专题四 动能定理的综合应用
高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

专题四 电磁感应与电路一、考点回顾“电磁感应”是电磁学的核心内容之一,同时又是与电学、力学知识紧密联系的知识点,是高考试题考查综合运用知识能力的很好落脚点,所以它向来高考关注的一个重点和热点,本专题涉及三个方面的知识:一、电磁感应,电磁感应研究是其它形式有能量转化为电能的特点和规律,其核心内容是法拉第电磁感应定律和楞次定律;二、与电路知识的综合,主要讨论电能在电路中传输、分配,并通过用电器转化为其它形式的能量的特点及规律;三、与力学知识的综合,主要讨论产生电磁感应的导体受力、运动特点规律以及电磁感应过程中的能量关系。
由于本专题所涉及的知识较为综合,能力要求较高,所以往往会在高考中现身。
从近三年的高考试题来看,无论哪一套试卷,都有这一部分内容的考题,题量稳定在1~2道,题型可能为选择、实验和计算题三种,并且以计算题形式出现的较多。
考查的知识:以本部分内容为主线与力和运动、动量、能量、电场、磁场、电路等知识的综合,感应电流(电动势)图象问题也经常出现。
二、典例题剖析根据本专题所涉及内容的特点及高考试题中出的特点,本专题的复习我们分这样几个小专题来进行:1.感应电流的产生及方向判断。
2.电磁感应与电路知识的综合。
3.电磁感应中的动力学问题。
4.电磁感应中动量定理、动能定理的应用。
5.电磁感应中的单金属棒的运动及能量分析。
6.电磁感应中的双金属棒运动及能量分析。
7.多种原因引起的电磁感应现象。
(一)感应电流的产生及方向判断1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。
导线框与磁场区域的尺寸如图所示。
从t =0时刻开始线框匀速横穿两个磁场区域。
以a →b →c →d →e →f 为线框中有电动势的正方向。
以下四个ε-t 关系示意图中正确的是【 】解析:楞次定律或左手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1-2s 内,磁通量不变化,感应电动势为0,A 选项错误;2-3s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确。
高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析

高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R'≥(1分)小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.3.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m =由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.4.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N .5.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。
专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用

第18练电磁感应中的动量问题电磁感应规律的综合应用1.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上,选运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02项A、C正确,B、D错误.2.(多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q,合上开关S后()A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.3.(多选)(2022·湖南卷·10)如图,间距L =1 m 的U 形金属导轨,一端接有0.1 Ω的定值电阻R ,固定在高h =0.8 m 的绝缘水平桌面上.质量均为0.1 kg 的匀质导体棒a 和b 静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为0.1 Ω,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒a 距离导轨最右端1.74 m .整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为0.1 T .用F =0.5 N 沿导轨水平向右的恒力拉导体棒a ,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,撤去F ,导体棒a 离开导轨后落到水平地面上.重力加速度取10 m/s 2,不计空气阻力,不计其他电阻,下列说法正确的是( )A .导体棒a 离开导轨至落地过程中,水平位移为0.6 mB .导体棒a 离开导轨至落地前,其感应电动势不变C .导体棒a 在导轨上运动的过程中,导体棒b 有向右运动的趋势D .导体棒a 在导轨上运动的过程中,通过电阻R 的电荷量为0.58 C答案 BD解析 导体棒a 在导轨上向右运动,产生的感应电流方向向里,流过导体棒b 的电流方向向里,由左手定则可知安培力向左,则导体棒b 有向左运动的趋势,故C 错误;导体棒b 与电阻R 并联,有I =BL v 0.15 Ω,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,有B ·I 2·L =μmg ,联立解得导体棒a 的速度为v =3 m/s ,导体棒a 离开导轨至落地前做平抛运动,有x=v t ,h =12gt 2,联立解得导体棒a 离开导轨至落地过程中水平位移为x =1.2 m ,故A 错误;导体棒a 离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B 正确;导体棒a 在导轨上运动的过程中,通过电路的电荷量为q =I ·Δt =BL ·Δx 0.15 Ω=0.1×1×1.740.15 C =1.16 C ,导体棒b 与电阻R 并联,则通过电阻R 的电荷量为q R =q 2=0.58 C ,故D 正确.4.