO的长是_______________.2、如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .3、请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).4、如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=_____________.5、如图所示,D,E分别为AB,AC的中点,BC=8cm,则DE=()cm.6、如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,则△DEF的面积为()cm2.7、如下图,AB是⊙O的直径,D是AC的中点,OD∥BC,若BC=8,则OD=()。

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练一、内容提要1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。

它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。

二、例题例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点。

求证:PM =PN证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形∴AE =EB=ME ,AF =FC =NF ,根据三角形中位线性质 PE =21AC =NF ,PF =21AB =MEPE ∥AC ,PF ∥AB∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN∴△PEM ≌△PFN ∴PM =PN例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。

求MN 的长。

分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。

辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PNP NMP ∥AB ,MP =21AB ,NP ∥AC ,NP =21AC ∵BE =CF ,∴MP =NP∴∠3=∠4=2MPN-180∠∠MPN +∠BAC =180(两边分平行的两个角相等或互补)∴∠1=∠2=2MPN-180∠ , ∠2=∠3∴NP ∥AC ∴MN ∥AD证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG∴AB ∥CG ,∠BAC +∠FCG =180 ∠CAD =21(180-∠FCG ) ∠CFG =21(180-∠FCG )=∠CAD ∴ MN ∥AD 例4. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC 于F ,GE ⊥CE交CB 的延长线于G 求证:FD =41CG 证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点过点E 作EM ∥GC 交HC 于M ,则M 是HC 的中点,EM ∥GC ,EM =21GC由矩形EFDO 可得FD =EO =21EM =41GC三、练习1. 如图11,M 、P 分别为△ABC 的AB 、AC 上 的点,且AM=BM ,AP=2CP ,BP 与CM 相交于N ,已知PN=1,则PB 的长为 ( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB=10,则MD 的长为 ( )A. 10B. 8 C .6 D. 53. 如图13,△ABC 是等边三角形,D 、E 、F 分别是AB 、BC 、AC 的中点,P 为不同于B 、E 、C 的BC 上的任意一点,△DPH 为等边三角形.连接FH ,则EP 与FH 的大小关系是 ( ) A. E P>FH B. EP=FH C. EP<FH D.不确定4. 如图14,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,DE ∥AC ,交AB 于E ,若AB=5,则DE 的长为 .C5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27。

