射极跟随器
恒流源射极跟随器的作用(一)

恒流源射极跟随器的作用(一)恒流源射极跟随器的作用引言•恒流源射极跟随器是电子电路中常用的一种器件。
•它的作用在于将信号从输入端跟随着输出端,并保持输出端的电流不变。
作用1.保持输出端电流稳定–恒流源射极跟随器可以通过稳定的电流源,使得输出端的电流保持不变。
–这有助于避免电路中的负载变化对输出电流的影响,保证稳定的电流输出。
2.提高信号的跟随性–恒流源射极跟随器能够减小信号源与负载之间的阻抗差异。
–这样,输入信号能够更好地被输出端跟随,提高整个电路的响应速度和线性度。
3.降低信号失真–恒流源射极跟随器能够减小信号在电路中的失真程度。
–它通过提供稳定电流源,减小了非线性元件对信号的影响,从而降低了信号的失真。
4.增加电路的稳定性–恒流源射极跟随器可以提高电路的稳定性。
–它通过稳定的电流源,使得电路对于负载变化、温度变化等因素的影响较小,从而保持电路的稳定性。
结论•恒流源射极跟随器在电子电路中起到了重要作用。
•它能够保持输出端的电流稳定,提高信号的跟随性,降低信号失真,增加电路的稳定性。
•在实际应用中,合理使用恒流源射极跟随器可以提高电路的性能和可靠性。
以上就是恒流源射极跟随器的作用,希望对您有所帮助!工作原理•恒流源射极跟随器的基本原理是利用电流镜电路中的差动放大器。
•当输入信号变化时,差动放大器将输入信号放大,并通过电流镜电路将输出信号传递到输出端。
•输出端的电流由电流镜电路提供,保持输出端的电流稳定。
优点和应用1.可靠性高–恒流源射极跟随器由稳定的电流源和差动放大器组成,具有较高的可靠性和稳定性。
–这使得它在需要长时间、稳定输出电流的场合中应用广泛。
2.适应性强–恒流源射极跟随器适用于各种类型的电路,如放大器、滤波器和功率放大器等。
–它能够提高电路的性能,并实现对输入信号的跟随与放大。
3.节省空间–恒流源射极跟随器体积较小,可以集成在芯片上,节省电路板空间。
总结•恒流源射极跟随器作为一种重要的电子器件,在电路设计中发挥着关键作用。
静态工作点稳定的放大器射极跟随器

射极跟随器输出
具有低输出阻抗和高输入 阻抗,使得负载对放大器 性能影响较小。
STEP 03
电压负反馈
通过引入电压负反馈,减 小放大器的失真和噪声。
信号从射极跟随器的发射 极输出,通过负载电阻将 电流转换为电压。
偏置电路和稳定电路
01
02
03
偏置电路
为晶体管提供合适的静态 工作点,使放大器在正常 工作范围内。
频率响应பைடு நூலகம்失真度
频率响应定义
频率响应是指放大器对不同频率信号的放大能力,通常以 幅频特性和相频特性来表示。
失真度定义
失真度是指放大器输出信号与输入信号相比的失真程度, 通常以谐波失真、互调失真等指标来衡量。
影响因素
频率响应和失真度受到晶体管参数、电路拓扑、电源电压 等因素的影响。
提高方法
通过采用宽带运放、补偿电路等技术手段,可以扩展放大 器的频带宽度;通过优化电路参数、采用负反馈等技术手 段,可以降低放大器的失真度。
静态工作点稳定的放 大器射极跟随器
• 引言 • 静态工作点稳定原理 • 放大器射极跟随器的电路结构 • 放大器射极跟随器的性能指标 • 静态工作点稳定放大器射极跟随器的设计 • 静态工作点稳定放大器射极跟随器的应用
目录
Part
01
引言
目的和背景
深入了解射极跟随器的工 作原理和特点
探讨射极跟随器在放大器 设计中的重要性
从而提高放大器的线性度。
02
减小失真
当输入信号幅度较大时,如果静态工作点不稳定,晶体管可能会进入饱
和或截止区,导致输出信号失真。稳定的静态工作点可以减小这种失真。
03
提高放大器的稳定性
稳定的静态工作点可以减小温度、电源电压等外部因素对放大器性能的
实验3.3--射极跟随器

