因式分解法解一元二次方程 说课稿
因式分解法解一元二次方程说课稿

情感目标
积极探索不同的解法,并和同伴交流,在 学习活动中获得成功的体验,建立学好数学 的兴趣和信心。
(三)教学重点与难点
九 年 数 学
难点:将方程转化为一般形式后,对方 程左侧进行因式分解。
二、教法分析
九 年 数 学
根据本节课的教学目标、教材内容 以及学生的认知特点,教学上采用以 自主探究为主,通过实际问题加深数 学与生活的联系,从而使用因式分解法 解方程成为一种的需要。并以分析、 讨论、交流、演示相结合的教学方法, 帮助学生通过已有的知识经验,归纳 出用因式分解法解一元二次方程。
四、教学设计
九 年 数 学
一、创设情景,引入新课 二、自主探究,合作交流
三、应用规律,深化主题
四、总结收获,体会数学
(一)创设情景,引入新课
九 年 数 学
思考:
朝阳市政府,为了保护路边的绿化,决定 将路边绿化用栅栏围起来,安装栅栏的工人身 旁有一块22m长的栅栏,现有一块30㎡的长方 形绿化,问能否正好围成一个矩形?
x1 3,x2 3
x1 x 2 1 2
x( x 2) 0
( x 2)( x 3) 0
(2 x 1)( x 3) 0
x1 0,x2 2 x1 2,x2 3
x1 ,x 2 3 2 1
你有什么发现?
说一说:
九 年 数 学
当一元二次方程的一边是0,而另一边 易于分解成两个一次因式的乘积时,我们就 可以用分解因式的方法求解.这种用分解因 式解一元二次方程的方法称为分解因式法。 AB=0〈=〉A=0或B=0( A、B表示两个因式)
( x 2) 4( x 2)
2
( x 2) 4( x 2) 0
用因式分解法求解一元二次方程【公开课教案】

2.4 用因式分解法求解一元二次方程1.了解因式分解法的解题步骤,能用因式分解法解一元二次方程;(重点) 2.能根据具体一元二次方程的特征,灵活选择方程的解法.(难点) 一、情景导入 王庄村在测量土地时,发现了一块正方形的土地和一块矩形的土地,矩形土地的宽和正方形的边长相等,矩形土地的长为80m ,工作人员说,正方形土地的面积是矩形面积的一半.你能帮助工作人员计算一下正方形土地的面积吗?二、合作探究 探究点一:用因式分解法解一元二次方程方程(x -3)(x +1)=x -3的解是( )A .x =0B .x =3C .x =3或x =-1D .x =3或x =0 解析:把(x -3)看成一个整体,利用因式分解法解方程,原方程变形,得(x -3)(x +1)-(x -3)=0,所以(x -3)(x +1-1)=0,即x -3=0或x =0,所以原方程的解为x 1=3,x 2=0.故答案为D.易错提醒:解形如ax 2=bx 的方程,千万不可以在方程的两边同时除以x ,得到x =ba ,这样会产生丢根现象,只能提公因式,得到x 1=0,x 2=ba.如本题中易出现在方程两边同除以(x -3),从而得到x =0的错误.探究点二:选用适当的方法解一元二次方程用适当的方法解方程: (1)3x (x +5)=5(x +5); (2)3x 2=4x +1; (3)5x 2=4x -1.解:(1)原方程可变形为3x (x +5)-5(x +5)=0,即(x +5)(3x -5)=0, ∴x +5=0或3x -5=0,∴x 1=-5,x 2=53;(2)将方程化为一般形式,得3x 2-4x -1=0.这里a =3,b =-4,c =-1,∴b 2-4ac =(-4)2-4×3×(-1)=28>0, ∴x =4±282×3=4±276=2±73,∴x 1=2+73,x 2=2-73;(3)将方程化为一般形式,得5x 2-4x +1=0.这里a =5,b =-4,c =1,∴b 2-4ac =(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b 2-4ac 的值,若b 2-4ac <0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.三、板书设计用因式分解法求解一元二次方程⎩⎪⎨⎪⎧步骤⎩⎪⎨⎪⎧①移项,将方程的右边化为0②把方程的左边分解成两个一次 因式的积③令每个因式分别等于0,得到两 个一元一次方程④解这两个一元一次方程选用适当的方法解一元二次方程经历因式分解法解一元二次方程的探索过程,发展学生合情合理的推理能力.积极探索方程不同的解法,体验解决问题方法的多样性.通过交流发现最优解法,在学习活动中获得成功的体验.。
用因式分解法求解一元二次方程》说课稿

