最新纳米材料的背景、意义资料
纳米材料的背景、意义

纳米知识介绍1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。
纳米纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。
纳米技术纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。
其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
纳米技术的发展大致可以划分为3个阶段:第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。
研究对象一般局限于纳米晶或纳米相材料。
第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料:•纳米微粒与纳米微粒复合(0-0复合),•纳米微粒与常规块体复合(0-3复合),•纳米复合薄膜(0-2复合)。
第三阶段(从1994年至今)纳米组装体系研究。
它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。
纳米材料材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。
纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。
图1 纳米颗粒材料SEM图一、纳米材料的基本特性由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。
科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。
纳米材料研究现状

纳米材料研究现状纳米材料研究是当前材料科学领域的前沿和热点之一、纳米材料具有独特的物理、化学和生物性质,广泛应用于电子、储能、催化、传感、生物医药等领域。
本文将介绍纳米材料的分类、制备方法以及应用领域的最新研究进展。
纳米材料通常被定义为至少在一个维度上小于100纳米的材料。
根据形态和组成的不同,可以将纳米材料分为纳米颗粒、纳米线、纳米片、纳米管、纳米薄膜等。
其中,纳米颗粒是最常见的一种,具有高比表面积和量子尺寸效应,导致了许多独特的物理和化学性质。
在纳米材料的制备方法方面,有许多不同的技术可用。
常见的制备方法包括物理气相沉积、溶液合成、固相反应、机械法等。
物理气相沉积是一种通过气相反应在高温下制备纳米材料的方法,适用于制备纳米线、纳米颗粒等材料。
溶液合成是通过在溶液中加入适当的前体物质来合成纳米材料的方法,适用于制备纳米颗粒、纳米片等材料。
固相反应是通过在固相条件下进行反应合成纳米材料的方法,适用于制备纳米颗粒、纳米薄膜等材料。
机械法是通过机械力对原料进行研磨、碾压等处理制备纳米材料的方法,适用于制备纳米颗粒、纳米管等材料。
纳米材料的研究目前涉及各个领域,如电子、储能、催化、传感、生物医药等。
在电子领域,纳米材料被广泛应用于光电器件和纳米电子器件中,如纳米晶体管和纳米电池。
在储能领域,纳米材料的高比表面积使其成为制备高性能电池和超级电容器的理想材料。
在催化领域,纳米材料的高比表面积和优越的催化性能使其成为催化剂的理想选择。
在传感领域,纳米材料的特殊性质使其成为用于检测和传感的优秀材料。
在生物医药领域,纳米材料被广泛应用于药物传输、成像、诊断和治疗等方面。
最近的研究进展主要集中在纳米材料的制备方法改进、结构调控以及应用开发方面。
一些新的制备方法,如原子层沉积、热分解、电化学沉积等,可以制备出具有特殊形态和结构的纳米材料。
同时,通过控制实验条件、添加表面修饰剂等手段,可以调控纳米材料的结构和性质,实现对其性能的定制化。
纳米材料应用方案

纳米材料的制备方法
▪ 生物法制备纳米材料
1.利用微生物或植物提取物还原金属离子生成纳米颗粒,环保 可持续,但产率低。 2.通过基因工程改造微生物,提高其生成纳米颗粒的能力,产 率高,但需要基因工程技术。 以上内容仅供参考,具体制备方法需要根据不同的纳米材料和 应用场景进行选择和优化。
纳米材料应用方案
纳米材料简介及研究背景
▪ 纳米材料的制备方法
1.物理法制备纳米材料包括机械研磨法、真空蒸发法等。 2.化学法制备纳米材料包括溶液法、气相法等。 不同的制备方法会对纳米材料的性质和应用产生影响,因此需 要根据具体的应用需求选择合适的制备方法。未来,随着技术 的不断发展,纳米材料的制备方法也会不断更新和改进。
▪ 纳米材料的应用领域
1.纳米材料在能源领域具有广泛的应用,如太阳能电池、燃料 电池等。 2.纳米材料在医药领域可以作为药物载体、生物探针等。 纳米材料由于其独特的性质,被广泛应用于各种领域,对未来 的科技发展和社会进步具有重要的影响。随着技术的不断进步 和应用需求的不断提高,纳米材料的应用领域也会不断扩大和 深化。