实验3.3 射极跟随器96实验3.3 射极跟随器一、实验目的(1)掌握射极跟随器的特性及测试方法。
(2)进一步学习放大器各项性能指标的测试方法。
二、实验仪器及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。
三、实验原理图3.3.1为共集电极放大电路,输出取自发射极,由于其电压放大倍数近似等于1,故称之为射极跟随器。
射极跟随器的主要特点有:1、输入电阻R i 高R i =R B || [ r be +(1+β)(R E || R L )] (3-3-1)其中: R B = (R W +R 1) || R 2 ; R E = R 3 (3-3-2) 由式(3-3-1)可知射极跟随器的输入电阻R i 比共射极基本放大器的输入电阻R i =R B || r be 要高得多。
输入电阻的测试方法同共射极基本放大器,实验电路如图3.3.1所示。
(3-3-3)即只要测得A 、A1两点的对地电位即可。
2、输出电阻R o 小(3-3-4)图3.3.1 射极跟随器实验电路S iS ii i i R U U U I U R -==βrR βr R beE be o ≈||1+=图3.3.1 射极跟随器实验电路第3章 低频电子线路实验97如考虑信号源内阻R S ,则:βR R r R βR R r R )||(≈||1)||(B S beE B S be o +++=(3-3-5) 由上式可知射极跟随器的输出电阻R o 比共射极基本放大器的输出电阻R o =R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R o 的测试方法亦同基本放大器,即先测出空载输出电压U ∞,再测接入负载R L 后的输出电压U L ,根据(3-3-6)即可求出R o(3-3-7)3、电压放大倍数近似等于1 对图3.3.1电路(3-3-8)上式说明射极跟随器的电压放大倍数小于近似1且为正值。
这是深度电压负反馈的结果。
射随电路原理

射极(源)跟随器射极跟随器又叫射极输出器,是一种典型的负反馈放大器。
从晶体管的连接方法而言,它实际上是共集电极放大器。
一、射极跟随器的电压“跟随”特性射极限随器的电压放大倍数接近于1,没有电压放大能力。
但射极跟随器以很小的输人电流却可以得到很大的输出电流放大倍数KI=Io/Ii=(1+β)RsbRe/(Rsb+Ri)(Re+RL) 式中:Rsb=Rs//Rb,Ri=rbc+(1+β)Relo,大哟=(ie=(1+β)ib)。
因此具有电流放大及功率放大作用。
射极限随器实质上是一个电压串联负反馈放大器。
二、射极跟随器的优点射极跟随器虽然没有电压放大能力,但由于电路深度负反馈的作用,具有工作稳定、频响宽、输入电阻大和输出电阻小等突出优点。
射极限随器的输入电阻比一般共发射极电路的输入电阻大很多。
根据理论分析,它的输入电阻rsr≈βRe。
如果晶休管的β=100,Re=1千欧,则输入电阻入,rsr≈l00千欧。
输入电阻大,消耗信号源的电流就小。
在多级放大器中,射极限随器对信号源或前级只是很轻的负载。
同时,射极限随器的输出电阻是很小的,根据理论分析,rsr≈rbe/β(式中的rbe.是晶休管的输入电阻)。
一般射极限随器的输出电阻在几十到几百欧之内,比共发射极电路小得多。
输出电阻小,带负栽的能力就强,可以带阻抗比较小的负载。
利用射极限随器输入电阻大、输出电阻小的特点,还可以进行阻抗匹配。
多级放大器中有时在两级之间加入一级射极限随器,使它的高输入阻抗与前级的高输出阻抗匹配;低输出阻抗与后级的低输入阻抗相匹配,起到缓冲作用,减少了前后级之间的影响。
由于射极跟随器的负反馈作用,输出电压随频串的变化也减小到最小程度,相对改善了放大器的频串响应。
三射极跟随器的原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
射极跟随器实验总结

射极跟随器实验总结一、实验目的本实验旨在了解射极跟随器的工作原理和特点,掌握射极跟随器的电路设计方法和调试技巧,并通过实验验证射极跟随器的性能和稳定性。
二、实验原理射极跟随器是一种常用的电压放大电路,其主要特点是输入电阻大、输出阻抗小、增益稳定。
在实际应用中,射极跟随器常用于信号放大、滤波等方面。
射极跟随器由三个基本元件组成:晶体管、负载电阻和输入电容。
其中,晶体管起到放大信号的作用;负载电阻起到限流作用;输入电容起到滤波作用。
在射极跟随器中,晶体管的基极接地,集电极接负载电阻,发射极接输入信号。
当输入信号加入时,发射极会产生一个反向信号,从而抵消掉基极和集电极之间的偏置电压。
这样就能够保证集电极处始终处于正常工作状态。
三、实验步骤1. 按照图1所示连接好电路,其中晶体管型号为9018,负载电阻为1kΩ,输入信号频率为1kHz。
2. 调节可变电阻,使得输出波形幅度达到最大。
3. 测量输出波形的幅度和相位,并记录在实验报告中。
4. 分别改变输入信号的频率和幅度,观察输出波形的变化,并记录在实验报告中。
5. 将负载电阻改为2kΩ和500Ω,重复步骤2-4。
6. 拆下晶体管,测量其参数(包括hfe、Vbe、Vce等),并记录在实验报告中。
四、实验结果通过实验可以得到如下结论:1. 射极跟随器具有较高的输入电阻、较低的输出阻抗和稳定的增益特点。
2. 在射极跟随器中,晶体管起到放大信号的作用;负载电阻起到限流作用;输入电容起到滤波作用。
3. 输入信号频率对射极跟随器的性能影响较小,而输入信号幅度对射极跟随器的性能影响较大。
当输入信号幅度过大时,会导致晶体管工作不稳定。
4. 改变负载电阻的大小可以改变射极跟随器的输出电压和输出电流,但会对增益特性产生影响。
5. 晶体管参数的不同会对射极跟随器的性能产生影响,因此在设计射极跟随器时需要根据具体情况选择合适的晶体管。
五、实验总结通过本次实验,我们深入了解了射极跟随器的工作原理和特点,掌握了射极跟随器的电路设计方法和调试技巧,并通过实验验证了射极跟随器的性能和稳定性。
射极跟随器放大原理

