冷热源简介

合集下载

冷热源系统对比

冷热源系统对比

冷热源系统对比
冷热源系统是指为建筑、工业生产或其他领域提供制冷、供暖或同时提供制冷和供暖功能的系统。

常见的冷热源系统包括空调、锅炉、热泵等。

下面是对这几种冷热源系统进行对比:
1. 空调系统:空调系统主要用于室内空气调节,包括制冷和供暖功能。

优点是适用性广,可以适应不同的建筑空间需求;缺点是运行能耗较高,成本较大。

2. 锅炉系统:锅炉系统主要用于提供供暖功能,通过燃烧燃料加热水或蒸汽来加热建筑。

优点是加热效果好,热源稳定;缺点是锅炉运行成本相对较高,对环境产生污染。

3. 热泵系统:热泵系统利用逆向热力学原理,将低温热源的热能传递给高温热源,实现空气或地下水等低温热源的加热或制冷。

优点是运行能耗低,经济效益较好;缺点是设备成本较高,对环境温度要求较高。

综上所述,不同的冷热源系统在适用范围、运行能耗、经济效益和环境影响等方面各有优劣。

选择适合的冷热源系统应根据具体的需求和条件综合考虑。

(完整版)空调系统冷热源

(完整版)空调系统冷热源
高温下不分解,对人体无害; i.价格便宜,便于获得; j.对人类生态环境无破坏作用
1.制冷剂
(3)制冷剂的种类及表示方法 单一制冷工质
➢ 氟利昂和烷烃类 ➢ 无机物
混合物制冷工质
➢ 共沸混合物制冷工质 ➢ 非共沸混合物制冷工质
1.制冷剂
•单一制冷工质的表达方法
➢烷烃类表达通式:CmH2m+2
制冷装置:将物体温降至环境温度之下,并维 持此温度的装置,成为制冷装置。
制冷循环:制冷装置中的工质循环。
分类:压缩制冷循环、吸收式制冷循环、 蒸汽喷射制冷循环以及半导体制冷等。
1. 卡诺循环
热力学第一定律:
进入系统的能量-离开系统的能量=系统中储存能量的增加 热力学第二定律:
不可能制造出从单一热源吸热,使之全部转化成为功而不留下其他 任何变化的热力发动机。
例如:大型建筑中 冷源指:冷水机组供冷 热源指:锅炉供热
空调冷热源工程
提纲
一、冷源设备 二、热源设备 三、冷热水机组 四、冷热源辅助设备 五、空调冷热源的选择与评价
一、冷源设备
1.制冷剂:
(1)制冷剂:是制冷系统中的制冷工质,在 制冷系统中,在低温下蒸发吸收热量,在高 温下经过冷凝放出热量,将热量不断地从被 冷却物体中取出并转移到周围环境中去,制 冷剂是在一个封闭的制冷系统中不断循环流 动。
1.制冷剂
混合物制冷工质
➢ 共沸混合制冷工质(呈现单一制冷工质的特性,起单一 制冷工质的性质的作用)
表达方法:以5开头的三位数 如R500,R502 ➢ 非共沸混合制冷工质(混合制冷工质还保持组分物质的
某些特性) 表达方法:以4开头的三位数 如:R410A R407C
1.制冷剂

热源及冷源概述

热源及冷源概述
– 干式除渣系统:灰渣场、渣斗、除渣机 – 水力除灰渣系统:灰沟、渣沟、沉灰池、过滤池、清
水池、灰渣泵、喷嘴及循环水管路等
–烟风系统
• 送风系统:鼓风机、冷风道、热风道、消声器

• 引风系统:烟道、引风机、除尘器、脱硫(脱
氮)装置、烟囱
• 净化系统:重力除尘器、惯性除尘器、离心力
除尘器、水膜除尘器、静电除尘器、布袋除尘器、 脱硫塔
第八章 热源及冷源
第一节 热源及冷源概述
一.热源概述 1.锅炉
局部锅炉房(分散供热锅炉房):多为小型锅炉, 热效率低,排放的烟尘和有害物质多
区域锅炉房(集中供热锅炉房):热效率高, 燃烧排放物较少,节能环保
热电厂:锅炉容量大,热效率在90%以上, 节省燃料,排放有害物质较少
区域锅炉房热
局 部


