空间分析
空间分析方法

空间分析方法
空间分析方法是一种多学科交叉的、运用计算机和数学技术,通过空间数据及相关信息的收集、组织、分析、表达与可视化以评估、分析、预测、提供决策的方法。
空间分析方法包括:
1.空间定位分析:使用地理空间数据和相关空间定位信息来确定空间关系,它可以帮助我们研究特定地点之间的空间关系,并为地理空间决策提供决策支持。
2.空间分类分析:使用空间数据和相关信息对地理空间范围内的要素进行分类和归类,其目的是为了确定空间要素之间的差异性并使用它们进行地理空间决策。
3.空间距离分析:使用空间数据和相关信息来确定地理空间中特定要素之间的距离,并用它们进行空间决策。
4.空间关联分析:使用空间数据和相关信息来确定地理空间中特定要素之间的关联,并用它们进行空间决策。
5.空间模拟分析:使用空间数据和相关信息来模拟地
理空间中的各种情况,以便为地理空间决策提供支持。
空间分析的原理与方法

空间分析的原理与方法
空间分析是一种通过对地球表面空间数据进行加工、分析和可视化的方法来揭示人类空间活动规律、发现空间特征和提供决策支持的过程。
其基本原理是以地球表面上的空间数据为依据,通过数据处理、分析和可视化技术,识别并提炼空间模式及特征,进而对空间关系、空间结构和发展趋势进行研究。
空间分析的方法包括以下几种:
1. 空间统计分析:基于地理信息系统,统计分析地理现象在空间分布的规律和特征。
2. 空间交互模型:通过空间关系模型、地理网络模型等方法,研究地理空间要素之间的相互作用和影响。
3. 空间模拟:通过建立模型,模拟真实的空间过程和变化情况,并探索空间过程的动力学规律和机理。
4. 空间数据挖掘:基于数据挖掘技术和机器学习算法,从海量的空间数据中挖掘出规律、趋势、关联和特征。
5. 空间可视化:采用图像处理技术,将空间数据转化为视觉表现形式,使人们能够更直观地理解和认知地理现象和空间模式。
通过以上方法,空间分析能够有效地描述和解释地理现象和空间模式的规律与特征,为决策和规划提供科学支持和可视化工具。
空间分析要点

空间分析要点(参考)第一章1空间对象的属性大致可分为两类:一是空间要素属性是指与空间(时间)位置相关的属性,主要包括:空间对象的位置、大小、形状、速度、事件发生的时间。
二是非空间要素属性,也称描述属性,是指与空间位置无关或无直接关系的属性:如颜色、密度、质地等等。
2、空间分析的目的就是根据空间对象的属性进行分析,探求空间对象的时空分布规律、发生原因及发展规律。
3、空间对象的类型:按空间维数分类,大致可分为四类0维空间对象:有位置无长度的对象,如:居民点、地图中的城市、地震的震中位置。
1维空间对象:有长度的对象,一般由两个或多个0维目标组成,如:道路、河流。
2维空间对象:有面积的空间对象,如土地使用的类型、湖泊。
3维空间对象:具有体积的空间对象,如地下的矿体、大坝、隧道等。
根据空间对象的连续性,可分为两类:连续型的空间对象:在空间中连续分布的对象,如:某区域的地球化学元素分布,大气污染物浓度、海水的盐度。
离散型的空间对象:在空间中不连续分布的对象,女口:城市中商业网点的分布,道路与河流,建筑物。
4、空间实体之间存在复杂的空间关系,主要可包括:距离关系、方位关系、拓扑关系、空间相关、空间关联、空间配置、空间过程、空间尺度5、空间要素模型:前GIS系统中数据组织的基本方式。
点要素,线要素,面要素。
6、空间的主要内容:空间位置空间分布:同类空间对象的群体定位信息,包括分布、趋势、对比等内容空间形态:空间对象的几何形态空间距离:空间物体的接近程度空间关系:空间对象的相关关系,包括拓扑、方位、相似、相关等空间过程7、空间的主要方法:(1)基于地图的空间图形分析,如GIS中的缓冲区、叠加分析、数字高程模型、数字地面模型等;(2)空间动力学分析,有城市扩张模型(驱动力等)、空间价格竞争模型(区位优势)、空间择位模型(中心地等);(3)空间信息分析,是指根据数据或统计方法建立的模型,如空间聚_________ 模型等。
空间分析的主要方法

空间分析的主要方法空间分析是地理信息科学中的重要内容之一,它是通过对地理现象的空间分布、空间关联和空间变化进行定量和定性分析,以揭示地理现象的内在规律和特征。
