8086 CPU内部结构

合集下载

1 80868088微处理器的内部结构

1 80868088微处理器的内部结构

微机原理第2章8086/8088系统结构8086/8088微处理器的内部结构微机原理8086是Intel系列的16bit微处理器,属第三代。

它有16bit数据总线和20bit地址线,可寻址1M空间。

8088有8bit数据总线和20bit地址线,可寻址1M空间。

其内部有16bit数据总线。

AH AL BH BL SI ALU 运算数暂存器标志寄存器EU控制电路16位CSDSSS ES IP 内部暂存器8位1 2 3 4 5 6执行部件(EU )总线控制电路 指令队列缓冲器总线接口部件(BIU )通用寄存器加法器80888086累加器基址寄存器计数寄存器数据寄存器堆栈指针基址指针目的变址源变址AX BX CX DX微机原理CPUEUBIU •16位通用寄存器组(AX、BX、CX 、DX、SP、BP、SI、DI)•算术逻辑单元—ALU•暂存器•EU控制器•标志寄存器—FLAG•段寄存器组(CS,DS,SS,ES),指令指针—IP •地址加法器•指令队列•总线接口控制逻辑微机原理EU 部件不直接与外部总线相连。

它从BIU的指令队列中取指令和数据。

EU 负责指令的执行。

BIU 根据EU 的请求,完成CPU 与存储器或I/O 之间的数据传送。

功能:符号名称高8位符号低8位符号AX累加器AH AL BX基址寄存器BH BL CX计数寄存器CH CL DX数据寄存器DH DL这里的寄存器可以8位或16位参与操作。

符号名称SP堆栈指针寄存器BP基址指针寄存器SI源变址寄存器DI目的变址寄存器这里的寄存器只能以16位参与操作。

符号名称CS代码段寄存器DS数据段寄存器ES附加段寄存器SS堆栈段寄存器IP指令指针寄存器D15D14D13D12D11D10D9D8 x x x x OF DF IF TF D7D6D5D4D3D2D1D0 SF ZF x AF x PF x CF符号名称定义CF进位标志运算中,最高位有进位或借位时CF=1,否则CF=0 PF奇偶标志运算结果低8位“1”个数为偶数时PF=1,否则PF=0 AF辅助进位D3有向D4进(借)位时AF=1,否则AF=0ZF零标志运算结果每位均为“0”时ZF=1, 否则ZF=0SF符号标志运算结果的最高位为1时SF=1,否则SF=0OF溢出标志运算中产生溢出时OF=1, 否则OF=0符号名称功能TF陷阱标志TF=1将使CPU进入单步执行指令IF中断标志IF=1允许CPU响应可屏蔽中断DF方向标志DF=1将从高地址向低地址处理字符串所以:CF=0PF=1AF=1ZF=0SF=1OF=0微机原理下次课见。

第二章 8086体系结构

第二章  8086体系结构

8086微处理器概览
标志位寄存器(FR) • 16位标志位寄存器FR,共有9个
标志位。其中6个是状态标志位, 3个是控制标志位,用于反映 CPU运行过程中的某些状态特征。
标志位寄存器
3、标志寄存器FR
标志寄存器FR中共有9个标志位,可分成两类: ➢状态标志 表示运算结果的特征,它们是 CF、PF、AF、 ZF、SF和OF ➢控制标志 控制CPU的操作,它们是IF、DF和TF。
IP :BIU要取指令的地址。
IP
三、8086CPU的管脚及功能
8086是16位CPU。它采用高性能的N— 沟道,耗尽型负载的硅栅工艺(HMOS)制 造。由于受当时制造工艺的限制,部分管 脚采用了分时复用的方式,构成了40条管 脚的双列直插式封装
1、 8086的两种工作方式
最小模式:系统中只有8086一个处理器,所有的控制信号都 是由8086CPU产生(MN/MX=1)。
最大模式:系统中可包含一个以上的处理器,比如包含协处 理器8087。在系统规模比较大的情况下,系统控 制信号不是由8086直接产生,而是通过与8086配 套的总线控制器等形成(MN/MX=0)。
三总线结构 数据线DB 地址线AB 控制线CB
微机的三总线结构
➢ 最小模式下的引脚说明
( 1 ) AD15 ~ AD0 (Address Data Bus):
堆栈指针用于存放栈顶的逻辑偏移地 址,隐含的逻辑段地址在SS寄存器中。
寄存器的特殊用途和隐含性质
在指令中没有明显的标出,而这些寄存器参 加操作,称之为“隐含寻址”。
具体的:在某类指令中,某些通用寄存器有指 定的特殊用法,编程时需遵循这些规定,将某些 特殊数据放在特定的寄存器中,这样才能正确的 执行这些指令。采用“隐含”的方式,能有效地 缩短指令代码的长度。