(2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R 方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3 解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)足够长的平行光滑金属导轨ab 、cd 水平放置于竖直向上的匀强磁场中,ac 之间连接阻值为R 的电阻,导轨间距为L ,导体棒ef 垂直导轨放置且与导轨接触良好,导体棒质量为m 、电阻为r .t =0时刻对导体棒施加一个水平向右的力F (图中未画出),导体棒在F 的作用下开始做初速度为零的匀加速直线运动,当导体棒运动x 距离时撤去外力F ,此时导体棒的速度大小为v 0.若不计导轨电阻,则下列说法正确的是( )A .外力F 的大小与时间的关系式为F =ma +B 2L 2at R +rB .t =0时刻外力F 的大小为m v 022xC .从撤去外力F 到导体棒停止运动,电阻R 上产生的焦耳热为12m v 02 D .从撤去外力F 到导体棒停止运动,导体棒运动的位移大小为m v 0(R +r )B 2L 2答案 ABD 解析 由题知导体棒在F 的作用下开始做初速度为零的匀加速直线运动,根据牛顿第二定律有F -B 2L 2v R +r =ma ,v =at ,整理有F =B 2L 2at R +r+ma ,A 正确;由v 02=2ax ,解得在t =0时刻F =ma =m v 022x ,B 正确;从撤去外力F 到导体棒停止运动,根据动能定理有Q =12m v 02,则R 上产生的焦耳热为Q R =R R +r Q =Rm v 022(R +r ),C 错误;从撤去外力F 到导体棒停止运动,根据动量定理有-B I Lt =0-m v 0,I ·t =BL vR +r ·t =BLx R +r ,联立解得x =m v 0(R +r )B 2L 2,D 正确. 2.(多选)(2022·湖南衡阳市二模)如图,光滑平行导轨上端接一电阻R ,导轨弯曲部分与水平部分平滑连接,导轨间距为l ,导轨水平部分左端有一竖直向上的匀强磁场,磁感应强度大小为B ,现将金属棒PQ 从导轨弯曲部分的上端由静止释放,金属棒刚进入磁场时的速度大小为v 1,离开磁场时的速度大小为v 2,改变金属棒释放的高度,使其释放高度变为原来的12,金属棒仍然可以通过磁场区域,导轨和金属棒的电阻不计,则( ) A .金属棒通过磁场区域时金属棒中的电流方向为由P 到QB .金属棒第二次离开磁场时的速度大小为v 2-(1-22)v 1C .金属棒在两次通过磁场区域的过程中电阻R 上产生的热量相等D .金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等答案 BD解析 金属棒通过磁场区域时,由右手定则可知,金属棒中的电流方向为由Q 到P ,故A 错误;金属棒第二次释放的高度变为原来的12,由动能定理可知,进入匀强磁场时的速度大小为v 3=2v 12,金属棒通过磁场区域的过程中,根据动量定理有-B I lt =Δp ,又因为I =E R,E =ΔΦt ,所以-Bl ΔΦR=Δp ,则可知金属棒两次通过匀强磁场区域的过程中动量变化量相同,速度变化量也相同,则v 2-v 1=v 4-v 3,故金属棒第二次离开磁场时的速度大小为v 4=v 2-(1-22)v 1,故B 正确;金属棒第二次通过磁场区域的过程中所用时间长且减少的动能少,则电阻R 上产生的热量少,故C 错误;由电荷量q =ΔΦR,可知金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等,故D 正确.3.(多选)如图所示,足够长的水平光滑金属导轨所在空间中,分布着垂直于导轨平面方向竖直向上的匀强磁场,磁感应强度大小为B .两导体棒a 、b 均垂直于导轨静止放置.已知导体棒a 质量为2m ,导体棒b 质量为m ,长度均为l ,接入电路的电阻均为r ,其余部分电阻不计.现使导体棒a 获得瞬时平行于导轨水平向右的初速度v 0.除磁场作用外,两棒沿导轨方向无其他外力作用,在两导体棒运动过程中,下列说法正确的是( )A .任何一段时间内,导体棒b 的动能增加量跟导体棒a 的动能减少量在数值上总是相等的B .任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反C .全过程中,通过导体棒b 的电荷量为2m v 03BlD .全过程中,导体棒b 共产生的焦耳热为m v 026答案 BCD解析 根据题意可知,两棒组成闭合回路,电流相同,故所受安培力的合力为零,动量守恒,故任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 的动能减少量在数值上等于b 的动能增加量与产热之和,故A 错误,B 正确;两棒最终共速,根据动量守恒定律,有2m v 0=(2m +m )v ,对b 棒m v -0=B I l ·t =Blq ,联立解得q =2m v 03Bl,故C 正确;根据能量守恒定律,可知两棒共产生的焦耳热为Q =12×2m v 02-12()2m +m v 2=m v 023,而由于两棒的电阻大小相等,因此b 棒产生的焦耳热为Q b =12Q =m v 026,故D 正确. 4.(2022·山东烟台市、德州市一模)有一边长为L 、质量为m 、总电阻为R 的正方形导线框自磁场上方某处自由下落,如图所示.匀强磁场区域Ⅰ、Ⅱ的磁感应强度大小均为B ,二者宽度分别为L 、H ,且H >L .导线框恰好匀速进入区域Ⅰ,一段时间后又恰好匀速离开区域Ⅱ,重力加速度为g ,下列说法正确的是( )A .导线框离开区域Ⅱ的速度大于mgRB 2L2 B .导线框刚进入区域Ⅱ时的加速度大小为g ,方向竖直向上C .导线框进入区域Ⅱ的过程产生的焦耳热为mgHD .导线框自开始进入区域Ⅰ至刚完全离开区域Ⅱ的时间为6B 2L 3mgR答案 C解析 由题意知,导线框恰好匀速离开区域Ⅱ,则有mg =BIL =B 2L 2v R ,解得v =mgR B 2L2,A 错误;导线框进入区域Ⅰ到刚要进入区域Ⅱ过程一直做匀速运动,有v =mgR B 2L2,导线框下边刚进入磁场区域Ⅱ时,上、下边都切割磁感线,由法拉第电磁感应定律可知E 2=BL v +BL v =2BL v ,又I 2=E 2R ,联立解得I 2=2BL v R,导线框所受安培力F 2=2BI 2L ,由牛顿第二定律有F 2-mg =ma ,解得a =3g ,方向竖直向上,B 错误;开始进入区域Ⅱ时与开始离开区域Ⅱ时,速度大小相等,则导线框产生的焦耳热等于重力势能的减少量,有Q =mgH ,C 正确;导线框自开始进入区域Ⅰ至开始进入区域Ⅱ的过程中,t 1=L v =B 2L 3mgR,导线框自开始进入区域Ⅱ至开始离开区域Ⅱ过程中,由动量定理得mgt 2-F 安2Δt =m v -m v ,即mgt 2-BL 2BL 2R =0,解得t 2=2B 2L 3mgR ,导线框自开始离开区域Ⅱ至刚完全离开区域Ⅱ过程中,t 3=L v =B 2L 3mgR,故t =t 1+t 2+t 3=4B 2L 3mgR,D 错误. 5.