空间分析的主要方法包括地图分析、空间统计分析、空间模型分析和地理信息系统分析等。
下面将对这些方法进行详细介绍。
地图分析是空间分析的基础,通过地图的制作和解读,可以直观地表现地理现象的空间分布特征。
地图分析主要包括地图要素的识别、地图要素之间的空间关系分析和地图要素的数量化分析。
在地图要素的识别中,需要对地图上的各种地理要素进行识别和提取,包括地形、水系、土地利用、交通等要素。
在地图要素之间的空间关系分析中,需要研究地图要素之间的相对位置、距离和方向关系,以揭示它们之间的空间联系。
在地图要素的数量化分析中,需要对地图上的各种地理要素进行数量化描述和统计分析,以揭示它们的空间分布规律和特征。
空间统计分析是通过统计方法对地理现象的空间分布特征进行分析。
空间统计分析主要包括空间集聚分析、空间自相关分析和空间插值分析。
在空间集聚分析中,需要对地理现象的空间分布进行集聚程度的测度和分析,以揭示其集聚规律和特征。
在空间自相关分析中,需要对地理现象的空间相关性进行检验和分析,以揭示其空间相关性的程度和方向。
在空间插值分析中,需要对地理现象在空间上的分布进行插值估计和预测,以揭示其空间分布的连续性和变化趋势。
空间模型分析是通过建立数学模型对地理现象的空间关系进行模拟和预测。
空间模型分析主要包括空间回归模型、地理加权回归模型和空间自回归模型等。
在空间回归模型中,需要对地理现象的空间关系进行回归分析和模型建立,以揭示其影响因素和作用机制。
在地理加权回归模型中,需要对地理现象的空间关系进行加权回归分析和模型建立,以考虑其空间异质性和空间非独立性。
在空间自回归模型中,需要考虑地理现象的空间自相关性和空间依赖性,以建立相应的自回归模型和进行模拟预测。
地理信息系统分析是通过地理信息系统对地理现象的空间数据进行存储、管理、处理和分析。
空间分析方法

空间分析方法空间分析方法是地理信息科学领域中的重要研究内容,它主要是利用地理信息系统(GIS)和遥感技术对地理空间数据进行分析和处理,以揭示地理现象的空间分布规律和相互关系。
在实际应用中,空间分析方法被广泛运用于城市规划、资源管理、环境保护、农业生产等领域,为决策提供科学依据和技术支持。
一、空间数据获取。
空间分析的第一步是获取空间数据,包括地理空间数据和属性数据。
地理空间数据是地球表面上各种地理要素的地理位置和空间分布信息,常见的地理空间数据包括地图、遥感影像、地形地貌数据等。
属性数据则是与地理空间数据相对应的非空间数据,如人口统计数据、土地利用数据等。
获取空间数据的方法有多种,包括实地调查、遥感技术、GPS定位等。
二、空间数据预处理。
在进行空间分析之前,通常需要对获取的空间数据进行预处理,以确保数据的质量和准确性。
预处理包括数据清洗、数据转换、数据集成等步骤,旨在消除数据中的噪声和不一致性,提高数据的可用性和可信度。
三、空间数据分析。
空间数据分析是空间分析的核心内容,它主要包括空间关系分析、空间模式分析、空间过程分析等。
空间关系分析是研究地理要素之间的空间位置关系,如邻近关系、重叠关系、连接关系等。
空间模式分析则是揭示地理现象的空间分布规律和特征,如聚集程度、分散程度、集聚中心等。
空间过程分析则是探讨地理现象的空间演变过程和机制,如城市扩展、土地利用变化等。
四、空间数据可视化。
空间数据可视化是将空间数据以图形、图表等形式呈现出来,以直观展示地理现象的空间特征和规律。
常见的空间数据可视化方法包括地图制作、空间统计图表、三维地理可视化等。
通过空间数据可视化,人们可以更直观地了解地理现象的空间分布情况,为决策和规划提供参考依据。
五、空间数据挖掘。
空间数据挖掘是利用数据挖掘技术对空间数据进行深入分析和挖掘,以发现其中隐藏的模式、规律和知识。
空间数据挖掘包括空间聚类、空间关联规则挖掘、空间预测等方法,可以帮助人们更全面地理解地理现象的空间特征和演变规律。
第九章_空间分析的应用

第九章_空间分析的应用空间分析是地理信息系统(GIS)中的一个重要概念,它通过利用空间数据的特征和关系,来研究地理现象和问题。
在不同领域和行业中,空间分析的应用非常广泛,例如城市规划、环境保护、农业决策等。
本文将重点介绍空间分析在城市规划和环境保护中的应用。
在城市规划方面,空间分析能够帮助规划师分析和评估城市的空间布局和发展趋势。