射极跟随器放大原理
射极跟随器是一种常用的放大电路,它通过控制输入信号从一个放大管的射极信号接出,并经过适当的放大后再送入另一个放大管的控制极,从而使输出信号跟随输入信号进行放大。
射极跟随器的放大原理如下:
1. 输入信号由输入电容C1耦合到放大管的基极,控制放大管的导通。
2. 当输入信号为正半周时,放大管的基极电压上升,相应的集电极电压也会上升。
这会导致输出管的基极电压上升,从而控制输出管的导通。
3. 当输出管导通时,输出信号经过输出电容C2送出。
4. 当输入信号为负半周时,放大管的基极电压下降,输出管的基极电压也会下降,从而控制输出管的截止。
5. 当输出管截止时,输出信号经过输出电容C2被阻断,不会对输出信号产生影响。
射极跟随器的放大原理可以使输入信号得到较大的放大,同时具有较高的输入阻抗和较低的输出阻抗。
这使得射极跟随器可以适应各种输入信号的要求,并为后级电路提供一个稳定的负载。
总结起来,射极跟随器的放大原理就是通过将输入信号放大后的相位信息传递给后级放大器,实现输入信号的跟随放大。
实验三:电子实做实验(射极跟随器)

实验三:电子实做实验(射极跟随器)
本实验旨在学习射极跟随器的基本原理,并通过实际的电路搭建和测试,加深对该电路的理解与掌握。
射极跟随器是一种广泛应用于放大电路中的信号跟随器,其主要作用是通过放大电路的电子管的输出信号,实现对输入信号的跟随和放大,保证输出信号的与输入信号相同,从而达到信号放大的效果。
实验器材:
1. 实验板;
2. 波形发生器;
3. 电压表;
4. 示波器;
5. 电路元件(三极管、电容等);
6. 电路图等实验配件。
实验步骤:
1. 搭建电路
根据电路图连接电路,合理摆放电路元件,并注意电路连接的正确性和用量是否正确。
2. 调节波形发生器
将波形发生器接到电路输入端,通过调节波形发生器的工作频率和输出电压,保证输入信号的正常输入,使其在电路中得到充分的放大。
3. 电路测试
将示波器接入电路,通过调整电路的输出电阻和电容值,观察电路的输出情况,根据实验结果及时调整电路参数,使其达到最佳的工作状态和放大效果。
4. 实验结果及分析
通过电路测试得到电路的输出波形及参数,对结果进行分析,总结电路的工作原理和实际应用,为后续的信号放大和调节工作的实施提供理论基础和技术支持。
总结:
通过本次实验,我们深入了解了射极跟随器的工作原理和实际应用,通过实际搭建和测试,进一步掌握了电路调试和操作技能,积累了宝贵的实验经验和经验教训,为后续的学习和实践工作打下了坚实的基础。
射极跟随器的工作原理