(多选)(2022·河北省模拟)如图所示,两根相距L 且电阻不计的足够长光滑金属导轨,导轨左端为弧形,右端水平,且水平部分处于方向竖直向下、磁感应强度大小为B 的匀强磁场中.铜棒a 、b 电阻均为R 、质量均为m ,均与导轨垂直且与导轨接触良好,铜棒b 静止在导轨水平部分,铜棒a 在弧形导轨上从距离水平部分高度为h =0.5L 处由静止释放,重力加速度为g ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为gLBL RB .铜棒b 的最大加速度为gLB 2L 22mRC .铜棒b 获得的最大速度为gLD .回路中产生的总焦耳热为mgL 4答案 BD解析 铜棒a 沿弧形导轨下滑,刚进入磁场区域时,由机械能守恒定律有mgh =12m v 2,且h =0.5 L ,解得v =gL ,回路中的最大感应电动势E =BL v ,回路中的最大电流I =E 2R,联立解得I =BL gL 2R,故A 错误;铜棒b 受到的最大安培力F 安=BIL ,由牛顿第二定律有F 安=ma ,解得铜棒b 的最大加速度a =B 2L 2gL 2mR,故B 正确;铜棒a 、b 在匀强磁场中做切割磁感线运动的过程中,整体所受合外力为零,动量守恒,最终铜棒a 、b 速度相等,由动量守恒定律得m v =2m v ′,解得铜棒b 获得的最大速度为v ′=gL 2,故C 错误;由能量守恒定律得,回路中产生的总焦耳热为Q =12m v 2-12×2m v ′2=mgL 4,故D 正确. 6.(多选)(2022·广东韶关市二模)某高中科研兴趣小组利用课余时间进行研究电磁阻尼效果的研究性学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22C 答案 AD 解析 穿过线框的磁通量变化导致线框中产生感应电流,使线框受到安培力的作用,从而使速度改变;当线框完全进入磁场时,磁通量不变,速度不变,则由题图乙可知x 0=1 m ,A正确;线框进入磁场的过程中,安培力F =BIL ,其中I =E R =BL v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,因此线框做变减速运动,B 错误;根据能量守恒定律可知,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场的过程中,取水平向右为正方向,根据动量定理可得-B 2L 2v R t =m v -m v 0,整理得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入解得B =150 T ,通过线框某横截面的电荷量为q =I t =Bx 02R ,解得q =22 C ,D 正确. 7.(多选)(2022·宁夏吴忠中学三模)如图所示,两段均足够长、不等宽的光滑平行导轨固定在水平面上,较窄导轨的间距L 1=1 m ,较宽导轨的间距L 2=1.5 m .整个装置处于磁感应强度大小为B =0.5 T 、方向竖直向上的匀强磁场中,导体棒MN 、PQ 的质量分别为m 1=0.4 kg 、m 2=1.2 kg ,长度分别为1 m 、1.5 m ,电阻分别为R 1=0.3 Ω、R 2=0.9 Ω,两导体棒静止在水平导轨上.t =0时刻,导体棒MN 获得v 0=7 m/s 、水平向右的初速度.导轨电阻忽略不计,导体棒MN 、PQ 始终与导轨垂直且接触良好,导体棒MN 始终在较窄导轨上运动,取g =10 m/s 2则( )A .t =0时刻,回路中的电流为3512A B .导体棒MN 最终做匀速直线运动,速度大小为3 m/sC .通过导体棒MN 的电荷量最大值为3.4 CD .导体棒PQ 中产生的焦耳热最大值为4.2 J答案 ABD解析 t =0时刻,回路中的电流为I 0=E R =BL 1v 0R 1+R 2=3512A ,故A 正确;导体棒MN 与PQ 切割磁感线产生的电动势相互削弱,当两导体棒产生的电动势相等时,感应电流为零,所受安培力为零,故两导体棒最终做匀速直线运动,此时有BL 1v MN =BL 2v PQ ,设从导体棒MN 开始运动至导体棒MN 、PQ 做匀速运动所用的时间为Δt ,取水平向右为正方向,对导体棒MN 分析,由动量定理得-BL 1I ·Δt =m 1v MN -m 1v 0,对导体棒PQ 分析,由动量定理得BL 2I ·Δt =m 2v PQ ,又因为q =I ·Δt ,联立解得v MN =3 m/s ,v PQ =2 m/s ,q =3.2 C ,故B 正确,C 错误;由能量守恒定律得12m 1v 02=12m 1v MN 2+12m 2v PQ 2+Q 总,Q PQ =R 2R 1+R 2Q 总,代入数据联立解得Q PQ =4.2 J ,故D 正确.8.(多选)如图所示,竖直放置的两根足够长的光滑金属导轨相距L ,导轨的两端分别与电源(串联一滑动变阻器R )、定值电阻R 0、电容器(电容为C ,原来不带电)和开关S 相连.整个空间充满了磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场.一质量为m 、电阻不计的金属棒ab 横跨在导轨上.已知电源电动势为E 、内阻为r ,不计导轨的电阻.当S 接1,滑动变阻器R 接入电路一定阻值时,金属棒ab 在磁场中恰好保持静止.当S 接2后,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度.重力加速度为g ,则下列说法正确的是( )A .当S 接1时,滑动变阻器接入电路的阻值R =EBLmgB .若将ab 棒由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CBL vC .当S 接2时,金属棒ab 从静止开始到刚好达到稳定速度所经历的时间t =B 2L 2h +m 2gR 02mgR 0B 2L 2D .