通过对城市土地利用、建筑物分布和人口分布等数据进行空间分析,规划师可以更好地了解城市的发展状况,并制定相应的城市发展计划。
例如,规划师可以利用空间分析来评估城市中不同地区的人口密度,以便更合理地规划住宅、商业和公共设施的布局。
此外,空间分析还可以帮助规划师分析城市的交通状况,包括道路拥堵情况、交通流量分布等,从而制定交通规划和交通管理策略。
此外,空间分析还可以应用在农业决策中。
农业是空间分析的一个重要应用领域,因为农业活动高度依赖于土地、气候和水资源等自然要素的地理分布。
空间分析可以帮助农民和农业专业人员分析土壤质量、气候变化、作物适应性等因素的关系,从而制定合理的农业种植和管理策略。
例如,农民可以利用空间分析技术,分析土地的肥力分布情况,从而合理选择不同地块的作物种植;同时,空间分析还可以帮助农民评估和优化灌溉系统,以便更有效地利用水资源。
综上所述,空间分析在城市规划和环境保护中的应用非常广泛和重要。
通过利用空间数据和空间分析技术,我们能够更好地了解和评估地理现象和问题,从而制定相应的规划和管理策略。
未来,随着技术的不断进步和数据的不断丰富,空间分析在各个领域中的应用将会进一步拓展和深化。
描述三种空间分析方法及其特点与作用

描述三种空间分析方法及其特点与作用一、矢量空间分析矢量空间分析主要通过空间数据和空间模型的联合分析来挖掘空间目标的潜在信息,而这些空间目标的基本信息,无非是其空间位置、分布、形态、距离、方位、拓扑关系等,其中距离、方位、拓扑关系组成了空间目标的空间关系。
它是地理实体之间的空间特性,可以作为数据组织、查询、分析和推理的基础。
通过将地理空间目标划分为点、线、面不同的类型,可以获得这些不同类型目标的形态结构。
将空间目标的空间数据和属性数据结合起来,可以进行许多特定任务的空间计算与分析。
1.图元合并图元合并即矢量空间聚合,是根据空间邻接关系、分类属性字段,进行数据类型的合并或转换以实现空间地域的兼并(数据的综合)。
空间聚合的结果往往将较复杂的类别转换为较简单的类别,当从地点、地区到大区域的制图综合变换时常需要使用这种分析处理方法。
2.空间查询空间查询是将输入图层与查询图层的要素或是交互输入的查询范围进行空间拓扑判别(包含、相离、相交、外包矩形相交),从输入图层中提取出满足拓扑判别条件的图元。
3.叠加分析叠加分析至少要使用到同一区域,具有相同坐标系统的两个图层。
所谓叠加分析,就是将包含感兴趣的空间要素对象的多个数据层进行叠加,产生一个新要素图层。
该图层综合了原来多层实体要素所具有的属性特征。
叠加分析的目标是分析在空间位置上有一定关联的空间对象的空间特征和专题属性之间的相互关系。
多层数据的叠加分析,不仅仅产生了新的空间对象的空间特征和专题属性之间的相互关系,能够发现多层数据间的相互差异、联系和变换等特征。
点与多边形的叠加,就是研究某一矢量数据层中的点要素位于另外一个矢量数据层中的哪个多边形内,这样就可以根据点与多边形的空间关系,确定给点要素添加哪些属性特征。
线与多边形叠加,就是研究矢量数据层中的线要素与其他数据层中的多边形要素之间的关系,进而判定线要素与多边形的相离、相交、包含等空间关系。
多边形的叠加,就是要研究两个或多个多边形矢量数据层的叠加操作,生成一个新的多边形数据层。
第五章 空间分析剖析

质心通常是指一个多边形或面积的几何中心。 在有些情况下质心描述的不是几何中心,而是分 布中心,或加权的平均中心。
应用范围极其广泛,如: ✓ 商场选址应该位于具有最佳势能的定位点处。 ✓ 经济的增长极可能发生在高势能地区。
8
几何中心的计算
69.5 70.8 216.2 108.3
查找
101 102 103 104
11
实质是查数据库中植被=“林地 ” 的记录,并显示。
标号
101 102 103 104
植被
林地 农地 工业地 林地
面积
69.5 70.8 216.2 108.3
12
2) 基于空间特性的查询
空间特征的查询可分: (1) 空间几何数据查询 查询空间目标的坐标点、线长、面积、周长及位 置等。 (2) 空间关系查询 基于拓扑关系的查询如邻接性查询、包含性查询、 穿越性查询、落入性查询、方向性查询等。 例:查长江经过哪几个省?