三角形的中位线(分层练习)(解析版)-八年级数学 下册

 三角形的中位线(分层练习)(解析版)-八年级数学 下册

第六章平行四边形6.3三角形的中位线一、单选题A.1【答案】C【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵D,EA.20m B【答案】D【分析】根据中位线定理可得:【详解】解:D∵是ACA.5B【答案】D的长,再根据中位线的性质即可求解.A.4B.6【答案】AABCA.1.5B.2【答案】B【分析】根据三角形中位线定理解答即可.A.6米B.7米【答案】C【分析】直接使用中位线定理得出结果.【详解】E∵、F分别是边AB、二、填空题7.(2022秋·八年级单元测试)如图,在ABC 中,D ,E 分别为AB ,AC 边的中点,若3DE ,则BC 的长为______.【答案】6【分析】直接根据三角形中位线定理即可得.【详解】解:∵在ABC 中,D ,E 分别为AB ,AC 边的中点,且3DE ,26BC DE 故答案为:6.【点睛】本题考查了三角形中位线定理,熟练掌握三角形中位线定理是解题关键.8.(2022春·湖南常德·八年级统考期中)如图,A ,B 两地被一座小山阻隔,为测量A ,B 两地之间的距离,在地面上选一点C ,连接CA ,CB ,分别取CA ,CB 的中点D ,E ,测得DE 的长度为380米,则A ,B 两地之间的距离是________米.【答案】760【分析】利用三角形中位线定理解决问题即可.【详解】解:∵D 、E 分别是CA ,CB 的中点,【答案】1【分析】利用三角形中位线定理解答即可.【详解】解:∵F ,M 分别为边∴11FM AB ,【答案】4【分析】根据三角形中位线定理即可求出四边形周长.【详解】解:∵点E,F分别是三、解答题∴A CDE ,在ABC 和DCE △中,AB CD A CDE AC DE,∴()ABC DCE SAS △△,∴BC CE .【点睛】本题考查了三角形中位线定理、平行线的性质、三角形全等的判定定理与性质,熟练掌握三角形中位线定理是解题关键.一、填空题1.(2023春·陕西西安·八年级高新一中校考阶段练习)如图,M 是ABC 的边BC 的中点,AN 平分BAC ,BN AN 于点N ,延长BN 交AC 于点D ,已知10AB ,15BC ,4MN ,则ABC 的周长是__________.【答案】43【分析】证明ABN ADN ≌ ,得到10AD AB ,BN DN ,根据三角形中位线定理求出CD ,计算即可.【详解】解:∵AN 平分BAC ,∴BAN DAN ,在ABN 和ADN △中,【答案】4【分析】利用三角形的中位线定理并结合条件可证明进而证明四边形AEFD∴AD EF ∥,1AD EF ,∴四边形AEFD 是平行四边形,∴1AE DF ,∴四边形AEFD 的周长为11114AE EF DF AD .故答案为:4.【点睛】本题考查了三角形的中位线定理,平行四边形的判定与性质等知识,证明四边形AEFD 是平行四边形是解题的关键.3.(2023·山东烟台·统考二模)如图,ABCD Y 中,4660AB AD A ,,,点E 在AB 的延长线上,F 为DE 的中点,连接CF ,若10BE ,则CF 的长为__________.【答案】3【分析】延长BC 至G ,使10BG BE ,连接GE ,延长DC 交GE 于点H ,得到GBE 是等边三角形,推出GCH △是边长为4等边三角形,证明CF 是DEH △的中位线,根据三角形中位线定理即可求解.【详解】解:∵ABCD Y 中,60A ,∴60GBE A ,延长BC 至G ,使10BG BE ,连接GE ,延长DC 交GE 于点H ,∵60GBE ,∴GBE 是等边三角形,∴10BG BE GE ,【答案】5【分析】取AB的中点G,连接边的一半求出EG、FG,并求出【详解】解:如图,取AB的中点【答案】201612【分析】根据三角形中位线定理求出第二个三角形的周长、得到答案.【详解】解:根据三角形中位线定理得到第二个三角形三边长是即第二个三角形的周长为12二、解答题6.(2022秋·八年级单元测试)如图所示,在四边形ABCD 中,对角线AC 、BD 交于点O ,E ,F 分别是AB 、CD 的中点,且AC BD .求证:OM ON .【答案】见解析【分析】取AD 的中点G ,连接EG ,FG ,构造三角形的中位线,根据三角形的中位线定理进行证明即可.【详解】证明:如图所示,取AD 的中点G ,连接EG ,FG ,G ∵、F 分别为AD 、CD 的中点,GF 是ACD 的中位线,12GF AC ,同理可得,12GE BD ,AC BD ∵,1122GF GE AC BD .GFN GEM ,(1)求证:BD CE ;(2)若2AB ,且CE AD ,求【答案】(1)见解析(2)3。

word完整版初二中位线专题训练

word完整版初二中位线专题训练

三角形的中位线专题训练22,梯形ABCD中,,点在上,连与的延长线交于点BCAB∥CDABFDF G.求证:;(2)当点F是BC的中点时,过F BGF△CDF∽△(1)作EF∥CD交于点,若,求的长.三CD,EF4cm??AB6cm EAD角形中位线的性质例1、求证:三角形的一条中位线与第三边上的中线互相平分.例2、如图,三角形三条中位线组成的图形与原三角形的形状、大小(面积和周长)有怎样的关系?四边形ADEF的周长与AB+AC的关系如何?ADFCBEEFH是、分别是、中,ABCDAB=CD,EF、GBD、ACBC的中点,已知在四边形、例3GH. 求证:的中点.EF⊥DAEHFCBG.、DA的中点分别是AB、BC、CDHABCD例4、已知:如图,在四边形中,E、F、G、. 求证:四边形EFGH是平行四边形AHDEGCFB梯形中位线的性质一、)1、已知等腰梯形的中位线和腰长相等,都等于8cm,这个等腰梯形的周长为(40 cm、32 cm C、24 cm D、A16 cm B、,求中位线BD⊥AC,又BC ∥AD,AB=DC的等腰梯形,10是高为ABCD、已知四边形2.EF的长。

DAO FEBC1、在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、1H,求证:GH=(BC-AD).2DA O FEHGBCACBD、FF中,AD∥BC,E、分别是AB、CD的中点,E、分别交ABCD变式一:在梯形 FHHG、,AD=a,BC=b,求EF、、GH的长。