–汽水系统
–蒸汽、热水地供给、排放,凝结水系统和锅 炉出水处理
• 给水系统:给水泵、补给水泵、给水箱、补给水箱、给水 管路、阀门附件等
• 水处理系统:软化设备、除碱设备、除氧设备、中间水箱、
中间水泵、再生系统
• 蒸汽系统:蒸汽母管、支管、分汽缸 • 凝水系统:凝结水箱、凝结水泵及其管路 • 排污系统:连续排污和定期排污管路附件、排污扩容器、
有机热载体锅炉
(5)按燃料:燃煤锅炉、燃油锅炉、燃气锅炉、余 热锅炉、电加热锅炉、生物质锅炉
(6)按水循环:自然循环、强制循环、混合循环 (7)按燃料在锅炉内部或外部:内燃式锅炉、外燃
式锅炉
(8)按安装方式:快装锅炉、组装锅炉、散装锅炉 (9)按工质在蒸发系统的流动方式:自然循环锅炉、
强制循环锅炉、直流锅炉




空调系统冷热源介绍

空调系统冷热源介绍
❖ 最早的制冷剂(1830~1930)
乙乙醚醚 (1805)
二二乙乙醚醚((1813843)4) 蒸蒸气气压压缩缩式式制制冷冷循循环环
橡胶馏化物
制冷剂的筛选由易获得性转向了安全性和性能参数
二氯乙烷异构体 (R1130)
第一台离心压缩机
混合物 (1885)
16
1.制冷剂
(4)制冷剂的发展历程
❖ CFC和HCFC(1930~1990)
空调系统冷热源
1
什么是空调冷热源
1.家用空调系统
2
家用空调制冷原理
制冷循环系统:
外界空气

压缩机
高温高压蒸气(高温高压蒸气)
冷凝器

压 (压缩)




蒸发器

节流装置
低压液体
(节流降压)
室内空气
3
2.中央空调制冷系统
4
中央空调制冷系统
5
中央空调制冷系统
冷却水系统

压缩机
高温高压蒸气(高温高压蒸气)
(2)2—3等温过程
从低温热源中吸取热量为q2,循环所消耗的功为w,熵增加了 q2/T2;
卡诺循环是一种理想的可逆循环。在实际过程中,无法实现没有温差 下的等温传热过程,也不可能实现没有摩擦损失的等熵过程。
可逆状态下的卡诺循环发动机是无法实现的。
23
1. 卡诺循环
1.2 逆卡诺循环
24
1. 卡诺循环
1.2 逆卡诺循环的热力过程分析: (1)4—1定温压缩过程
工质在定温压缩过程中向高温热源放出热量为q1,同时熵减少 了q1/T1;
10
1.制冷剂(Refrigeration)