10
1、空间数据查询
1)基于属性(非空间)特征的查询
属性特征的查询主要在属性数据库中完成,这种查询通 常基于标准的SQL查询语言实现,之后按照属性数据和 空间数据的对应关系显示图形。
如:通过对下列数据表中属性“植被”的查找,找到林地。
标号
101 102 103 104
植被
林地 农地 工业地 林地
面积
• 首先求出伊拉克处于那个州;
• 之后求出同伊拉克处于同一州的国家
16
5.4 空间数据的叠合 (置)分析
叠合分析(Overlay Analysis)的概念
叠合分析是在统一空间参照系统的条件下,将两层或多层 地图要素进行叠合产生一个新要素层的操作,其结果将原来 要素分割成新的要素,新要素综合了原来两层或多层要素所 具有的属性。也就是说,叠合分析不仅生成了新的空间关系, 还将输入数据层的属性联系起来产生了新的属性关系。叠合 分析是对新要素的属性按一定的数学模型进行计算分析,进 而产生用户需要的结果或回答用户提出的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间分析复习资料一、名词解释1、空间分析:空间分析是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。
2、网络结构模型:在网络模型中,地物被抽象为链、节点等对象,同时要关注其间连通关系。
3、空间数据模型:是关于现实世界中空间实体及其相互间联系的概念,它为描述空间数据的组织和设计空间数据库模式提供着基本方法。
4、叠置分析:将不同层的地物要素相重叠,使得一些要素或属性相叠加,从而获取新信息的方法。
包括合成叠置分析和统计叠置分析。
同义词:地图覆盖分析。
5、网络分析:是运筹学模型中的一个基本模型,它的根本目的是研究、策划一项网络工程如何安排,并使其运行效果最好,如一定资源的最佳分配,从一地到另一地的运输费用最低等。
6、栅格数据的聚类分析:栅格数据的聚类是根据设定的聚类条件对原有数据系统进行有选择的信息提取而建立新的栅格数据系统的方法。
7、数据高程模型:数字地形模型中地形属性为高程时称为数字高程模型。
数字地形模型是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
8、坡度:坡度是地面高程的变化率的求解,因此,坡度变率表征了地表面高程相对于水平面变化的二阶导数。
9、坡向:实际应用中,由于所建立的DEM数据常常是按从南到北获取的,所以求出的坡向角度是与正北方向的夹角。
10、缓冲区分析:缓冲区分析是解决邻近度问题的空间分析工具之一。
邻近度描述了地理空间中两个地物距离相近的程度,其确实是空间分析的一个重要手段。
所谓缓冲区就是地理空间目标的一种影响范围或服务范围。
11、最佳路径分析:12、空间插值:常用于将离散点的测量数据转换为连续的数据曲面,以便于其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。
13、虚拟现实:由计算机生成的可与用户在视觉、听觉、触觉上实施交互,使用户有身临其境之感的人造环境。
它在测绘与地学领域中的应用可以看作地图认知功能在计算机信息时代的新扩展。
14、拓扑分析:15、空间数据库:地理信息系统的数据库(简称空间数据库或地理数据库)是某一区域内关于一定地理要素特征的数据集合。
16、再分类:地理信息系统存储的数据则具有原始数据的性质,所以不可以根据不同的需要对数据再进行分类和提取。
由于这种分类是对原始数据进行的再次分类组织,因此称为再分类。
17、空间变换:为了满足特定空间分析的需要,需对原始图层及其属性进行一系列的逻辑或代数运算,以产生新的具有特殊意义的地理图层及其属性,这个过程称为空间变换。
18、路径分析:1)静态求最佳路径:在给定每条链上的属性后,求最佳路径。