用因式分解法求解一元二次方程》说课稿
学法指导方面,鼓励学生在研究过程中积极思考、自主探究,注重合作研究和交流,提高学生的解题能力和思维能力。
同时,引导学生注重方法的灵活运用,培养学生的解题策略和技巧。
三、教学过程设计
1.导入环节
通过生活中的实际问题引入本节课的研究内容,如何用因式分解法解决问题,引起学生的兴趣和思考。
2.知识讲解
介绍因式分解法的基本概念和方法,以及如何将一元二次方程化为一般式进行因式分解。
3.案例分析
通过具体的例子,引导学生掌握因式分解法解一元二次方程的方法和技巧,培养学生的解题能力和思维能力。
4.练与巩固
设计一系列练题,巩固学生对因式分解法解一元二次方程的理解和掌握程度,提高学生的解题能力和思维能力。
5.拓展与应用
引导学生将所学知识应用到实际问题中,拓展学生的思维和解题能力,培养学生的创新精神和实践能力。
四、教学设计说明
本节课的教学设计注重以学生为中心,以问题为导向,以探究为主,通过实际问题引导学生掌握因式分解法解一元二次方程的方法和技巧,提高学生的解题能力和思维能力。
同时,注重学生的合作研究和交流,培养学生的团队合作精神和交流能力。
通过引导学生将所学知识应用到实际问题中,拓展学生的思维和解题能力,培养学生的创新精神和实践能力。
《用因式分解解一元二次方程》教案

《用因式分解解一元二次方程》教案用因式分解解一元二次方程教案目标本教案旨在介绍如何使用因式分解的方法解一元二次方程。
知识回顾在开始讲解因式分解解一元二次方程之前,让我们先回顾一下相关的知识点:- 一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数且a≠0。
- 一元二次方程的解可以分为实数解和虚数解,实数解可以进一步分为有理数解和无理数解。
解题步骤接下来,我们将介绍使用因式分解解一元二次方程的步骤:步骤1:将一元二次方程化为标准形式(即将方程中的项按次数降序排列)。
步骤2:确定方程中的a、b和c的值。
步骤3:使用因式分解将方程进行分解。
步骤4:令因式中的每一个部分等于0,解方程得到各个因式对应的解。
步骤5:将得到的解进行验证,即代入原方程中检验是否满足。
实例演练下面我们通过一个实例来演示如何使用因式分解解一元二次方程:实例:解方程x^2 - 5x + 6 = 0步骤1:将方程化为标准形式,得到x^2 - 5x + 6 = 0。
步骤2:确定a、b和c的值,得到a = 1,b = -5,c = 6。
步骤3:使用因式分解将方程进行分解,得到(x - 2)(x - 3) = 0。
步骤4:令因式中的每一个部分等于0,解方程得到x - 2 = 0和 x - 3 = 0。
步骤5:求解得到x = 2 和 x = 3,将这些解代入原方程验证是否满足。
总结因式分解是解一元二次方程的一种常用方法,通过将方程进行因式分解,可以得到方程的解。
在使用因式分解解一元二次方程时,我们需要依次进行化简、确定值、分解、解方程和验证等步骤。
通过实例的演练,我们可以更好地理解和掌握这一方法。
希望本教案对你有所帮助!。
用因式分解法求解一元二次方程说课稿

用因式分解法求解一元二次方程说课稿尊敬的各位领导、老师,大家好!我是......中学的数学教师......,今天我说课的内容是北师大版初中数学九年级上册第二章第4节《用因式分解法求解一元二次方程》。
对于本节课我将从教材与学情分析、教法学法分析、教学过程设计、教学设计说明这四个方面加以阐述。
一、教材与学情分析1.教材的地位和作用:本节课是在学生学习了用配方法和公式法解一元二次方程的基础上展开的,学习一元二次方程的第三种解法-----因式分解法。
任何一个一元二次方程都可以用配方法和公式法这两种方法中的一种来解,为什么还要学习因式分解法解一元二次方程呢?因为对于某些特殊的一元二次方程,用因式分解法解起来更简便。
培养学生观察思考,避繁就简和一题多解的能力等都具有重要的作用。
因式分解法解一元二次方程既可以复习八年级学过的因式分解的方法,又可以为后续处理有关一元二次方程的问题时提供多一些思路和方法。
2.学情分析:学生在八年级已经学习了因式分解,掌握了用提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;在本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。
同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具备了一定的合作与交流的能力。
3.教学目标基于以上对教材的理解和学情的分析,根据新课标对方程的具体要求,并结合我校九年级学生的实际情况,我确定了如下教学目标:①知识与技能:了解因式分解法的概念,会利用因式分解法解简单数字系数的一元二次方程。
②过程与方法:经历探索因式分解法解一元二次方程的过程,发展学生合情推理的能力,体验解决问题方法的多样性,灵活选择解方程的方法。
③情感态度与价值观:积极探索不同的解法,并和同伴交流,在学习活动中获得成功的体验,建立学好数学的兴趣和信心。
4.教学重点难点:重点:应用因式分解法解一元二次方程。
难点:将方程化为一般式后,对方程左侧进行因式分解。
用因式分解法解一元二次方程说课稿