建筑冷热源

建筑冷热源
等。 2、钠离子交换软化法 2.1 软化反应 ① 经钠离子交换后,水中的钙、镁盐类转化为钠盐,除
去水中硬度; ② 原水中的中碳酸盐碱度均转变为钠盐碱度(NaHCO3),
因此,其只能软化水,但不能除碱,即水中碱度不变;
锅炉给水处理
③ 由于Na+的当量值比Ca+、Mg+的当 量值大,水中含盐量有所增加。
3.锅炉的运行
4.锅炉的总体布置:1.总平面图上的
布置2.区域布置3.工艺布置4.设计对 土建专业的技术要求
锅炉的工作过程
1. 燃料的燃烧过程 定义:燃料在炉内(燃烧室内)燃烧生成高温烟气,并排出灰
渣的过程 高温烟气
给煤斗
燃料(煤)
炉排面(燃烧室)
除渣板(入灰渣斗)
空气 在一定的燃烧设备内,正常燃烧应具备的条件:
锅炉的分类
1.按锅筒放置方式:立式锅炉、卧式锅炉
2.按用途分:生活锅炉、工业锅炉、卧式锅炉
3.按介质分:蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉。
4.热燃料分:燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、
生物质锅炉
5.按水循环分:自然循环、强制循环、混合循环
6.按燃烧在锅炉内部或外部分:内燃式锅炉、外燃式锅炉。
对受热面的腐蚀 2)水处理方式
锅外水处理——给水经预先处理后进入锅炉, 大部分供热锅炉; 锅内水处理——水处理在锅内部进行,对一 些小容量的供热锅炉
锅炉给水处理
二、锅炉水处理方法:
1、阳离子交换法—用阳离子交换剂(由阳离子和复合阴 离子组成)
常用的离子交换剂:磺化煤和合成树脂 常用的阳离子交换水处理有:钠离子、氢离子、氨离子
(1).电动冷水机组供冷、锅炉供热 (2).溴化锂吸收式冷水机组供冷、锅炉加热 (3).电动冷水机组供冷、热电厂供热 (4).溴化锂吸收式冷水机组供冷、热电厂供热 (5).直燃型溴化锂吸收式冷热水机组 (6).空气源热泵冷热水机组作中央空调冷热源 (7)天然冷热源