8086微处理器的功能与结构

8086微处理器的功能与结构

8086微处理器的功能与结构四、80x86微处理器的结构和功能(一)80x86微处理器1.8086/8088主要特征(1)16位数据总线(8088外部数据总线为8位)。

(2)20位地址总线,其中低16位与数据总线复用。

可直接寻址1MB存储器空间。

(3)24位操作数寻址方式。

(4)16位端口地址线可寻址64K个I/O端口。

(5)7种基本寻址方式。

有99条基本指令。

具有对字节、字和字块进行操作的能力。

(6)可处理内部软件和外部硬件中断。

中断源多达256个。

(7)支持单处理器、多处理器系统工作。

2.8086微处理器内部结构8086微处理器的内部结构由两大部分组成,即执行部件EU(Execution Unit)和总线接口部件BIU(Bus Interface Unit)。

和一般的计算机中央处理器相比较,8086的EU相当于运算器,而BIU则类拟于控制器。

3.8086最小模式与最大模式及其系统配置最小模式在结构上的特点表现为:系统中的全部控制信号直接来自8086CPU。

与最小模式相比,最明显的不同是系统中的全部控制信息号不再由8086直接提供,而是由一个专用的总线控制器8288输出的。

4.8087与8089处理机简述(1)8087协处理机8087协处理机与8086组合在一起工作,以弥补8086在数值运算能力方面的不足,所以它又称为协处理机。

(2)8089I/O处理机8089是一个带智能的I/O接口电路,相当于大型机中的通道,它将CPU的处理能力与DMA控制器结合在一起。

它具有52条基本指令,1MB的寻址能力,包含两个DMA通道。

8089也可以与8086联合在一起工作,执行自己的指令,进行I/O 操作,只在必需时才与8086进行联系。

在8089的控制下,可以进行外设与存储器之间、存储器与存储器之间以及外设与外设之间的数据传输。

同时,8089还可以设定多种终止数据传输的方式。

5.总线时序一个基本的总线周期包括4个时钟周期,即4个时钟状态T 1 、T2 、T3 和T4 。

8086cpu内部

8086cpu内部

8086cpu内部:总线接口单元BIU和执行单元EU BIU是8086cpu存储器和I/O设备之间的部件,负责对全部引脚进行操作,即8086cpu存储器和I/O设备的所有操作均有BIU完成。

它提供了16位双向数据总线,20位地址总线和若干条控制总线。

一个20位地址加法器,4个16位段寄存器,1个16位指令指针IP,指令队列缓冲器和总线控制逻辑电路等组成。

执行单元EU:有1个16位的算术逻辑单元ALU,8个16位通用寄存器,1个16位标志寄存器FLAGS,1个数据暂存寄存器和执行单元控制电路组成。

负责进行所以指令的解释和执行,同时管理有关寄存器。

数据寄存器:累加器AX,基址寄存器BX,计数器CX和数据寄存器DX.段寄存器:代码段寄存器CS,数据段寄存器DS,堆栈段寄存器SS,附加段寄存器ES地址指针和变址寄存器:堆栈指针寄存器SP,基址指针寄存器BP,变址寄存器SI,DI控制寄存器:指令指针寄存器和标志寄存器FLAGSFLAGS.六位状态标志位和三位控制标志位进位标志CF(字节运算d7和字运算d15)进位或借位=1 tf单步标志位表2-1 标志寄存器FLAG中标志位的含义和作用8086cpu为什么要用3片地址锁存器来形成地址总线AB?地址锁存器就是一个暂存器,它根据控制信号的状态,将总线上地址代码暂存起来。