用因式分解法解一元二次方程说课稿第一部分:教材分析:(一)教材所处的地位:本节课是在学生学习了一元二次方程的解法和根的判别式的基础上展开的,它在整个中学教学中有很重要的地位,学好这一节内容,在处理有关一元二次方程的问题时,就会多一些思路和方法,同时为今后进一步学习方程理论打下基础。
(二)根据教学大纲的要求,本课的教学目标是:1、能根据具体一元二次方程的特征,灵活选择方程的解法。
体会解决问题方法的多样性。
2、会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程。
3、能力训练点:通过新方法的学习,培养学生分析问题解决问题的能力及探索精神。
4、德育渗透点:通过因式分解法的学习使学生树立转化的思想。
(三)、本课的教学重点:掌握分解因式法解一元二次方程。
(四)、本课的教学难点:熟练灵活运用分解因式法解一元二次方程。
(五)、教学方法:本节课我采用的是“讲练结合”法。
第二部分:教学过程设计:根据选定的教法与学法,我的教学流程分为回顾交流引入新课、范例学习、随堂练习、课堂小结、布置作业五个部分教学过程(一)回顾交流、引入新课1、复习前面学过的“配方法”和“公式法”两种解一元二次方程的方法及分解因式的相关知识。
2、学习了公式法,便可以解所有的一元二次方程.对于有些一元二次方程,例如(x-2)(x+3)=0,如果转化为一般形式,利用公式法就比较麻烦,如果转化为x-2=0或x+3=0,解起来就变得简单多了。
即可得x1=2,x2=-3。
这种解一元二次方程的方法就是本节课要研究的解一元二次方程的方法——因式分解法。
3、整体感知,所谓因式分解,是将一个多项式分解成几个一次因式积的形式。
如果一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零,用因式分解法更为简单。
以课本67面的问题“x2=3x”三位同学不同做法中小亮的想法:ab=0零,那么这两个因式至少有一个等于零.反之,如果两个因式有一个等于零,它们的积也就等于零.即有下列三层含义①a=0且b≠0②a≠0且b=0③a=0且b=0把原方程转化成为x(x – 3)=0于是x=0,或x – 3=0,因此x1=0,x2=3。
2.4北师版九年级上册数学因式分解法解一元二次方程--说课稿北师大版

因式分解法解一元二次方程说课稿我是_________选手。
我今天说课的课题是因式分解法解一元二次方程选自北师大版九年级上册第二章第四节。
我说课的流程主要分为五大步:一、教材分析二、学情分析三、教法学法四、教学过程五、教学反思向大家介绍一下我对本节课的理解与分析。
一、教材分析1、教材的地位和作用一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程、二次函数等知识的基础。
初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,在本章教材中都有比较多的体现、应用和提升。
我们从知识的横向联系上来看,学习一元二次方程对其它学科有重要意义。
很多实际问题都需要通过列、解一元二次方程来解决。
而我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。
解二次方程的基本策略是将其转化为一次方程,这就是降次。
本节课由简到难的展开学习,使学生认识即配方法、公式法后又一种新的解法因式分解法的基本原理并掌握其具体方法。
2、学生学情分析任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。
这就要求我们教师必须从学生的认知结构和心理特征出发。
分析初中学生的心理特征,他们有强烈的好奇心和求知欲。
当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。
而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式、二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。
3、教学目标根据大纲的要求、本节教材的内容和学生的心理特征及已有的知识经验,本节课的三维目标主要体现在:知识与能力目标:(1)理解因式分解法的思想,掌握用因式分解法解一元二次方程; (2)能利用方程解决实际问题,并增强学生的数学应用意识和能力。
2024年《因式分解》说课稿