射极跟随器的工作原理
射极跟随器是一种电子设备,它的主要作用是跟随输入信号的变化,输出相应的电压信号。
射极跟随器的工作原理是基于晶体管的放大作用,通过控制晶体管的电流来实现信号的跟随。
射极跟随器的核心部件是晶体管,它是一种半导体器件,具有放大电流的特性。
晶体管的三个引脚分别是发射极、基极和集电极,其中基极是控制电流的输入端,发射极是输出端,集电极是电流的输出端。
在射极跟随器中,输入信号通过电容器和电阻器进入晶体管的基极,控制晶体管的电流。
当输入信号变化时,晶体管的电流也会随之变化,从而实现信号的跟随。
晶体管的放大作用使得输出信号的幅度比输入信号大很多,从而实现了信号的放大。
射极跟随器的优点是输出电阻小,输出信号稳定,能够跟随输入信号的变化。
它常用于音频放大器、信号放大器等电子设备中,可以提高信号的质量和稳定性。
射极跟随器的缺点是需要使用电源,而且电源的稳定性对输出信号的影响比较大。
此外,晶体管的工作温度也会影响输出信号的稳定性,因此需要注意散热和温度控制。
射极跟随器是一种基于晶体管放大作用的电子设备,它的工作原理是通过控制晶体管的电流来实现信号的跟随。
射极跟随器具有输出
电阻小、输出信号稳定等优点,常用于音频放大器、信号放大器等电子设备中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ro=rbe/β
ro通常在几十欧到几百欧的范围内。β 越大,输出电阻越低。
三 射极输出器的实际应用
1、在测量仪器的放大电路中,用射极输出器 作为输入极 ,使输入电阻提高,减少了输入 信号的损耗,从而提高测量的准确性。 2、用射极输出器作多级放大电路的输出 极,能使放大电路的输出电阻很小,从而 提高电路的负载能力 。
+ UC
R
B
C2 +
+ U0
_
- -
C C
U
+
二电路结构特点:
1是集电极直接与电源相连
2是输出电压由发射极电阻Re两端取得。 输出器在接法上是一个共集电极电路; 由于射极电压与基极电压近似相同, 故也称射极(电压)跟随器。
三 分 析 电 路:
(一)电压放大倍数 在射极输出器中,由于输出电压和反馈电 压都取自Re,反馈系数F=UF/Uo=1,则可 推得电压放大倍数为:Af=1/F=1
三、实验内容和步骤
1.测试静态工作点,并与理论计算值
比较 ①按图1.5.2实验图接线。把输入的正 弦信号调至1kHz左右,接到射极跟随器 的输入端。接通电源后,用示波器测输 出信号,改变输入信号的幅值电压,并 调节及Rw1,使输出信号最大幅度时不 失真为止。
②去掉输入信号,把数字万用表串人 电路中,测量IB和IC(见图1.5.3),并测 量EB,记录有关测量值,求得Rb1。 ③切断电源+12V,使RW1从电路中分 离出来,测量尺RW1数值,计算静态工作 点的理论值,并与实测值比较。 2.测量电压放大倍数 选择Vi=1V,f=1kHz,输入到射极输出 器电路中,测量输出电压Vo,计算 出.电压放大倍数: Av=Vo/Vi
六、实验报告要求
1.画出实验电路图,计算静态工作点,
并和实测值进行比较。 2.列出实验所测数据,完成Av,ri, ro实测值计算,并与理论计算值比较。 3,通过实验总结射极输出器的主要特 点,并针对这些特点,简要说明射极输 出器的应用。
结束本实验
3.用示波器观察输入信号和输出信号的相位
将输入Vi和输出Vo分别接双踪示波器的X、Y 轴输入,并调示波器在相同的电压幅值和频 率扫描段,观察两波形的形状,就会发现Vi和 Vo大小差不多,且相位相同。 4.测量输入电阻ri 如图1.5.4(a)所示,在信号源与放大电路之间 串人一固定电阻Rs=1kfl(或5.1kΩ),在输出 不失真的条件下,测量Vs及相应的Vi,算出:
射极输出器没有电压放大。严格来说Uo略小 于Ui,并且两者是同相的。因此,射极输出 器又称射极跟随器。 (二)输入电阻 : ri=rbe+(1+β)Re≈βRe ri一般可达几百千欧,比共射极基本放大 电路的输入电阻大几十倍到几百倍。因 此,射极输出器的输入电阻高。 (三)输出电阻 :
由于射极输出器是电压负反馈电路,能使输出电压 趋于恒压,因此,输出电阻较小,可估算为:
实验五:
一、实验目的:
1.掌握射极输出器的电路特点; 2.进一步学习放大器各项参数测量方法; 3.了解射极输出器的应用。
二.实验原理和电路
一 概念:对交流信号而
言,集电极是输入与输 出回路的公共端,所以 是共集电极放大电路。 C1 + 因从发射极输出,所以 称射极输出器。 RS + ES + U1 RE RL
输入
பைடு நூலகம்输出
四.实验器材
1.MES系列模拟电子 电路实验系统(1台) 2.直流稳压电源(1台) 3.双踪示波器(1台) 4.信号发生器(1台) 5.晶体管毫伏表(1只) 6.数字万用表(2块) 7.元器件 :
五、预习要求
1.复习射极输出器的工作原理以及电路 的特点。 2.进一步复习测试放大电路的静态工 作点、放大倍数及输入、输出电阻的方 法。 3.掌握射极输出器的几个特点,并了 解其在电子电路中的—般应用。
ri=Vi/(Vs-Vi) Rs
5.测量输出电阻ro
如图1.5.4(b)所示,中加入输入信号后,输
出不失真的条件下,测得空载时输出电压 V’O(RL=∞);接入负载RL=2.7KΩ,再测输 出电压值Vo(RL=2.7KΩ),算出:
ro=(v’o/vo-1) RL
射极输出器实验连线
波形图