8086CUP对外结构就是3组总线,8086数据和地址总线采用分时复用操作方法,即用同一总线既传输数据又传输地址。

当微处理器与存储器交换信号时,首先由CPU发出存储器地址,同时发出允许锁存信号ALE给锁存器,当锁存器接到该信号后将地址/数据总线上的地址锁存在总线上,随后才能传输数据。

8086的最大工作模式和最小各种模式的主要区别是什么?如何进行控制?【解答】两种模式的主要区别是:8086工作在最小模式时,系统只有一个微处理器,且系统所有的控制信号全部由8086 CPU 提供;在最大模式时,系统由多个微处理器/协处理器构成的多机系统,控制信号通过总线控制器产生,且系统资源由各处理器共享。

微机原理第三章:8086微处理器结构

微机原理第三章:8086微处理器结构

4.8086 和8088 二者的指令系统完全兼容
(1)有24 种寻址方式,具有乘、除法指令等。 (2)取指令和执行指令的操作并行运行,运行速度大大提高。
(3)具有最小模式和最大模式,应用领域宽广,适应性强。
(4)可方便地和数据处理器8087、I/O 处理器8089 或其它处理器 组成多处理机系统,提高数据处理能力和输人输出能力。
代码段寄存器 CS 标 志 寄 存 器
数据段寄存器 DS
堆栈段寄存器 SS
附加段寄存器 ES
由于8086/8088 CPU 可直接寻址的存储器空间是1M字节,直接寻址需要 20位地址码,而所有的内部寄存器都是16位的,用这些寄存器只能寻址 64K字节,为此需要采取分段技术来解决这个问题。
表3.1
通用寄存器的隐含使用
程序调试过程中。
3.1.2 8086/8088 的寄存器结构
四、指令指针寄存器 IP ★ 16 位的指令指针寄存器 IP 用来存放将要执行的下一条 指令在代码段中的偏移地址。 ★ 在程序运行过程中,BIU 可修改 IP 中的内容,使它始终 指向将要执行的下一条指令。 ★ 程序不能直接访问 IP,但可通过某些指令修改 IP 内容。 ★ 如遇到转移类指令,则将转移目标地址送人IP中,以实 现程序的转移。
★ 规则字的读/写操作可以一次完成。由于两个存储体上的地址
线 A19~A1 是连在一起的,只要使 A0=0,BHE=0,就可 以实现一次在两个存储体中对一个字的读/写操作。 ★ 读写的是从奇地址开始的字(高字节在偶体中,低字节在奇体 中),这种字的存放规则称为“非规则字”或“非对准字”。 ★ 非规则字的读/写,需要两次访问存储器才能完成。 第一次访问存储器读/写奇地址中的字节;
三、标志寄存器 FR

8086CPU的结构与功能

8086CPU的结构与功能

8086CPU 的结构与功能CPU 结构与功能不管什么型号的CPU ,其内部均有这四⼤部件1. ALU :算术逻辑单元2. ⼯作寄存器:分为数据寄存器和地址寄存器⼯作寄存器的⽬的是为了提⾼运算速度,希望参与运算的数据不从外部存储器去取数据,⽽是在CPU 内部取,所以要有能暂存少量数据的寄存器。