若将ab 棒由静止释放的同时,将S 接到3,则金属棒ab 将做匀加速直线运动,加速度大小a =mgm +CB 2L 2答案 BD解析 当S 接1时,有I =E R +r ,由平衡条件得mg =BIL ,联立解得R =EBLmg -r ,故A 错误;当S 接2,速度稳定时有mg =B 2L 2v R 0,解得v =mgR 0B 2L 2,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度,根据动量定理可得mgt -B I Lt =m v ,即mgt -B 2L 2vR 0·t =m v ,其中vt =h ,联立解得t =B 4L 4h +m 2gR 02mgR 0B 2L 2,故C 错误;若将棒ab 由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CU =CBL v ,根据动量定理可得mg Δt -B I ′L Δt =m Δv ,即mg Δt -BL ·ΔQ =m Δv ,将ΔQ =CBL Δv 代入解得mg Δt -CB 2L 2Δv =m Δv ,所以a =Δv Δt =mgm +CB 2L 2,金属棒ab 将做匀加速直线运动,故B 、D 正确.9.如图所示,两电阻不计的光滑平行金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、长度为L 、电阻不计的金属杆,杆始终与导轨接触良好.整个装置处于磁感应强度大小为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现使杆从M 点以v 0的速度竖直向上运动,经历时间t ,到达最高点N ,重力加速度大小为g .求t 时间内:(1)流过电阻的电荷量q ; (2)电阻上产生的焦耳热Q . 答案 (1)m v 0-mgtBL(2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)杆竖直向上运动的过程中,取v 0方向为正方向,根据动量定理,有-mgt -F t =0-m v 0 F =BL I q =I t联立解得q =m v 0-mgt BL(2)设杆上升的高度为h ,取v 0方向为正方向,由动量定理得-mgt -B 2L 2vR t =0-m v 0又h =v t联立解得h =mR (v 0-gt )B 2L 2杆上升过程中由能量守恒定律可知,电阻上产生的焦耳热Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.10.(2022·天津市一模)如图,间距为L 的两平行金属导轨右端接有电阻R ,固定在离地高为H 的平面上,空间存在着方向竖直向下、磁感应强度大小为B 的匀强磁场.质量为m 的金属杆ab 垂直导轨放置,杆获得一个大小为v 0的水平初速度后向左运动并离开导轨,其落地点距导轨左端的水平距离为s .已知重力加速度为g ,忽略一切摩擦和阻力,杆和导轨电阻不计.求:(1)杆即将离开导轨时的加速度大小a ;(2)杆穿过匀强磁场的过程中,克服安培力做的功W ; (3)杆ab 在水平导轨上运动的位移大小x .答案 (1)B 2L 2s 2mRH 2gH (2)12m (v 02-gs 22H ) (3)mR B 2L 2(v 0-s 2H2gH ) 解析 (1)杆离开导轨后做平抛运动,则有H =12gt 2,s =v t ,联立解得杆离开导轨时的速度大小为v =sg 2H杆离开导轨时,产生的感应电动势为E =BL v 感应电流大小为I =ER杆受到的安培力大小为F =BIL 根据牛顿第二定律可得F =ma联立解得杆即将离开导轨时的加速度大小为a =B 2L 2s2mRH 2gH(2)根据动能定理,可得-W =12m v 2-12m v 02则杆穿过匀强磁场的过程中,克服安培力做的功为 W =12m (v 02-gs 22H)(3)根据动量定理,可得-B I Lt =m v -m v 0 q =I t =BLxR联立解得x =mR B 2L 2(v 0-s2H2gH ).11.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 接入电路的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度大小为B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度-时间图像如图乙所示(以a 运动的方向为正方向),其中m a =2 kg ,m b =1 kg ,g 取10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 答案 (1)5 s (2)73 C (3)1156J解析 (1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b 0,对杆b 运用动量定理,有Bd I ·Δt =m b (v 0-v b 0) 由题图乙可知,v b 0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度大小为v ′,由动量守恒定律得m a v a -m b v b 0=(m a +m b )v ′ 代入数据解得v ′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′,则由动量定理可得-Bd I ′·Δt ′=m a (v ′-v a ),而q =I ′·Δt ′ 代入数据解得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的总焦耳热为Q =m a gh +12m b v 02-12(m b +m a )v ′2=1616 J则b 杆中产生的焦耳热为Q ′=R b R a +R bQ =1156 J.错题统计(题号)对应考点错因分析动量定理在电磁感应中的应用动量守恒定律在电磁感应中的应用电磁感应中的综合问题一、动量定理、动量守恒定律在电磁感应中的应用导体棒在磁场中做变速运动,所受安培力是变力,可用动量定理求速度、位移、电荷量、时间等.对于双杆问题,若双杆所受外力为零,可用动量守恒定律分析.1.单杆运动问题已知量(其中B、L、m已知)待求量关系式(以棒减速为例)v1、v2q -B I LΔt=m v2-m v1,q=IΔtv1、v2、R总x -B2L2vΔtR总=m v2-m v1,x=vΔtF其他为恒力,v1、v2、q Δt-B I LΔt+F其他Δt=m v2-m v1,q=IΔtF其他为恒力,v1、v2、R总、x(或Δt)Δt(或x)-B2L2vΔtR总+F其他·Δt=m v2-m v1,x =vΔt2.双杆运动问题(1)等间距轨道上的双杆问题①双杆所受外力的合力为零时,若只需求末速度,可用动量守恒定律分析.②若需求电荷量、位移、时间等,则需要利用动量定理分析.