▪ 纳米材料研究历史及现状
1.纳米材料的研究起源于20世纪60年代,经过几十年的发展, 已经成为一门独立的学科。 2.目前,全球各国都在加强纳米材料的研究和应用,已经取得 了许多重要的成果。 纳米材料的研究已经取得了很大的进展,但仍有许多领域需要 进一步探索和研究。未来,随着科技的不断进步和应用需求的 不断提高,纳米材料的研究和应用将会更加广泛和深入。
纳米材料应用方案
目录页
Contents Page
1. 纳米材料简介及研究背景 2. 纳米材料的分类及性质 3. 纳米材料的制备方法 4. 纳米材料在各领域的应用 5. 纳米材料的应用案例分享 6. 纳米材料的安全性与风险评估 7. 纳米材料的发展前景与挑战 8. 结论与建议
无定型氢氧化锡纳米片-概述说明以及解释

无定型氢氧化锡纳米片-概述说明以及解释1.引言1.1 概述概述无定型氢氧化锡纳米片(Amorphous Tin Hydroxide Nanosheets,简称ATHN)是一种新型的纳米材料,具有许多独特的性质和潜在应用价值。
作为一种无定型材料,ATHN的晶体结构缺乏长程有序性,具有高度的不规则性和无序性。
这些特征赋予了ATHN独特的物理和化学性质,使其在催化、电化学、能源存储等领域显示出巨大的潜力。
ATHN的制备方法多种多样,可以通过溶剂热法、溶胶-凝胶法、水热法等来合成。
其中,水热法是最常用且简单的合成方法之一。
通过调节反应温度、反应时间和反应物比例等参数,可以实现对ATHN的形貌和性能的调控。
在实验方法部分,我们将详细介绍了制备ATHN的实验方法。
首先,我们选择了水热法作为合成方法,并选取了适当的反应条件。
然后,我们详细描述了实验步骤,包括反应物的配制、反应体系的装配,以及反应温度和时间的控制。
最后,我们对得到的产物进行了表征和分析,包括X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术。
在结果与分析部分,我们将对实验结果进行详细的分析。
首先,我们将对合成得到的ATHN进行形貌和结构的表征,通过SEM和TEM观察其形貌特征,并使用XRD技术进行晶体结构的分析。
然后,我们将对ATHN 的物理和化学性质进行测试和分析,包括比表面积、孔隙结构、吸附性能和催化性能等。
最后,我们将讨论实验结果的意义和潜在的应用价值。
通过本研究,我们希望能够对无定型氢氧化锡纳米片的制备、性质和应用进行深入的探究,为其在催化、电化学和能源存储等领域的应用提供理论和实验基础。
同时,我们也希望通过这项研究的展望,引发更多科学家和工程师的兴趣,进一步推动无定型纳米材料的研究和开发。
文章结构部分的内容应该包括各个章节的简要介绍和主要内容概述。
具体来说,可以编写如下内容:文章结构:本文分为引言、正文和结论三个部分。
新型纳米材料在海水淡化中的应用

新型纳米材料在海水淡化中的应用海水淡化已经成为世界上许多干旱国家的必备技术。
在全球水资源短缺的背景下,海水淡化技术提供了一种可持续发展的水资源解决方案。
海水淡化技术的发展可以追溯到20世纪初。
起初,这种技术只能用于一些小规模的地方。
但是,随着技术的发展和纳米材料的出现,海水淡化技术正在发生革命性的变化。
本文将介绍新型纳米材料在海水淡化中的应用,并探讨纳米材料在淡化海水中的优点、挑战,以及发展前景。
一、新型纳米材料纳米科技是21世纪的最新科学,是一种新型材料技术,能够制造纳米尺度的材料和器件。
纳米材料具有许多特殊的物理、化学、生物学特性,如比表面积、尺寸效应、光电性能等,有着广泛的应用前景。
纳米材料的研究和应用涉及许多领域,如储能材料、光电材料、生物医学材料、环境材料等。
二、纳米材料在海水淡化中的应用目前,海水淡化主要使用的技术包括蒸馏法、反渗透法、纳滤法和电渗析法。
这些传统技术虽然可以产生高质量的淡水,但是存在一些缺点,如高能耗、高成本、膜寿命短等问题。
利用新型纳米材料可以有效克服这些问题,提高海水淡化效率。
1. 纳米复合材料纳米复合材料是利用纳米材料与其他材料组合而成的复合材料。
在海水淡化中,纳米复合材料通常与膜技术相结合使用。
这种技术可以在膜上形成纳米级别的孔洞,使得水分子可以通过,而盐离子和其他微小的污染物则被拦截在膜表面。
例如,利用纳米银材料制成膜,可以抑制膜上的菌落、去除微生物和病毒等,从而提高膜的使用寿命和净化效率。
2. 纳米粒子吸附技术纳米粒子具有大比表面积和出色的吸附能力。
这种特性可用于去除海水中的污染物,如油脂、重金属、微生物等。
一些研究表明,将纳米粒子散布在海水中,并利用其吸附能力来去除微量污染物的效果比传统的净化方法要好。
例如,纳米二氧化钛可以作为一种光催化剂,利用其光催化剂效应将污染物进行分解和去除。
三、纳米材料在海水淡化中的优点与挑战优点:(1)提高淡化效率:利用新型纳米材料可以提高淡化效率,减少海水淡化过程中的浪费。
2024年纳米材料项目发展计划

2024年纳米材料项目发展计划2024年,作为纳米技术领域的关键发展方向之一,纳米材料项目将迎来新的发展机遇和挑战。