冷热源工程知识点总结

冷热源工程知识点总结

冷热源工程知识点总结一、引言冷热源工程是指利用自然界的低温能源来进行制冷、供暖、热水供应等工程,是目前节能环保的热工程技术之一。

冷热源工程主要依靠地热、空气、水体等自然资源进行热能交换,通过热泵、地源热泵、空气源热泵等技术将低温热能转换成适用于建筑空间的舒适环境。

二、热源工程基础知识1. 热泵原理热泵原理是冷热源工程的核心技术之一。

热泵是利用流体的循环流动,通过显热和潜热的变化,完成热能的转化。

根据热泵原理,热泵利用低温热源进行工作,通过压缩和膨胀循环,使低温能源转化为高温能源,提供制冷、供暖和热水等功能。

2. 热泵的组成热泵系统主要由蒸发器、压缩机、冷凝器和膨胀阀组成。

蒸发器用于从低温环境中吸收热量,压缩机用于压缩流体,冷凝器用于释放热量,膨胀阀用于控制流体的压力和流量。

3. 热泵的工作循环热泵系统的工作循环一般包括蒸发、压缩、冷凝和膨胀四个过程。

在蒸发过程中,低温流体从蒸发器中蒸发,吸收热量。

随后,压缩机对蒸发后的流体进行压缩,提高其温度和压力。

然后,流体通过冷凝器释放热量,使其冷凝成液体。

最后,流体通过膨胀阀减压,回到蒸发器重新循环。

4. 热泵系统的工作原理热泵系统工作原理是利用热力循环的原理,通过不同工质的相变过程(蒸发和冷凝)实现热量的转移。

热泵系统利用低温热源,通过不同压力和温度的相变过程,实现热能的提升,从而实现供暖、制冷和热水供应的功能。

三、冷热源系统的分类1. 地源热泵系统地源热泵系统是利用地热能源进行热能交换的热泵系统。

通过埋设地下换热器(地埋管、井型换热器等),利用地下土壤温度较为恒定的特点,实现冬季取暖、夏季制冷和热水供应。

2. 空气源热泵系统空气源热泵系统是利用大气空气中的热能进行热能交换的热泵系统。

通过空气中低温热能的吸收和转换,实现冬季取暖、夏季制冷和热水供应。

3. 水源热泵系统水源热泵系统是利用水体中的低温能源进行热能交换的热泵系统。

通过水体的循环利用,实现冬季取暖、夏季制冷和热水供应。

冷热源

冷热源
供热、通风及空调理论及分析
冷热源部分
指导老师:王沣浩 学生:王 甜 张艳宇
什么是冷热源




冷源:给空调系统提供冷量的装置。 天然冷源:(深井水、天然冰等) 人工制冷: 制冷机 热源:给空调系统提供热量的装置。 常见的有:燃煤、燃油、电锅炉、城市热力网 在暖通空调系统中,冷热源是不可缺少的; 冷热源的大规模利用很大程是工业企业及人民生 活的重要组成部分。 冷热源是空调系统和供热系统的核心。
多联机系统 热泵系统 吸收式系统 吸附式系统 冰蓄冷系统 复合式系统
冷热源能耗主要影响因素

初投资 运行费用
节能评价指数

COP、EER COP越高越节能??
冷热源方案比较

多联机系统 VS 冷水机组
COP
2-4
COP 5.5以上
冷水机组总能耗量的计算,是衡量和 评价空调系统节能设计的主要指标,也是 进行空调系统优化设计的一个重要经济因 素。空调系统全年总耗能量计算,可以有 以下几种方法:
(1)度日法 (2) 当量满负荷运行法 (3)负荷频率表法 (4)电子计算机模拟计算法
采用当量满负荷运行时间法,总耗能 量计算步骤如下:

(1)夏、冬季当量满负荷运行时间:
(2)负荷率(Σ): 全年空调冷负荷(或热负荷)与冷热水机组 在累计运行时间内总的最大出力之和的比例 ,称为负荷率Σ,即


图1:多联机部分负荷运行特性
由图1可以看出,当部分负荷率在55%左右时, 多联机变频机组的性能系数COP最高。
结论



冷水机组空调系统的COP是在设计工况下的值, 但是实际运行时,绝大部分设备偏离所设计的高 效率点工作 多联机系统虽然COP较低,但是在部分负荷下的 COP较高。 对于办公楼等建筑,系统实际运行时,99%以上 时间是在部分负荷条件下运转,其中负荷率在40 %一70%占总运行时间的80%左右时间,所以采 用多联机系统更节能。

08 冷热源

08 冷热源

CVAE风冷 两级压缩离 心式冷水机 组
风冷模块式 冷水机组
(6).户式空调冷水机组 户式空调冷水机组是一种微型的集中 空调系统的制冷机组。它将集中空调的 制冷系统和冷冻水系统的水泵及膨胀水 箱集合在机组中,其冷凝器常采用风冷 式,图4-52 是户式风冷式冷水机组的 外形图。
图 4-52
户式风冷式冷水机组空调系统
建筑物供热方式有:中、小型锅炉房,大 型区域锅炉房,热电站,电阻式加热装置, 热泵,太阳能供热等等。锅炉房供热是目前 我国主要的供热方式。但从能源消耗观点看, 锅炉房供热的能量利用系数不高,尤其是小 型锅炉房。因此,当前一些地区积极发展热 电站供热。电阻式加热装置的能量利用系数 低,但由于使用方便、容易控制、无污染的 优点,在国外经常采用。
2
1
4 3 9 8 7 6 5
1-压缩机 2-冷凝器 3-蒸发器 4-滤油器 5-油冷却器 6-油箱 7-电动机 图4-49 离心式冷水机组外形 1-压缩机 2-冷凝器 3-蒸发器 4-滤油器 5-油冷 却器 6-油箱 7-电动机 8-油泵 9-增速箱
图 4-49 离心式冷水机组外形
3 5 4 2 6 7
根据机组配用冷凝器的冷却介质的不同, 活塞式冷水机组又可分为水冷和风冷的两种。 根据机组所配压缩机的数量不同,又可分为 单机头活塞式冷水机组和多机头活塞式冷水 机组。 活塞式冷水机组具有结构紧凑、占地面积 小、安装快、操作简单和管理方便等优点。
1 冷却水 5 冷媒水
2
3
4
图 4-45
ห้องสมุดไป่ตู้
活塞式冷水机组外形
1、压缩-冷凝机组
压缩-冷凝机组是将压缩机、冷凝器等组成一个整 体,它可与节流机构及各种类型的蒸发器组成制冷 系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