(2)不等距导轨上的双杆问题由于合外力不为零,不等距导轨上的双杆问题需用动量定理分析.常见的双杆模型:题型一(等距、初速度、光滑、平行)题型二(不等距、初速度、光滑、平行)题型三(等距、恒力、光滑、平行)示意图导体棒长度L1=L2导体棒长度L1=2L2,两棒只在各自的轨道上运动导体棒长度L1=L2图像观点力学观点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒以相等的速度匀速运动棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒的加速度均为零,速度之比为1∶2开始时,两棒做变加速运动;稳定时,两棒以相同的加速度做匀加速运动动量观点两棒组成的系统动量守恒两棒组成的系统动量不守恒对单棒可以用动量定理两棒组成的系统动量不守恒对单棒可以用动量定理能量观点系统动能的减少量等于产生的焦耳热系统动能的减少量等于产生的焦耳热拉力做的功一部分转化为双棒的动能,一部分转化为内能(焦耳热):W=Q+E k1+E k23.杆+电容器模型基本模型规律无外力,电容器充电(电阻阻值为R,导体棒电阻不计,电容器电容为C)无外力,电容器放电(电源电动势为E,内阻不计,导体棒电阻不计,电容器电容为C)电路特点导体棒相当于电源,电容器被充电电容器放电,相当于电源;导体棒受安培力而运动电流的特点安培力为阻力,棒减速,E减小,有I=BL v-U CR,电容器被充电,U C变大,当BL v=U C时,I=0,F安=0,棒做匀电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
【解析】 【分析】 【详解】(1)小球离开台面到达A 点的过程做平抛运动,故有02 3m/s tan y v ghv θ=== 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为201 4.5J 2p E mv ==; (2)小球在A 处的速度为5m/s cos A v v θ== 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得221111sin cos 22C A mgL mgL mv mv θμθ-=- 解得()212sin cos 10m/s C A v v gL θμθ=+-=;(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;那么对小球能通过最高点时,在最高点应用牛顿第二定律可得21v mg m R≤;对小球从C 到最高点应用机械能守恒可得2211152222C mv mgR mv mgR =+≥ 解得202m 5Cv R g<≤=;对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得212C mv mgh mgR =≤ 解得2=5m 2C v R g≥;故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=Hx由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h 3=1.8m②当离传送带高度为h 4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m5.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯6.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。
人教版2014年高考物理二轮复习专题:四 动能定理的综合应用(含答案解析)

专题四 动能定理的综合应用1. (多选)位于水平面上的物体在水平恒力F 1作用下,做速度为v 1的匀速运动.若作用力变为斜向上的恒力F 2,物体做速度为v 2的匀速运动,且F 1与F 2功率相同.则可能有( )A. F 2=F 1,v 1>v 2B. F 2=F 1,v 1<v 2C. F 2>F 1,v 1>v 2D. F 2<F 1,v 1<v 22. (多选)(2013·广东六校联考)某新型节能环保电动车在平直路面上启动时的速度图象如图所示,Oa 段为直线,ab 段为曲线,bc 段是水平直线.设整个过程中电动车所受的阻力不变,则下列说法中正确的是( )A. 0t 1时间内电动车做匀加速直线运动B. t 2t 3时间内电动车的牵引力为零C. t 1t 2时间内电动车的平均速度为12(v 1+v 2) D. t 1t 2时间内合外力对电动车做的功为12m 22v -12m 21v3. (多选)(2013·盐城中学)一质量为1kg的质点静止于光滑水平面上,从t=0时起,第1 s内受到2N的水平外力作用,第2 s内受到同方向的1N的外力作用.下列说法中正确的是( )A. 02 s内外力的平均功率是94 WB. 第2 s内外力所做的功是54 JC. 第2 s末外力的瞬时功率最大D. 第1 s内与第2 s内质点动能增加量的比值是4 54. (多选)(2013·扬泰南连淮三模)一质量为m的物体以速度v0在足够大的光滑水平面上运动,从零时刻起,对该物体施加一水平恒力F,经过时间t,物体的速度减小到最小值35v,此后速度不断增大. 则( )A. 水平恒力F大小为0 25 mvtB. 水平恒力作用2t时间,物体速度大小为v0C. 在t时间内,水平恒力做的功为-825m20vD. 若水平恒力大小为2F,方向不变,物体运动过程中的最小速度仍为35v5. (多选)如图所示,质量为m 的滑块以一定初速度滑上倾角为θ的固定斜面,同时施加一沿斜面向上的恒力F=mgsin θ;已知滑块与斜面间的动摩擦因数μ=tan θ,取出发点为参考点,能正确描述滑块运动到最高点过程中产生的热量Q,滑块动能E k 、势能E p 、机械能E 随时间t 、位移x 关系的是( )6. (多选)如图所示,圆心在O 点、半径为R 的光滑圆弧轨道ABC 竖直固定在水平桌面上,OC 与OA 的夹角为60°,轨道最低点A 与桌面相切. 一足够长的轻绳两端分别系着质量为m 1和m 2的两小球(均可视为质点),挂在圆弧轨道光滑边缘C 的两边,开始时m 1位于C 点,然后从静止释放.则( )A. 在m1由C点下滑到A点的过程中两球速度大小始终相等B. 在m1由C点下滑到A点的过程中重力对m1做功的功率先增大后减小C. 若m1恰好能沿圆弧下滑到A点,则m1=2m2D. 若m1恰好能沿圆弧下滑到A点,则m1=3m27. (2013·常州模拟)如图所示的木板由倾斜部分和水平部分组成,两部分之间由一段圆弧面相连接.