为了更好地推动纳米材料项目的发展,制定并实施相关发展计划就显得尤为重要。
下面就2024年纳米材料项目发展计划进行详细阐述。
一、项目背景纳米材料是一种具有纳米级微观结构的功能材料,具有特殊的物理、化学和生物性能,被广泛应用于能源、环境、生物医药等领域。
2023年,我国纳米材料项目取得了一系列重要成果,为纳米技术的发展提供了坚实基础。
为了进一步推动纳米材料项目的发展,2024年纳米材料项目发展计划应运而生。
二、项目目标1.加强基础研究:通过加大投入,加强基础研究,提升我国纳米材料的自主研发能力,推动纳米材料项目的核心技术突破。
2.产业转化:加强产学研用结合,促进纳米材料项目的产业化进程,推动纳米材料项目从实验室走向市场。
3.国际合作:加强国际合作,引进先进技术和人才,提升我国纳米材料在国际上的竞争力,实现纳米材料项目的全球化发展。
三、项目重点1.基础研究:加强纳米材料的基础研究,重点关注纳米材料在新能源、环境治理、生物医药等领域的应用,探索新型纳米材料的合成和性能调控。
2.产业化应用:推进纳米材料在新能源、新材料、生物医药等领域的产业化应用,加速纳米材料项目的市场化进程,推动相关产业的快速发展。
3.人才培养:加强纳米材料领域的人才培养,培养一批高水平的纳米材料研究人才,推动纳米材料项目的可持续发展。
四、项目实施1.加强政策支持:制定相关政策,支持纳米材料项目的研发和产业化,为项目的顺利实施提供制度保障。
2.加大投入:增加对纳米材料项目的投入,提升项目的研发创新能力,推动项目的快速发展。
3.强化管理:建立健全的项目管理机制,加强对项目的监督和评估,确保项目实施的顺利进行。
五、项目预期效果通过2024年纳米材料项目发展计划的实施,预计将取得以下效果:1.纳米材料项目取得一系列重要成果,为中国纳米技术的发展贡献力量。
新型纳米材料
新型纳米材料纳米材料是指至少在一维尺度上具有至少一个尺寸小于100纳米的材料。
由于其特殊的尺寸效应、表面效应和量子效应,纳米材料在光学、电子、磁学、力学和化学等方面表现出许多独特的性质,因此被广泛应用于材料科学、生物医学、环境保护等领域。
在过去的几十年里,科学家们不断探索新型纳米材料,并取得了许多重要进展。
一种重要的新型纳米材料是石墨烯,它是由碳原子构成的二维晶体结构。
石墨烯具有极高的导电性、热导率和机械强度,因此被认为是一种理想的材料用于电子器件、传感器、储能材料等领域。
此外,石墨烯还具有良好的透明性和柔韧性,因此在柔性电子、柔性显示器等方面也具有广阔的应用前景。
另一种备受关注的新型纳米材料是量子点,它是一种由几十个到几百个原子构成的纳米粒子。
由于其尺寸约在1到10纳米之间,量子点表现出许多特殊的光电性能,如发光、吸收、荧光等。
因此,量子点被广泛应用于显示技术、生物成像、光电器件等领域。
与传统的半导体材料相比,量子点具有更广泛的发光波长范围、更高的荧光量子产率和更好的光稳定性,因此备受研究者们的青睐。
此外,金属有机骨架材料(MOFs)也是一类备受关注的新型纳米材料。
MOFs 是一种由金属离子和有机配体组成的多孔晶体材料,具有高比表面积、可调控的孔径和丰富的化学功能团。
由于其独特的结构和性能,MOFs在气体吸附、分离、储存等方面具有广泛的应用前景。
此外,MOFs还可以用于催化、药物传递、光电器件等领域。
综上所述,新型纳米材料具有许多独特的性能和广阔的应用前景,对于推动材料科学和相关领域的发展具有重要意义。
随着科学技术的不断进步,相信新型纳米材料将会在更多的领域展现出其独特的魅力,为人类社会的发展做出更大的贡献。
纳米技术产生背景
纳米技术产生背景
三、五年前,除了为数不多的科技工作者和极少数企业之外,纳米、纳米科技和纳米材料这些名词还鲜为人知,然而,时至今日,通过各种媒体的多方介绍,特别是股市的热炒,纳米、纳米科技、纳米材料已逐渐为寻常百姓茶余饭后的谈资。
比如:山东济南的“小鸭纳米洗衣机”,青岛“双星纳米鞋”以及“美菱纳米电冰箱”和“纳米衬衣”等一些纳米材料产品越来越多走进了我们的生活。
纳米科技被称为21世纪人类继电脑互连网,生物基因之后的第三大高新科学技术,百姓、企业政府都非常关注。
我国著名的科学家钱学森说:“纳米科技是二十一世纪科学发展的重点,——会是一次技术革命,还会是一次产业革命。
”纳米技术将会彻底改变我们人类的生活方式以及思维方式。
因此当今世界从太平洋到大西洋,从欧洲到日本,从美国到中国,很多国家都在投入巨资逐鹿纳米战场,抢占纳米技术高地。
那到底什么是纳米?什么是纳米技术呢?纳米是物理学上的一个长度计量单位,它跟米、毫米和公里等的含义没有两样。
它是英文“Nanometer”的中译名“纳诺米特”的简称,英文中的前缀“Nano”是十亿分之一的意思。
1纳米(nm)=1/1000微米(um)=1/1000,000毫米(mm)=1/10亿米(m)。