数据寄存器是专门存放数据的,地址寄存器是专门存放地址,进⾏间接寻址⽅式,但当地址寄存器不提供地址时,也可以⽤来暂存数据。

3. 控制器:中央指挥机关4. I/O 控制逻辑电路⼀般CPU 执⾏存储器(按字节组织)⾥⾯指令过程如下:1. CPU 通过控制器部件⾥⾯的程序计数器(PC )给外部存储器的地址引脚输出地址(通过地址总线AB ),同时CPU 给存储器发送读操作命令;2. 在读操作下,就把这个地址单元的指令代码通过数据总线(DB ),取回来放在指令寄存器⾥⾯(IR ),注意此时因为指令没有执⾏完,所以PC 还不能去往下⼀条指令,IR 没有地⽅放数据。

3. 指令译码器(ID )不断检测指令寄存器有没有数据,有的话就把指令取⾛放在ID ⾥⾯,取来的指令就被ID 译码分析,就知道这个指令希望CPU 做什么,怎么做;4. ID 通知控制逻辑部件,在相应的控制引脚发出相应的有效命令(读,写等);5. 此条指令执⾏完,IR 为空,PC ⾃动增加到下⼀条指令的地址,执⾏下⼀条指令流程。

如果指令为n 字节,PC ⾃动增n 。

因为在取指令时候,不能执⾏指令,在执⾏指令时候,不能取指令,因此这种架构CPU 是取指令->执⾏指令->取指令...这样循环下去。

CPU 执⾏效率不⾼。

堆栈由先进后出原则组织的存储器区域,称为堆栈。

单⽚机应⽤中,堆栈是个特殊存储区,堆栈属于RAM 空间的⼀部分,堆栈⽤于函数调⽤、中断切换时保存和恢复现场数据(临时数据)。

对于8006 CPU ⽽⾔,堆栈操作是按字操作。

堆栈单元的地址指针由堆栈指针寄存器SP 的内容提供。

8086-8088CPU系统结构

8086-8088CPU系统结构
♣ CS:代码段寄存器 ♣ DS:数据段寄存器 ♣ ES:附加数据段寄存器 ♣ SS:堆栈段寄存器
1.2 8086/8088寄存器结构及用途
1.1.3 指针寄存器和变址寄存器
▲指针寄存器:
♣ SP:堆栈指针寄存器 ♣ BP:基址指针寄存器
▲变址寄存器:
♣ SI:源变址寄存器 ♣ DI:目的变址寄存器
汇编语言程序设计
8086/8088CPU系统结构
• 1.1 Intel8086/8088微处理器的结构 • 1.2 8086/8088寄存器结构及其用途 • 1.3 8086的存储器组织
• 1.4 堆栈
1.1 Intel8086/8088微处理器的结构
• 1.1.1 8086微处理器的结构
8086微处理器由两大部分组成: ♣ 执行部件EU ♣ 总线接口部件BIU 其内部结构如图(P20 图1.1)
1.3 8086的存储器组织
• 1.3.2 存储器的分段结构
◆8086CPU的寻址能力为:220=1MB; ◆8086CPU的内部寄存器为16位,直接 寻址:216=64KB; ◆在8086系统中引入逻辑段的概念:把 的地址空间划分为任意个逻辑段,长度 为64KB。
1.3 8086的存储器组织
• 1.3.3 物理地址和逻辑地址
▲是CPU与外部存储器、I/O设备的接口;
▲BIU由以下几部分组成: ♣16位指令指针寄存器IP; ♣指令队列; ♣4个16位段寄存器CS、DS、ES、
SS; ♣20位地址加法器; ♣总线控制部件。
1.1.1 8086微处理器的结构
• 3. BIU和EU的管理
▲二者处于并行的工作状态和重叠的工 作方式; ▲相互配合,协调工作; ▲充分利用总线实现最大限度的信息传 输,提高了程序的执行速度。

8086微处理器

8086微处理器

8086CPU的结构1. 8086 CPU的内部结构1)指令执行部件指令执行部件EU主要由算术逻辑运算单元ALU、标志寄存器FR、通用寄存器组和EU控制器等四个部件组成。