2024年《因式分解》说课稿2024年《因式分解》说课稿1一、说教材1、说教材的地位与作用。
我今天说课的内容是浙教版数学七年级下册第六章第一节内容《因式分解》。
因式分解就整个数学而言,它是打开整个代数宝库的一把钥匙。
就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。
它是在学生掌握了因数分解、整式乘法的基础上来讨论因式分解概念,通过这节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习分式、解方程及代数式的恒等变形作铺垫。
因此,它起到了承上启下的作用。
二、说目标1、教学目标。
《新课标》指出“初中数学的教学,不仅要使学生学好基础知识,发展能力,还要注意培养学生初步的辩证唯物主义观点。
”因此,根据本节内容所处的地位,我定如下教学目标:知识目标:理解因式分解的概念和意义,掌握因式分解与整式乘法之间的关系。
能力目标:①经历从分解因数到分解因式的类比过程,培养学生的观察、发现、类比、化归、概括等能力;②通过对因式分解与整式乘法的关系的理解,克服学生的思维定势,培养他们的逆向思维能力;情感目标:培养学生乐于探究,合作的习惯,体验探索成功,感受到成功的乐趣。
2、教重点与难点。
重点是因式分解的概念。
理由是理解因式分解的概念的本质属性是学习整章因式分解的灵魂。
难点是理解因式分解与整式乘法的相互关系,理由是学生由整式乘法到因式分解的变形是一个逆向思维。
在前面学了较长时间的整式乘法,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成。
三、说教法1、教法分析针对初一学生的年龄特点和心理特征,以及他们的知识水平,我采用启发式、发现法等教学方法,培养学生分析问题,解决问题的能力。
同时遵循教师为主导,学生为主体,训练为主线的教学原则。
2、学法指导在教师的启发下,让学生成为行为主体。
正如《新课标》所要求的,让学生“动手实践、自主探索、合作交流”。
3、教学手段采用多媒体辅助教学,增加课堂容量,提高教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解法解一元二次方程说课稿
一、教材分析
1、教材的地位和作用
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程、二次函数等知识的基础。
初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,在本章教材中都有比较多的体现、应用和提升。
我们从知识的横向联系上来看,学习一元二次方程对其它学科有重要意义。
很多实际问题都需要通过列、解一元二次方程来解决。
而我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。
解二次方程的基本策略是将其转化为一次方程,这就是降次。
本节课由简到难的展开学习,使学生认识即配方法、公式法后又一种新的解法因式分解法的基本原理并掌握其具体方法。
2、学生学情
任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。
这就要求我们教师必须从学生的认知结构和心理特征出发。
分析初中学生的心理特征,他们有强烈的好奇心和求知欲。
当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。
而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式、二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。
3、教学目标
根据大纲的要求、本节教材的内容和学生的心理特征及已有的知识经验,本节课的三维目标主要体现在:
知识与能力目标:
(1)理解因式分解法的思想,掌握用因式分解法解一元二次方程;(2)能利用方程解决实际问题,并增强学生的数学应用意识和能力。
过程与方法目标:通过利用因式分解法将一元二次方程变形的过程,体会“等价转化”的数学思想方法。
情感与态度目标:培养学生主动探究的精神与积极参与的意识。
4、教学重点与难点
教学重点:运用因式分解法解一些能分解的一元二次方程。
教学难点:发现与理解因式分解的方法。
二、教法、学法:
本节课我主要采用启发式、类比法、探究式的教学方法。
教学中力求体现“类比---探究-----归纳”的模式。
有计划的逐步展示知识的产生过程,渗透数学思想方法。
由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。
同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。
三、教学过程设计
1、创设情景,引入新课
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。
通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。
由因式分解从而激发学生的求知欲望,顺利地进入新课。
2、观察比较,探索新知
若ab=0,则a、b的值会有哪些情况?
a=0或b=0或a=b=0
例1、解下列方程,从中你能发现什么新的方法?
(1)2x2-4x=0;(2)x2-4=0.
归纳:利用因式分解使方程化为两个一次式乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫作因式分解法.
老师提示: 1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2. 关键是熟练掌握因式分解的知识;3.理论依据是“如果两个因式的积等于零,那么至少有一个因式等于零.”
3、随堂练习,巩固深化
在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习课
本习题,在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。
个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。
学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。
同时也起到了分层次教学的作用。
4、小结归纳,作业布置
整个过程让学生自己进行,以培养学生的归纳、概括的能力。
考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类。
以便同时兼顾到学有困难和学有余力的学生。
四、教学评价
根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。