1纳米相当于人头发丝直径的万分之一,把一个纳米放到一个乒乓球上相当于把一个乒乓球放到地球上比例是一样的,纳米尺度如此之微小,在1982年之前整个人类没能够发现它,直到1982年美国一位科学家叫罗雷尔博士发明了扫描隧道显微镜,人类才看到了纳米世界。
从那以后世界便诞生了一门科学,这门科学就是纳米科技。
(罗雷尔博士也由此获得了1986年诺贝尔物理奖)。
2024年纳米金刚石市场调查报告
纳米金刚石市场调查报告一、市场背景纳米金刚石是一种新型材料,具有优异的物理性能和广泛的应用潜力。
随着科技的不断进步和工业的发展,纳米金刚石市场正逐渐崭露头角。
本报告旨在对纳米金刚石市场进行全面的调查分析,为相关企业提供参考和决策依据。
二、市场规模根据我们的调查,纳米金刚石市场正处于快速增长的阶段。
预计到2025年,全球纳米金刚石市场规模将达到100亿美元。
三、市场应用纳米金刚石在众多领域都有广泛的应用。
以下是纳米金刚石的主要应用领域:1.电子行业:纳米金刚石在电子器件中的应用越来越多,如导热材料、半导体材料等。
2.汽车行业:纳米金刚石可以提高汽车零部件的硬度和耐磨性,提高整车的性能和寿命。
3.医疗行业:纳米金刚石在医疗设备、药物传输和生物传感器等方面有着重要的应用前景。
4.能源行业:纳米金刚石在能源转换、储存和传输方面具有巨大潜力,在新能源领域有着广阔的市场前景。
四、市场竞争格局目前,全球纳米金刚石市场竞争激烈,主要的竞争企业包括:1.Element Six:作为全球最大的合成金刚石生产商,Element Six在纳米金刚石领域占据领先地位。
2.Hyperion Materials & Technologies:作为一家全球领先的工程材料和合金公司,Hyperion在纳米金刚石领域拥有较大的市场份额。
3.NanoMaterials Technology:作为新兴的纳米材料技术公司,NanoMaterials Technology在纳米金刚石领域的研发和创新上具有一定优势。
五、市场发展趋势1.技术创新:随着科技的进步,纳米金刚石的制备技术和应用技术将不断更新换代,为市场创造更多的机会和挑战。
2.市场需求增加:纳米金刚石具有优异的性能和广泛的应用前景,随着各个行业对新材料的需求增加,市场需求将不断扩大。
3.国际合作加强:纳米金刚石市场具有全球化特点,不同国家和地区的企业可以通过加强合作,实现资源共享和优势互补。
2023年纳米绝热材料行业市场需求分析
2023年纳米绝热材料行业市场需求分析随着科技的发展和人们对生活质量的要求越来越高,人们对建筑、交通工具等领域的绝热要求越来越高。
在这个背景下,纳米绝热材料应运而生。
纳米绝热材料是指通过处理和控制纳米粒子的尺寸和形态,使其具有绝热、保温、隔热等各种性能的一种新型材料。
这种材料不仅具有优异的性能,而且十分环保,对于推动环境保护和可持续发展也有重要的意义。
市场需求纳米绝热材料作为一种新型材料,其市场需求也在不断的扩大。
以国内市场为例,城市化建设加快,绝热、保温产品的需求量稳步增长。
国家政策对于建筑节能也越来越重视,因此市场对于纳米绝热材料的需求也在逐年递增。
从市场的需求量来说,目前纳米绝热材料市场规模还比较小,但是未来有很大的发展空间,预计在未来几年内,市场需求将会有大幅度的增长。
除了建筑绝热保温方面的应用,纳米绝热材料还可以广泛应用于交通运输(汽车、火车和飞机等)以及家电领域,可以说是一个非常具有市场前景的新兴行业。
技术水平纳米绝热材料技术相对较新,在推广应用方面还存在一些问题。
由于不同厂家对于产品技术水平的不同,所以纳米绝热材料的品质也各不相同。
市场上卖得很好的产品大多会在技术方面进行深入的研究,并且不断引进新技术、新材料、新装备来提升自身的技术水平。
在注重科研和技术创新的厂家里,近年来绝大部分的工人都已具备一定的技术储备和设计能力,能够满足现代市场需求。
从整个行业来说,对于纳米绝热材料的相关研究应该还需要加强,吸引国内外优秀专家学者来开展一些深入的研究和探索。
市场前景纳米绝热材料作为一种新型材料,其市场前景十分广阔,未来几年内市场需求将会持续增加。
这主要得益于国家对于建筑节能、环境保护的重视,以及人们对于生活质量要求的逐渐提升。
此外,在原材料高昂的情况下,高效节能的需求和要求采用纳米绝热材料成为更为现实和有效的选择也是刺激市场发展的重要驱动力。
纳米绝热材料市场的发展还面临一些挑战,例如仍然存在技术瓶颈和生产成本问题,但在未来我们相信市场会通过技术合作、设备升级优化等不断取得突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米知识介绍1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。
纳米纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。
纳米技术纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。