2)N条最佳路径分析:确定起点或终点,求代价最小的N条路径,因为在实践中最佳路径的选理想情况,由于种种因素而要选择近似最优路径。
3)最短路径或最低耗费路径:确定起点、终点和要经过的中间点、中间连线,求最短路径或最小耗费路径。
4)动态最佳路径分析:实际网络中权值是随权值关系式变化的,可能还会临时出现一些障碍点,需要动态的计算最佳路径。
19、3DGIS:20、栅格结构:将地球表面划分为大小均匀紧密相邻的网格阵列,每个网格作为一个象元或象素由行、列定义,并包含一个代码表示该象素的属性类型或量值,或仅仅包括指向其属性记录的指针。
21、矢量结构:通过记录坐标的方式尽可能精确地表示点、线、多边形等地理实体,坐标空间设为连续,允许任意位置、长度和面积的精确定义。
二、简答题1、空间数据模型的分类分为三种:场模型:用于描述空间中连续分布的现象;要素模型:用于描述各种空间地物;网络模型:可以模拟现实世界中的各种网络。
2、场模型的特征场模型的特征:1、空间结构特征和属性域;2、连续的、可微的、离散的;3、与方向无关的和与方向有关的(各向同性和各向异性);4、空间自相关。
3、空间数据录入后的处理主要有哪几个步骤空间数据录入后的处理有以下三个:1、图形的坐标变换,它又分为平移、缩放和旋转三个部分;2、图形拼接;3、拓扑生成。
4、试比较矢量与栅格数据的优缺点矢量数据的优点:1、数据结构紧凑、冗余度低;2、有利于网络和检索分析;3、图形显示质量好、精度高。
矢量数据的缺点:1、数据结构复杂;2、多边形叠加分析比较困难。
栅格数据的优点:1、数据结构简单;2、便于空间分析和地表模拟;3、现势性较强。
栅格数据的缺点:1、数据量大;2、投影转换比较复杂。
5、基于栅格结构的空间变换有哪几种方式?基于栅格结构的空间变换可分为三种方式:(1)单点变换;单点变换只考虑单个点的属性值进行运算。
(2)邻域变换;邻域变换是指在计算新图层图元值时,不仅考虑原始图层上相应图元本身的值,而且还要考虑与该图元有邻域关联的其它图元值的影响。
这种关联可以是直接的几何关联,也可能是间接的几何关联。
(3)区域变换;区域变换是指在计算新图层属性值时,要考虑整个区域的属性值,即通过一个函数对某一区域内的所有值进行综合,然后计算新属性值。
6、简述空间分析的定义,空间分析在GIS中的地位和作用?定义:空间分析是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。
空间分析特有的对地理信息系统(特别的隐含信息)的提取、表现和传输功能,是地理信息系统区别于一般信息系统主要功能特征。
7、空间分析的内容包含哪几个方面?空间分析的主要内容:a、空间位置:借助于空间坐标系传递空间对象的定位信息,是空间对象表述的研究基础,即投影与转换理论。
b、空间分布:同类空间对象的群体定位信息,包括分布、趋势、对比等内容。
c、空间形态:空间对象的几何形态;d、空间距离:空间物体的接近程度;e、空间关系:空间对象的相关关系,包括拓扑、方位、相似、相关等。
8、常用的栅格数据空间分析方法有哪些?三、问答题1、三维GIS所研究的内容以及实现的主要功能包括哪些?主要包括:1)数据编码:是采集三维数据和对其进行有效性检查的工具,有效性检查将随着数据的自然属性、表示方法和精度水平的不同而不同。
2)数据的组织和重构:这包括对三维数据的拓扑描述以及一种表示法到另一种表示法的转换。
3)变换:既能对所有物体或某一类物体,又能对某个物体进行平移、旋转、剪裁、比例缩放等变换。
另外还可以将一个物体分解成几个以及将几个物体组合成一个。
4)查询:此功能依赖于单个物体的内在性质和不同物体间的关系。
5)逻辑运算:通过与、或、非及异或运算符对物体进行组合运算。
6)计算:计算物体的体积、表面积、中心、物体之间的距离及交角等。
