算术平方根优秀教学设计

合集下载

算术平方根教学设计10篇

算术平方根教学设计10篇

算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。

二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。

具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。

复习提问学生有关乘方如何用计算器运算的步骤。

熟悉计算器基本键的功能。

现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。

例1.用计算器求的值。

分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。

解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。

例2.用计算器求的值。

(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

例3.用计算器求的'值。

解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。

解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。

例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。

初中数学七年级《算术平方根》优秀教学设计

初中数学七年级《算术平方根》优秀教学设计

教学设计:算术平方根教学目标:1.了解算术平方根的定义和性质;2.掌握求算术平方根的方法;3.能够运用算术平方根解决实际问题。

教学准备:1.教师准备:教学课件、教学实例、学生练习题;2.学生准备:学生课本、笔、纸。

教学过程:Step 1 引入问题教师通过一个实际问题引入算术平方根的概念,比如:小明爸爸去年买了一块地,面积是121平米,今年小明要给这块地做一个花坛,他想知道这个花坛的边长是多少米?Step 2 引导思考教师引导学生思考如何求解这个问题,通过讨论、提问引导学生思考求算术平方根的方法和步骤,并与学生共同总结算术平方根的定义和性质。

Step 3 概念讲解教师通过课件或板书,给学生讲解算术平方根的概念和性质,包括算术平方根的定义、算术平方根的性质、算术平方根的符号表示等。

Step 4 求算术平方根的方法讲解教师讲解求算术平方根的方法,包括试探法、直接开根法和近似法,配合实例进行讲解。

同时,要注意讲解每种方法的适用场景和注意事项。

Step 5 例题演示教师通过几个例题演示如何利用不同的方法求解算术平方根,并引导学生积极参与解题过程,帮助学生掌握不同方法的操作步骤和技巧。

Step 6 学生练习让学生独立完成一些练习题,包括对给定的正整数求算术平方根、对给定的小数求算术平方根以及运用算术平方根解决实际问题等。

Step 7 实际问题探究教师提供一个实际问题给学生,并让学生运用算术平方根的方法解决问题。

鼓励学生利用所学知识进行思考和讨论,引导他们分析问题并提出解决方案。

Step 8 总结归纳教师与学生一起总结、归纳算术平方根的概念、性质、求解方法以及解决问题的思路和步骤。

Step 9 引导学生拓展教师引导学生思考并拓展,比如如何求负数的算术平方根,如何判断一个数是否为完全平方数等相关问题,鼓励学生进一步研究和探究。

Step 10 课堂小结与反思教师对本节课的内容进行小结,并引导学生思考本节课的收获和不足之处,鼓励学生批判性地思考和提出意见。

算术平方根【公开课教案】

算术平方根【公开课教案】

2.2 平方根第1课时 算术平方根第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数,但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=; (2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x 2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式 已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 18+0.4 216+0.8 324+1.2 432+1.6 540+2.0 … …解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算 计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

平方根教学设计

平方根教学设计

平方根教学设计平方根教学设计篇一教材分析:《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。

引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。

注意引导学生发现被开方数与对应的算术平方根之间的关系。

本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。

由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。

因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。

课标要求:在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。

同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。

在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。

策略分析:根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。

教学目标:1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。

2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的算术平方根。

平方根教学设计(教案)

平方根教学设计(教案)