其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
纳米技术的发展大致可以划分为3个阶段:第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。
研究对象一般局限于纳米晶或纳米相材料。
第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料:•纳米微粒与纳米微粒复合(0-0复合),•纳米微粒与常规块体复合(0-3复合),•纳米复合薄膜(0-2复合)。
第三阶段(从1994年至今)纳米组装体系研究。
它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。
纳米材料材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。
纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。
图1 纳米颗粒材料SEM图一、纳米材料的基本特性由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。
科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。
1、力学性质高韧、高硬、高强是结构材料开发应用的经典主题。
具有纳米结构的材料强度与粒径成反比。
纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。
金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。
应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。
使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。
2、热学性质纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。
因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。
例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。
3、电学性质由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。
利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。
2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。
并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。
随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。
4、磁学性质当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。
目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。
同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。
高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。
纳米结构以纳米尺度的物质单元为基础,按一定规律构筑或营造的新体系。
它不仅具有纳米物质单元的性能,还存在由结构组合而产生的新的特性。
Gleiter认为纳米材料是其晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量界面,晶界原子达15%一50%。
可以利用TEM、X射线、中子衍射和一些其它方法来表征纳米材料及其结构。
对于纳米材料晶界的结构有三种不同的理论:(1) Gleiter的完全无序说。
[3]这种假说认为纳米晶粒间界具有较为开放的结构,原子排列具有随机性,原子间距较大,原子密度低,既无长程有序,又无短程有序。
(2)Seagel的有序说。
[4]有序说认为晶粒间界处含有短程有序的结构单元,晶粒间界处原子保持一定的有序度,通过阶梯式移动实现局部能量的最低状态;(3)叶恒强、吴希俊的有序无序说。
[5]该理论认为纳米材料晶界结构受晶粒取向和外场作用等一些因素的限制,在有序和无序之间变化。
二、纳米材料的主要应用借助于纳米材料的各种特殊性质,科学家们在各个研究领域都取得了性的突破,这同时也促进了纳米材料应用的越来越广泛化。
1、特殊性能材料的生产材料科学领域无疑会是纳米材料的重要应用领域。
高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。