其主要功能是执行命令。

一般情况下指令顺序执行,EU可不断地从BIU 指令队列缓冲器中取得执行的指令,连续执行指令,而省去了访问存储器取指令所需的时间。

如果指令执行过程中需要访问存储器存取数据时,只需将要访问的地址送给BIU,等待操作数到来后再继续执行。

遇到转移类指令时则将指令队列中的后续指令作废,等待BIU重新从存储器中取出新的指令代码进入指令队列缓冲器后,EU才能继续执行指令。

这种情况下,EU和BIU的并行操作回受到一定的影响,但只要转移类指令出现的频率不是很高,两者的并行操作仍然能取得较好的效果。

EU中的算术逻辑运算部件A LU可完成16位或8位二进制数的运算,运算结果一方面通过内部总线送到通用寄存器组或BIU的内部寄存器中以等待写到存储器;另一方面影响状态标志寄存器FR的状态标志位。

16位暂存器用于暂时存放参加运算的操作数。

EU控制器则负责从BIU的指令队列缓冲器中取指令、分析指令(即对指令译码),然后根据译码结果向EU内部各部件发出控制命令以完成指令的功能。

2)总线接口部件BIU总线接口部件BIU主要有地址加法器、专用寄存器组、指令队列缓冲器以及总线控制电路等四个部件组成。

其主要功能是负责完成CPU与存储器或I/O设备之间的数据传送。

BIU中地址加法器将来自于段寄存器的16位地址段首地址左移4位后与来自于IP寄存器或EU提供的16位偏移地址相加(通常将“段首地址:偏移地址”称为逻辑地址),形成一个20位的实际地址(又称为物理地址),以对1MB的存储空间进行寻址。

具体讲:当CPU执行指令时,BIU根据指令的寻址方式通过地址加法器形成指令在存储器中的物理地址,然后访问该物理地址所对应的存储单元,从中取出指令代码送到指令队列缓冲器中等待执行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:8086微处理结构一、8086 CPU的内部结构:
图解分析:
1、8086 CPU从功能上可分为:总线接口部件BIU(Bus Interface Unit)
执行部件EU(Execution Unit)
2、BIU:负责与存储器、外部设备之间进行信息交换。

功能:
①负责从内存指定单元取出指令,并送到6字节的指令队列中排列;
②同时负责从内存指定单元取出指令所需的操作数并送EU;
③EU运算结果也由BIU负责写入内存指定单元。

组成:20位的地址加法器
段寄存器(CS、DS、ES、SS)
指令指针(IP)
指令队列缓存器
总线控制电路
各组件功能:
①地址加法器:计算并形成CPU要访问的内存单元的20位物理地址;
②段寄存器:用于存放对应段的段基址;
③指令指针寄存器:用于存放下一条要执行的指令的偏移地址;
④指令队列:是6字节的“先进先出”的RAM存储器,用于顺序存放CPU
要执行的指令,并送EU去执行;
⑤总线控制电路:产生总线控制信号,如存储器读/写、I/O读写控制信号。

3、EU:负责指令的执行。

功能:
①负责从BIU的指令队列中取得指令、分析指令、执行指令,并将结果存
入通用寄存器或由BIU写入内存单元;
②同时负责计算操作数所在内存单元的偏移地址。

组成:算术逻辑单元(ALU)
标志寄存器
通用寄存器:数据寄存器:AX、BX、CX、DX
指针和变址寄存器:SP、BP、SI、DI
EU控制电路
各组件的功能:
①算术逻辑单元(ALU):对操作数进行算术和逻辑运算,也可按指令的寻
址方式计算出CPU要访问的内存单元的16位偏移地址;
②标志寄存器:用于反映算术和逻辑运算结果的状态;
③数据寄存器:用于保存操作数或运算结果等信息;
④指针和变址寄存器:用于存放操作数所处存储单元的偏移地址;
⑤EU控制电路:接收从BIU指令队列中取得的指令,分析、译码,以便形
成各种实时控制信号,对各个部件实现特定的控制操作。

相关文档
最新文档