在木板的中间有位于竖直面内的光滑圆槽轨道,斜面的倾角为θ.现有10个质量均为m、半径均为r的均匀刚性球,在施加于1号球的水平外力F的作用下均静止,力F与圆槽在同一竖直面内,此时1号球球心距它在水平槽运动时的球心高度差为h.现撤去力F使小球开始运动,直到所有小球均运动到水平槽内.重力加速度为g.求:(1) 水平外力F的大小.(2) 1号球刚运动到水平槽时的速度.(3) 整个运动过程中,2号球对1号球所做的功.8. 某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f. 轻杆向右移动不超过l 时,装置可安全工作. 一质量为m 的小车若以速度v 0 撞击弹簧,将导致轻杆向右移动4l. 轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦.(1) 若弹簧的劲度系数为k,求轻杆开始移动时,弹簧的压缩量x. (2) 求为使装置安全工作,允许该小车撞击的最大速度v m .(3) 讨论在装置安全工作时,该小车弹回速度v'和撞击速度v 的关系.专题四 动能定理的综合应用1. BD2. AD3. AD4. BCD5. CD6. BC7. (1) 以10个小球整体为研究对象,由力的平衡条件可得tan θ=10Fmg ,解得F=10mgtan θ.(2) 以1号球为研究对象,根据动能定理可得mgh=12m 21v -0,解得v 1=2gh .(3) 撤去水平外力F 后,以10个小球整体为研究对象,利用动能定理可得10mg(h+182rsin θ)=12·10m ·v 2-0,解得 v=2(9sin )g h r θ+.以1号球为研究对象,由动能定理得 mgh+W=12mv 2,解得W=9mgrsin θ.8. (1) 轻杆开始移动时,弹簧的弹力 F=kx, 且 F=f,解得 x=fk .(2) 设轻杆移动前小车对弹簧所做的功为W,则小车从撞击到停止的过程中根据动能定理有-f 4l -W=0-12m 20v ,同理,小车以v m 撞击弹簧时 -fl-W=0-12m 2m v ,解得v m =2032flv m +.(3) 设轻杆恰好移动时,小车撞击速度为v 1,12m 21v =W,解得v 1=2-2fl v m . 当v<20-2flv m 时,v'=v.当20-2fl v m ≤v ≤2032fl v m + 时,v'=20-2fl v m .。
专题四功能关系的应用第2讲 功能关系在电学中的应用

预测2
如图3所示,一带正电小球Q,在A点由静止释放带正电
小金属块P(可视为质点),P沿OC连线运动,到B点时速度最大,
最后停止在C点.则( )
A.A点电势低于B点电势
B.P在由A向C运动的过程中,电势能一直增大
图3
C.在B点P所受的滑动摩擦力等于库仑力
D.从B到C的过程中,P的动能全部转化为电势能
解析 由于有电场力做功,故小球的机械能不守恒,小球的机械
能与弹簧的弹性势能之和是改变的,故A错误; 由题意,小球受到的电场力等于重力.在小球运动的过程中,电 场力做功等于重力做功,小球从M运动到N的过程中,重力势能 减少,转化为电势能和动能,故B错误;
释放后小球从M运动到N的过程中,弹性势能并没变,一直是0,
于N点,弹簧恰好处于原长状态.保持小球的带电量不变,现将
小球提高到M点由静止释放.则释放后小球从M运动到N的过程
中( )
A.小球的机械能与弹簧的弹性势能之和保持不变
B.小球重力势能的减少量等于小球电势能的增加量 C.弹簧弹性势能的减少量等于小球动能的增加量ε D.小球动能的增加量等于电场力和重力做功的代数和 图1
(2)若在导体棒沿导轨上滑达到稳定速度前某时刻撤去牵引力,从
撤去牵引力到棒的速度减为零的过程中通过导体棒的电荷量为q
=0.48 C,导体棒产生的焦耳热为Q2=1.12 J,则撤去牵引力时棒
的速度v′多大?
解析 设导体棒从撤去牵引力到速度为零的过程沿导轨上滑距离
为x,则有:
通过导体棒的电荷量 q= I ·Δt E 由闭合电路欧姆定律有 I = R ⑥ ⑦
带电量q=1.0×10-6 C的小球,用绝缘细线悬挂
在水平向右的匀强电场中,假设电场足够大,静
第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。
物理二轮 第一部分 专题四 学案 功和能

末汽车的速度 v=at= 3
m/s,选项 C 可估算出;
根据题图甲、乙可知,汽车的长度等于 4 s 时汽车的位移,即 l 1 2 80 3 = at = m,选项 A 可估算出; 2 3
巧学妙解王荣誉出品
专题四 学案6
因为 4 s 末汽车的瞬时速度可求出,汽车所受的合外力 F=ma 也可求出, 所以汽车在 4 s 末的瞬时功率为 P=Fv 也可估算出,
答案 (1) 2ms0 qE+mgsin θ
mgsin θ+qE 1 2 (2) mvm -(mgsin θ+qE)· ( s0 + ) 2 k
(3)见解析图
巧学妙解王荣誉出品
题后反思 应用动能定理的三点注意
专题四 学案6
(1)如果在某个运动过程中包含有几个不同运动性质的阶段 (如加速、减速阶段),可以分段应用动能定理,也可以对全
16 16 18
巧学妙解王荣誉出品
专题四 学案6
命题情况 考查点
本 学 案 栏 目 开 关
安徽 12 13 22 16 24
广东 12 13
北京 12 22 23 13 20 22
天津 12 8 13
功和功率的计算 动能定理 能量守恒定律
19 17 36
10 10
巧学妙解王荣誉出品
专题四 学案6
图3
巧学妙解王荣誉出品
专题四 学案6
(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间 t1; (2)若滑块在沿斜面向下运动的整个过程中最大速度大小为 vm, 求滑块从静止释放到速度大小为 vm 过程中弹簧的弹力所做的 功 W;
本 学 案 栏 目 开 关
(3)从滑块由静止释放瞬间开始计时, 请在乙图中画出滑块在沿 斜面向下运动的整个过程中速度与时间关系 v-t 图象. 图中横 坐标轴上的 t1、t2 及 t3 分别表示滑块第一次与弹簧上端接触、 第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴 上的 v1 为滑块在 t1 时刻的速度大小,vm 是题中所指的物理 量.(本小题不要求写出计算过程) 审题突破 ①滑块的运动过程经历三个阶段:匀加速运动、加