另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。
例如普通钨粉需在3 000℃高温时烧结,而当掺入0.1%~0.5%的纳米镍粉后,烧结成形温度可降低到1 200℃~1 311℃。
复合材料的烧结由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。
纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,得到烧结性能好的复合材料。
纳米陶瓷材料的制备通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。
由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。
纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作2、生物医学中的纳米技术应用从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也是生命现象中基本的东西。
细胞中的细胞器和其它的结构单元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,植物中的光合作用等都是“纳米工厂”的典型例子。
遗传基因序列的自组装排列做到了原子级的结构精确,神经系统的信息传递和反馈等都是纳米科技的完美典范。
生物合成和生物过程已成为启发和制造新的纳米结构的源泉,研究人员正效法生物特性来实现技术上的纳米级控制和操纵。
纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机。
目前已得到较好应用的实例有:利用纳米SiO2微粒实现细胞分离的技术,纳米微粒,特别是纳米金(Au)粒子的细胞内部染色,表面包覆磁性纳米微粒的新型药物或抗体进行局部定向治疗等。
正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即DNA芯片)等,都具有集成、并行和快速检测的优点,已成为纳米生物工程的前沿科技。
将直接应用于临床诊断,药物开发和人类遗传诊断。
植入人体后可使人们随时随地都可享受医疗,而且可在动态检测中发现疾病的先兆信息,使早期诊断和预防成为可能。
纳米生物材料也可以分为两类,一类是适合于生物体内的纳米材料,如各式纳米传感器,用于疾病的早期诊断、监测和治疗。
各式纳米机械系统可以快速地辨别病区所在,并定向地将药物注入病区而不伤害正常的组织或清除心脑血管中的血栓、脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。
另一类是利用生物分子的活性而研制的纳米材料,它们可以不被用于生物体,而被用于其它纳米技术或微制造。
3、纳米生物计算机开发生物计算机的主要原材料之一是生物工程技术产生的蛋白质分子,并以此作为生物芯片。
在这种芯片中,信息以波的形式传播,其运算速度要比当今最新一代计算机快10倍以至几万倍,能量消耗仅相当于普通计算机的几亿分之一,存贮信息的空间仅占百亿分之一。
由于蛋白质分子能自我组合,再生新的微型电路,从而使得生物计算机具有生物体的一些特点,如能发挥生物本身的调节机能、自动修复芯片上发生的故障,还能使其模仿人脑的机制等。
世界上第一台生物计算机是由美国于1994年11月首次研制成功的。
科学家们预言,实用的生物分子计算机将于今后几年问世,它将对未来世界产生重大影响。
制造这类计算机离不开纳米技术。
生物纳米计算机和纳米机器人的结合体则是另一类更高层次上的可以进行人机对话的装置,它一旦研制成功,有可能在1秒钟完成数十亿次操作,届时人类的劳动方式将产生彻底的变革。
目前纳米科学技术正处在重大突破的前夜,它已取得一系列成果,使全世界为之震动,并引起关心未来发展的全世界科学家的思索。
人们正注视着纳米科学技术领域不断涌现出的奇异现象和新进展,这一领域前景十分诱人。
它与其它学科相互渗透和交叉,可以形成许多新的学科或学科群,其有关发展将对经济建设、国防实力、科技发展乃至整个社会文明进步产生巨大影4、新的国防科技革命纳米技术将对国防军事领域带来革命性的影响。
例如:纳米电子器件将用于虚拟训练系统和战场上的实时联系;对化学、生物、核武器的纳米探测系统;新型纳米材料可以提高常规武器的打击与防护能力;由纳米微机械系统制造的小型机器人可以完成特殊的侦察和打击任务;纳米卫星可用一枚小型运载火箭发射千百颗,按不同轨道组成卫星网,监视地球上的每一个角落,使战场更加透明。
而纳米材料在隐身技术上的应用尤其引人注目。
在雷达隐身技术中,超高频(SHF,GHz)段电磁波吸波材料的制备是关键。
纳米材料正被作为新一代隐身材料加以研制。
由于纳米材料的界面组元所占比例大,纳米颗粒表面原子比例高,不饱和键和悬挂键增多。
大量悬挂键的存在使界面极化,吸收频带展宽。