88% 85% 106%
89%
95%
3
环保与节能
常规方式(冷却塔)
通过冷却塔 向大气排热
末端
4.5
江水源方式
通过热交换器 向江水排热
5.2
末端
15%
冷水机组
热泵
江水
江水
系统能效比
与冷却 塔节能方:热式泵相能耗比与,热源江温水度和源室方温的式差成系正统比。能效比 提高 15% ,((大江节气水能温-室度效温–)果室温显)差差著→→。小大→节能率大于10%
空调冷热源系统基本形式
方案 编号
冷热源形式
1 冷水机组+ 油气锅炉
2
70%冷水机组 + 30%地源热泵
3
50%冷水机组(供冷) + 50%水源热泵(供冷、热)
4
冷水机组 +部分直燃机
冷水机组 5 + 冰蓄冷
+ 油气锅炉
6 70%冷水机组 + 30%风冷热泵
冷源
主要设备配置 热源
离心机组+ 冷却塔 油气两用锅炉
风冷热泵机组
1
空调冷热源系统主要特点
方案 编号
方案配置
特点及适用条件
1 冷水机组+油气锅炉
最常规、通用的方案,锅炉优先采用天然气
2
冷水机组(70%供冷) +地源热泵(30%供冷、热)
需要适合的土壤地质状况使用30%地源热泵需一 水机组(50%供冷)
需要可靠的水资源作保证,省去了冷却塔,但需
t2
其中:Q3 =Q1+Q2 当t1>8℃时 Q2 =0
5
空调冷热源系统原理
冷水机组(冷却塔)
通过冷却塔 向大气排热
末端
地源热泵
冷水机组
通过热交换器
向土地排/吸热
6
地源热泵空调冷热源示意
冬季间歇运行时土壤温度随时间变化趋势
7
+水源热泵(50%供冷、热)
要简易水处理装置
4
冷水机组(70%供冷) +直燃机(30%供冷、热)
直燃机可取代锅炉,可减少电力装机容量
5
冷水机组+冰蓄冷+油气锅炉
利用峰谷电价差节约电费 ,可减少电力装机容 量
6 冷水机组(70%供冷)
系统简单,适用性较强,省去了锅炉
+风冷热泵(30%供冷、热)
2
空调冷热源系统运行经济性
方案 编号
冷热源形式
初投资
全年运行费用 (与方案一相比)
电+气
电+油
1 冷水机组+锅炉
100%
100%
100%
2
冷水机组+地源 热泵
3
冷水机组+水源 热泵
4
冷水机组+直燃 机
5
冷水机组+蓄冰 装置+锅炉
6 冷水机组+风冷
热泵
170% 120% 105% 130% 110%
90% 86% 97% 88% 95%
离心机组+ 冷却塔 地源热泵(冷热共用)+油气
+ 地源热泵
两用锅炉
离心机组+ 水源热 泵+简易水处理
水源热泵+简易水处理
离心机组+ 冷却塔 直燃溴化锂吸收式机组(冷热
+直燃溴化锂吸
共用)
收式机组
+ 油气两用锅炉
双工况机组+ 冷却 塔+ 离心机组
+蓄冷装置
油气两用锅炉
离心机组+ 冷却塔 +风冷热泵机组
抑制城市热岛效应:无冷却塔排热
4
江水源热泵系统原理图
辅助热Q2 (t1<8℃时)
机组输入 电能Q4
黄浦江 取水口
黄浦江 放水口
被利用能Q3
江水源热泵 机组
可利用能Q5
t1
低位能Q1 (江水)
夏季:制冷量Q5=Q3-Q4 Q5 ≥6.5Q4
空调末端 用户
冬季:制热量Q5 =Q3+Q4 Q5 ≥4.0Q4
相关文档
最新文档