于点DA O FEHGBCABCD是梯形的中点,求证:EFHG、分别是BF、ACBCABCD变式二:在梯形中,AD ∥,的中位线。

DA OFE HG BCAD4、在梯形ABCD中,AD∥BC,∠BAD与∠ABC的平分线交于CD中点E.求证:ECB.AD+BC=AB.5、口ABCD的顶点B,AA'⊥l,CC'⊥l,DD线直l过'⊥l,试证明AA'+ CC'= DD' DA ClD'C'A'B直角三角形和中位线二、1、1的AC分别是BC、ED,使AD=AB,、F°,延长△在RtABC中,∠BAC=90BA 到2中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学三角形中位线培优专题训练
一、内容提要
1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,
确定线段的和、差、倍关系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。

它的逆定理就是平行线截比例线段定理
及推论,
①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半
②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。

二、例题
例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是
BC 的中点。

求证:PM =PN
证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形
∴AE =EB
=ME ,AF =FC =NF ,
根据三角形中位线性质 PE =
21AC =NF ,PF =2
1
AB =ME
PE ∥AC ,PF ∥AB
∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN
∴△PEM ≌△PFN ∴PM =PN
例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。

求MN 的长。

分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。

辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PN
P N
MP ∥AB ,MP =
21AB ,NP ∥AC ,NP =2
1AC ∵BE =CF ,∴MP =NP
∴∠3=∠4=2
MPN
-180∠
∠MPN +∠BAC =180
(两边分平行的两个角相等或互补)
∴∠1=∠2=2
MPN
-180∠ , ∠2=∠3
∴NP ∥AC ∴MN ∥AD
证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG
则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG
∴AB ∥CG ,∠BAC +∠FCG =180 ∠CAD =
2
1(180
-∠FCG ) ∠CFG =
2
1(180
-∠FCG )=∠CAD ∴ MN ∥AD 例4. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC 于F ,GE ⊥CE
交CB 的延长线于G 求证:FD =
4
1
CG 证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点
过点E 作EM ∥GC 交HC 于M ,
则M 是HC 的中点,EM ∥GC ,EM =2
1
GC
由矩形EFDO 可得FD =EO =21EM =4
1
GC
三、练习
1. 如图11,M 、P 分别为△ABC 的AB 、AC 上 的点,且AM=BM ,AP=2CP ,BP 与CM 相交于N ,已知PN=1,则PB 的长为 ( ) A. 2 B. 3 C .4 D. 5
2. 如图12,△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB=10,则MD 的长为 ( )
A. 10
B. 8 C .6 D. 5
3. 如图13,△ABC 是等边三角形,D 、E 、F 分别是AB 、BC 、AC 的中点,P 为不同于B 、E 、C 的BC 上的任意一点,△DPH 为等边三角形.连接FH ,则EP 与FH 的大小关系是 ( ) A. E P>FH B. EP=FH C. EP<FH D.不确定
4. 如图14,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,DE ∥AC ,交AB 于E ,若AB=5,则DE 的长为 .
C
5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,
交AC于F,则FC的长等于.
6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的
中点.
求证:DM=DN
7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.
求证:AP=AQ
8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.
求证:MN∥BC.
9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.
求证:AB+AC=2AM
10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交
HG的延长线于E、F.
求证:∠BEH=∠CFH.
1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交
BA的延长线于E,交AD的延长线于F.
求证:
1
2
BE BD
.
2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC
的中点,MK的延长线交BA的长线于N.
求证:AN=AK.
3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等
腰直角△BCD,M为ED的中点.
求证:AM⊥BM.
4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、
F、G分别为AB、CD、BC的中点.
求证:△EFG为等边三角形.
5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中
点,Q是MN的中点,直线PQ交MB于K.
求证:K是DB的中点.
6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的
中点.
求证:DM=DN
图21 图22 图23 图24 图25
7. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H
分别为BC、DE的中点.
求证:HG∥AP.
8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接
DE,设M为DE的中点.
(1)求证:MB=MC;
(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,
试问MB=MC是否成立?并证明其结论.
9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.
求证:S≥4K.
10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2
∠CED=∠BAC.
求证:BD=2CD.
图26 图27。

相关文档
最新文档