7)分析:如计算某一类地物的分布趋势,或其它指标,以及进行模型的比较。
8)建立模型。
9)视觉变换:在用户选择的任何视点,以用户确定的视角、比例因子、符号来表示所有地物或某些指定物体。
10)系统维护:包括数据的自动备份、安全性措施、以及网络工作管理。
2、空间分析模型的类型有哪些,并分别对其作出简述。
答:分为四个方面。
(1)空间分布分析模型;用于研究地理对象的空间分布特征。
主要包括:空间分布参数的描述,如分布密度和均值、分布中心、离散度等;空间分布检验,以确定分布类型;空间聚类分析,反映分布的多中心特征并确定这些中心;趋势面分析,反映现象的空间分布趋势;空间聚合与分解,反映空间对比与趋势。
(2)空间关系分析模型;用于研究基于地理对象的位置和属性特征的空间物体之间的关系。
包括距离、方向、连通和拓扑等四种空间关系。
其中,拓扑关系是研究得较多的关系;距离是内容最丰富的一种关系;连通用于描述基于视线的空间物体之间的通视性;方向反映物体的方位。
(3)空间相关分析模型;用于研究物体位置和属性集成下的关系,尤其是物体群(类)之间的关系。
在这方面,目前研究得最多的是空间统计学范畴的问题。
统计上的空间相关、覆盖分析就是考虑物体类之间相关关系的分析。
(4)预测、评价与决策模型;用于研究地理对象的动态发展,根据过去和现在推断未来,根据已知推测未知,运用科学知识和手段来估计地理对象的未来发展趋势,并作出判断与评价,形成决策方案,用以指导行动,以获得尽可能好的实践效果。
3、地理信息系统与一般管理信息系统有什么区别和共同点?共同之处:两者都是以计算机为核心的信息处理系统,都具有数据量大和数据之间关系复杂的特点,也都随着数据库技术的发展在不断的改进和完善。
不同之处:1)在硬件上,为了处理图形和图像数据,系统需要配置专门的输入和输出设备,如数字化仪、绘图机、图形图像的显示设备等;许多野外实地采集和台站的观测所得到的资源信息是模拟量形式,系统还需要配置模――数转换设备,这些设备往往超过中央处理机的价格。
2)在软件上,则要求研制专门的图形和图像数据的分析算法和处理软件,这些算法和软件又直接和数据的结构及数据库的管理方法有关。
3)在信息处理的内容和采用目的方面,一般的管理信息系统,主要是查询检索和统计分析处理的结果,最终形成规定格式的表格数据;而地理信息系统,除了基本的信息检索和统计分析外,主要用于分析研究资源的合理开发利用,制定区域发展规划,地区的综合治理方案,对环境进行动态的监视和预测预报等,为国民经济建设中的决策提供科学依据,为生产实践提供信息和指导。
4、栅格数据结构有哪些编码方法,并分别对这几种方法作出简述。
(1)直接编码方法,这是最简单直观而又非常重要的一种栅格结构编码方法,通常称为这种编码的图像文件为网格文件或栅格文件。
直接编码就是将栅格数据看作一个数据矩阵,逐行(或逐列)逐个记录代码,可以每行都从左到右逐个象元记录,也可以奇数行地从左到右而偶数行地从右到左记录,为了特定的目的还可采用其他特殊的顺序。
(2)压缩编码方法,其目的就是用尽可能少的数据量记录尽可能多的信息,其类型又有信息无损编码和信息有损编码之分,(a)游程长度编码,这是栅格数据压缩的重要编码方法。
它的基本思路是:对于一幅栅格图象,常常有行(或列)方向上相邻的若干点具有相同的属性代码,因而采取某种方法压缩那些重复的记录内容。
(b)块码,它是游程长度编码扩展到二维的情况,采用方形区域作为记录单元,每个记录单元包括相邻的若干栅格,数据结构由初始位置(行、列)和半径,再加上记录单元的代码组成。
(c)四叉树,是最有效的栅格数据压缩编码方法之一。
四叉树将整个图像区逐步分散为一系列被单一类型区域内含的方形区域,最小的方形区域为一个栅格单元,分割的原则是将图像区域划分为四个大小相同的象限,而每个象限又可根据一定规则判断是否继续等分为次一层的四个象限。