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四动能定理的综合应用【知识必备】(本专题对应学生用书第14-18页)1. 恒力的功 W=Fxcos θ.(1) 可以理解为 W=F(xcos θ),即力F和力的方向上发生的位移xcos θ之积.或者W=(Fcos θ)x,即位移x和位移方向上的力Fcos θ之积.(2) 变力的功可以有多种方法求解:图象法、转化法、微元法、动能定理法、功能原理法等.2. 瞬时功率P=Fvcos θ.(1) 平均功率P=WPt,=F v cos θ.(2) 机车启动的两种方式:以恒定功率启动、以恒力启动.3. 势能与势能的改变(1) 势能包括:重力势能Ep =mgh,弹性势能Ep=12kx2,电势能Ep=qφ等.(2) 势能的改变是通过力做功实现的.重力势能是通过重力做功实现的,弹性势能是通过弹力做功实现的,电势能是通过电场力做功实现的,且都满足W=-ΔEp.4. 动能定理合外力做的功等于动能的变化,即W=ΔEk.【能力呈现】能力呈现【考情分析】动能定理是高考的重点,经常与直线运动、曲线运动等综合起来进行考查.涉及的主要内容有:(1) 机车启动问题;(2) 变力做功;(3) 与电场、复合场的综合问题.基础考查以选择题题型出现,动能定理与直线运动、曲线运动相结合时以计算题题型出现,难度中等偏难.【备考策略】复习时应理清运动中功与能的转化与量度的关系,结合受力分析、运动过程分析,熟练地应用动能定理解决问题.深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方程解决多运动过程的问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.1. (2015·扬泰南三模)足球比赛中踢点球时,足球距球门10.97m ,球正对球门踢出后恰好沿水平方向从横梁的下沿擦进球门.已知足球质量为400g ,不计空气阻力,则该球员在此次踢球过程中对足球做的功约为( )A. 30JB. 60JC. 90JD. 120J【解析】 标准球门的高度为2.44 m ,由竖直方向分运动得出足球运动到球门处所需时间v x =10.970.7 m/s≈16 m/s.根据能量守恒,球员对足球做功为mgh+12m 2x v =0.4×10×2.44 J+12×0.4×162 J≈60J ,B 项正确. 【答案】 B2. (2015·苏锡常镇二模)汽车从静止开始先做匀加速直线运动,然后做匀速运动. 汽车所受阻力恒定,下列汽车功率P 与时间t 的关系图象中,能描述上述过程的是()ABCD【解析】 汽车从静止开始匀加速,加速度一定,根据牛顿第二定律有F-f=ma ,得出F=f+ma.汽车的功率为P=Fv=(f+ma)at ,P 与t 成正比例函数,A 、D 选项错误;当汽车达到最大功率时,据题意运动状态立刻变为匀速,此时牵引力瞬间从f+ma 变成f ,而速度没有突变,故汽车的功率变小且为恒定值,B 项错误,C 项正确.【答案】 C3. (2015·四川)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A. 一样大B. 水平抛的最大C. 斜向上抛的最大D. 斜向下抛的最大【解析】三个小球被抛出后,均仅在重力作用下运动,三球从同一位置落至同一水平地面时,设其下落高度为h,并设小球的质量为m,根据动能定理有mgh=12mv2-12m20v,解得小球的末速度大小为v=度大小相等,故选项A正确.【答案】 A4. (2015·海南)如图所示,一半径为R的半圆形轨道竖直固定放置,轨道两端等高.质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g,质点自P滑到Q的过程中,克服摩擦力所做的功为()A. 14mgR B.13mgRC. 12mgR D.π4mgR【解析】在Q点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有N-mg=m2vR,N=2mg,联立解得擦力做负功,根据动能定理可得mgR-W f =12mv 2,解得W f =12mgR ,所以克服摩擦力做功12mgR ,C 正确.【答案】 C【能力提升】能力提升功、功率的计算1. 求恒力做功的方法2. 求变力做功的方法(1) 用动能定理:W=12m 22v -12m 21v .(2) 用W=Pt 求功,如机车恒功率启动时.(3) 将变力做功转化为恒力做功:如滑动摩擦力做功、空气阻力做功等. (4)利用微元法求变力做功. 3. 总功的计算(1) 先求物体所受的合外力,再求合外力做的功. (2) 先求每个力做的功,再求各功的代数和. 4. 求功率要分析清楚是求瞬时功率还是平均功率.【例1】(2015·淮安模拟)如图所示,两根完全相同、轴线在同一水平面内的平行长圆柱上放一均匀木板,木板的重心与两圆柱等距,其中圆柱的半径r=2 cm,木板质量m=5 kg,木板与圆柱间的动摩擦因数μ=0.2,两圆柱以角速度ω绕轴线做相反方向的转动.现施加一过木板重心且平行圆柱轴线的拉力F于木板上,使其以速度v=0.6 m/s沿圆柱表面做匀速运动.取g=10 m/s2.下列说法中正确的是( )A. 若ω=0,则水平拉力F=20 NB. 若ω=40 rad/s,则水平拉力F=6 NC. 若ω=40 rad/s,木板移动距离x=0.5 m,则拉力所做的功为4 JD. 不论ω为多大,所需水平拉力恒为10 N思维轨迹:应用滑动摩擦力公式求出滑动摩擦力大小→应用平衡条件求出拉力大小→应用功的计算公式分析答题【解析】当ω=40 rad/s,圆柱转动的线速度大小为 v'=ωr=0.8 m/s,木板的速度v=0.6 m/s,则木板所受的滑动摩擦力与F的夹角为(180°+37°),木板在垂直于轴线方向受到两轴的滑动摩擦力大小相等、方向相反,在垂直于轴线方向上受到的滑动摩擦力为零,在平行于轴线方向上,木板受到的滑动摩擦力f=μmg=0.2×5×10 N=10 N,木板做匀速直线运动,由平衡条件得F=fsin 37°=6 N,木板移动距离x=0.5 m,拉力做功W=Fx=6×0.5 J=3 J,故A、C、D错误,B正确.【答案】 B【变式训练1】(多选)(2015·泰州一模)如图所示,长为L的轻杆A一端固定一个质量为m的小球B,另一端固定在水平转轴O上,轻杆A绕转轴O在竖直平面内匀速转动.在轻杆A与竖直方向的夹角α从0°增加到90°的过程中,下列说法中正确的是( )A. 小球B 受到轻杆A 作用力的方向一定沿着轻杆AB. 小球B 受到的合力的方向一定沿着轻杆AC. 小球B 受到轻杆A 的作用力对小球做正功D. 