平方根教学设计(教案)章节一:平方根的概念引入教学目标:1. 让学生理解平方根的定义。

2. 让学生掌握求一个数的平方根的方法。

教学内容:1. 引入平方根的概念,通过举例让学生感受平方根的实际意义。

2. 讲解平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在。

教学活动:1. 利用实际问题引入平方根的概念,如“一个正方形的边长是a,求它的面积”。

2. 引导学生思考,如何求一个数的平方根,学生可以通过计算、估算等方式尝试求解。

章节二:平方根的运算规则教学目标:1. 让学生掌握平方根的运算规则。

2. 让学生能够熟练地进行平方根的计算。

教学内容:1. 讲解平方根的运算规则,如加减乘除的运算规则。

2. 通过例题让学生理解平方根的运算规则,并进行练习。

教学活动:1. 通过例题讲解平方根的运算规则,如(√a)²= a,(√a)×(√b)= √(ab)等。

2. 让学生进行平方根的计算练习,教师可以提供一些练习题,让学生进行计算和解答。

章节三:平方根的应用教学目标:1. 让学生理解平方根在实际问题中的应用。

2. 让学生能够运用平方根解决实际问题。

教学内容:1. 通过实际问题讲解平方根的应用,如求解方程、求解不等式等。

2. 通过例题让学生理解平方根的应用,并进行练习。

教学活动:1. 通过实际问题引入平方根的应用,如求解方程x²= 9。

2. 引导学生思考,如何运用平方根解决实际问题,学生可以通过计算、估算等方式尝试求解。

章节四:平方根的拓展教学目标:1. 让学生了解平方根的拓展知识。

2. 让学生能够运用平方根的拓展知识解决实际问题。

教学内容:1. 讲解平方根的拓展知识,如平方根的乘积、平方根的倒数等。

2. 通过例题让学生理解平方根的拓展知识,并进行练习。

教学活动:1. 通过例题讲解平方根的拓展知识,如(√a)×(√b)= √(ab),(√a)⁻¹= √a⁻¹等。

八年级数学下册《算术平方根》教案、教学设计

八年级数学下册《算术平方根》教案、教学设计
-设计有针对性的练习题,让学生在练习中巩固所学知识,突破重难点。
4.课堂小结,总结提升
-通过课堂小结,让学生回顾本节课所学内容,加深对算术平方根的理解。
-教师总结学生在学习过程中的优点和不足,提出改进措施,促进学生的全面发展。
5.课后拓展,提高应用能力
-布置课后作业,让学生运用算术平方根知识解决实际问题,提高学生的应用能力。
1.请同学们完成课本第chapter页的练习题,题目涵盖了算术平方根的定义、性质和求法等知识点,通过练习,加深对算术平方根的理解。
2.结合生活实际,找一找身边的例子,运用算术平方根知识解决问题,并简要说明解题过程。例如:计算家中某间房屋的面积、求解物体速度等。
3.小组合作,探讨以下问题:
a.算术平方根与平方根有什么区别和联系?
b.如何求解含有算术平方根的实际问题?
c.在计算过程中,如何避免符号和精度问题?
4.针对课堂学习中的难点,请同学们自主查找相关资料,总结求解算术平方根的方法和技巧,并在下节课分享。
5.结合课后拓展阅读,了解算术平方根在科学研究和生产生活中的应用,提高学生的数学素养。
作业要求:
1.认真完成作业,书写规范,保持卷面整洁。
4.设计丰富的练习题,巩固所学知识,培养学生的逻辑思维能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情。
2.培养学生勇于探索、善于合作的精神,增强学生的自信心。
3.使学生认识到算术平方根在日常生活和科学计算中的重要性,提高学生的数学应用意识。
4.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.每个小组汇报解题过程和答案,其他小组进行评价和补充。
(四)课堂练习,500字

平方根 优秀教案

平方根 优秀教案

平方根【教学目标】1.了解平方根的概念、开平方的概念。

平方根概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根,也称为二次方根。

也就是说,如果2x a =,那么x 就叫做a 的平方根。

开平方概念:求一个数a 的平方根的运算,叫做开平方。

2.明确算术平方根与平方根的区别与联系。

算术平方根的定义:一个非负数的正的平方根叫做它的算术平方根 ,特别的,0的算术平方根为0整数a 有两个平方根,其中正的平方根,也叫做a 的算术平方根。

0只有一个平方根,0的平方根也叫做0的算术平方根,即00=。

3.进一步明确平方与开方是互为逆运算。

开平方与平方互为逆运算。

因此,我们可以通过平方运算来求一个数的平方根。

a 的负平方根a 的平方根被开方数根号【教学重难点】平方根与算术平方根的联系与区别1.联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种。

(2)存在条件相同:平方根和算术平方根都是只有非负数才有。

(3)0的平方根,算术平方根都是0.2.区别:(1)定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫a 的算术平方根”。

(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。

(3)表示法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a 。

(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。

【教学过程】一、自学指导什么样的数有平方根?算术平方根与平方根的区别与联系是什么?谈谈你的看法?负数为什么没有平方根,即负数不能进行开平方运算的原因是什么?什么叫开平方呢?我们共学了几种运算呢,这几种运算之间有怎样的联系呢?一个正数有几个平方根?0有几个平方根?二、自学检测:1.(1)一个正数有 个平方根。

(2)0有 个平方根,是(3)负数有 个平方根 (4)25的平方根是_________;(5)2)5(- =_________; (6)(5)2=_________。

《算术平方根》说课稿(通用10篇)

《算术平方根》说课稿(通用10篇)

《算术平方根》说课稿(通用10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!《算术平方根》说课稿(通用10篇)《算术平方根》说课稿(通用10篇)作为一位兢兢业业的人民教师,总归要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:6.1平方根
第一课时算术平方根
〖学习目标〗:
(1)了解算术平方根的概念,懂得使用根号表示正数的算式平方根。

(2)会求正数的算数平方根并会用符号表示。

(3)让学生体验数学与生活实际紧密联系着的,激发学生的学习兴趣。

〖学习重、难点〗:
(1)重点:算术平方根的概念(2)难点:算术平方根的概念〖导学过程〗:
一.身边趣事(1): 为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长为
多少?
小鸥想装饰自己的房间,他想裁出一块面积
为25dm2的正方形相框,镶上自己喜欢的明星
tfboys,这块正方形画布的边长应取多少?
小鸥还要准备一些面积如下的正方形画布,
请你帮他把这些正方形的边长都算出来:
正方形
1 9 16 36
的面积
边长
二.算术平方根的概念:
一般地,如果一个的平方等于a,即 ,那么这个叫做a 的。

a的算术平方根记为:读作:
三.练一练
(一)我会填
1. a的算术平方根(a≥0)表示为_______.
2. 32 = 9,则9的____________是3,表示为________ 。

3. 0的算术平方根是_____,表示为________.
(二)我会判
(1)5是25的算术平方根;
(2)36的算术平方根是 -6 ;
(3)0的算术平方根是0;
(4)0.01是0.1的算术平方根;
四.讲练结合
例1.求下列各数的算术平方根:
(3)0.0001 (1)100 (2)49
64
练一练:
1.求下列各数的算术平方根:
(3)32 (1)0.0025 (2)115
49
2.求下列各式的值:
(3)−√9(4)√22(1)√1 (2)√9
25
五.探究:
探究1
1.被开方数a可以取任何数吗?
2.√a是什么数?
练一练:
1.下列各式是否有意义,为什么?
(1)−√3 (2)√−3 (3)√(−3)2 (4)√1
10
2.下列各式中,x为何值时有意义?
(1)√−x (2)√x2+1
探究2:拼一拼
1.你能用两个面积为1 dm2的小正方形拼成
一个面积为2 dm2的大正方形吗?
2.求大正方形的边长为多少?
六.估计大小:
√2在那两个整数之间?
七.课堂小结:通过这节课的学习,你学到了哪些新知识?谈谈你的收获。

八.布置作业
必做:数学书上第41页(练习的1题、2题)。

相关文档
最新文档