小球B 重力做功的功率不断增大【解析】 B 球做匀速圆周运动,所受合外力提供向心力,指向圆心,B 项正确;合力指向圆心,A 对B 的力就不会沿杆子方向,A 项错误;B 球动能不变,根据动能定理说明合力做功为零,重力做正功,A 对B 的力一定做负功,C 项错误;开始时重力与速度方向成直角,随着夹角变化,重力与速度的夹角逐渐变为零度,根据P=mgvcos θ得出重力的功率不断增大,D 项正确.【答案】 BD机车启动问题两种机车启动的模型比较P()v 不变↓F-F m 阻↓不变⇒F 不变P=Fv↑直到P 额=Fv【例2】 (多选)(2015·常州一模)如图所示,用跨过光滑定滑轮的缆绳将海面上的一艘静止的质量为m 的小船沿直线拖向岸边,小船到达B 处时放开缆绳. 已知拖动缆绳的电动机的输出功率恒为P ,小船受到的阻力大小恒为f ,小船到达B 处前速度已达到最大值. 设经过A 点时,缆绳与水平面的夹角为θ,小船速度为v A ,不计缆绳质量. 则下列说法中正确的是( )A. 小船先做加速运动,后做减速运动B. 小船先做加速度减小的加速运动,后做匀速运动C. 小船经过A 点的加速度为a=cos -APf v m θD. 小船运动的最大速度为v m =Pf 思维轨迹:【解析】 当小船在A 点时,把船速沿着绳子和垂直绳子进行分解,根据几何关系得绳子方向的分速度有v 绳=v A cos θ.设绳子拉力为F ,根据电动机功率恒定有P=Fv 绳=Fv A cos θ.对小船进行受力分析后沿水平方向和竖直方向进行正交分解有Fcos θ-f=ma ,a=cos -F f m θ=cos -cos A P f v m θθ=-A Pfv m ,C 项错误;当加速度为零时速度最大,最大速度由m P v -f=0得出v m =Pf ,D 项正确;小船先做加速度逐渐变小的变加速运动,最终匀速,A 项错误、B 项正确.【答案】 BD【变式训练2】 (2015·徐州三模)一汽车在平直公路上以20 kW 的功率行驶,t 1时刻驶入另一段阻力恒定的平直公路,其v-t 图象如图所示,已知汽车的质量为2×103 kg. 下列说法中正确的是()A. t 1前汽车受到的阻力大小为1×103 NB. t 1后汽车受到的阻力大小为2×103 NC. t 1时刻汽车加速度大小突然变为1 m/s 2D. t 1~t 2时间内汽车的平均速度为7.5 m/s【解析】 t 1前汽车匀速,有P=F 1v 1=f 1v 1,得f 1=1P v =3201010⨯ N=2×103 N ,A 项错误;进入另一段公路后最终以v 2=5 m/s 匀速,得出f 2=2P v =320105⨯ N=4×103N ,B 项错误;t 1时刻牵引力为2×103 N ,阻力瞬间变为4×103 N ,加速度为a=33-210210⨯⨯m/s 2=-1 m/s 2,C 项正确;根据面积得出t 1~t 2时间内汽车的平均速度大于7.5 m/s ,D 项错误.【答案】 C动能定理的应用1. 应用动能定理解题的基本步骤2. 应用动能定理的注意事项(1) 动能定理既适用于直线运动,也适用于曲线运动,既适用于恒力做功,也适用于变力做功.(2) 若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式.【例3】(2015·山东)如图甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接.物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l.开始时物块和小球均静止,将此时传感装置的示数记为初始值.现给小球施加一始终垂直于l段细绳的力,将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的60%.不计滑轮的大小和摩擦,重力加速度的大小为g.求:(1) 物块的质量.(2) 从释放到运动至最低位置的过程中,小球克服阻力所做的功.甲乙思维轨迹:(1) 分别对开始及夹角为60°进行受力分析→根据共点力平衡条件列式→求得物块的质量(2) 在最低点受力分析→根据牛顿第二定律求出物块的速度→对全程应用动能定理列式→求得小球克服阻力所做的功【解析】(1) 设开始时细绳的拉力大小为T1,传感装置的初始值为F1,物块质量为M,由平衡条件得对小球,T1=mg,对物块,F1+T1=mg.当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为T2,传感装置的示数为F2,据题意可知,F2=1.25F1,由平衡条件得对小球,T2=mgcos60°,对物块,F2+T2=Mg,联立各式,代入数据得 M=3m.(2) 设小球运动至最低位置时速度的大小为v,从释放到运动至最低位置的过程中,小球克服阻力所做的功为Wf ,由动能定理得mgl(1-cos 60°)-Wf=12mv2,在最低位置,设细绳的拉力大小为T3,传感装置的示数为F3,据题意可知,F 3=0.6F1,对小球,由牛顿第二定律得T3-mg=m2vl,对物块,由平衡条件得 F3+T3= Mg,联立各式,代入数据得Wf=0.1mgl.【答案】(1) 3m (2) 0.1mgl【变式训练3】(2015·新课标Ⅰ)如图所示,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则()A. W=12mgR ,质点恰好可以到达Q 点 B. W>12mgR ,质点不能到达Q 点C. W=12mgR ,质点到达Q 点后,会继续上升一段距离 D. W<12mgR ,质点到达Q 点后,会继续上升一段距离【解析】 根据动能定理可得P 点动能E kP =mgR ,经过N 点时,半径方向的合力提供向心力,可得4mg-mg=m 2v R ,所以N 点动能为E kN =32mgR,从P 点到N 点根据动能定理可得mgR+W=32mgR -mgR ,即摩擦力做功W=-2mgR.质点运动过程,半径方向的合力提供向心力即F N -mgsin θ=ma=m 2v R ,根据左右对称,在同一高度,由于摩擦力做功导致右半幅的速度小,轨道弹力变小,滑动摩擦力f=μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E kQ =32mgR -mgR-W',由于W'<2mgR,所以Q 点速度仍然没有减小到0,仍会继续向上运动一段距离,故选项C 正确.【答案】 C【变式训练4】(2015·苏锡常镇二模)如图所示为仓储公司常采用的“自动化”货物装卸装置,两个相互垂直的斜面固定在地面上,货箱A(含货物)和配重B通过与斜面平行的轻绳跨过光滑滑轮相连. A装载货物后从h=8.0 m高处由静止释放,运动到底端时,A和B同时被锁定,卸货后解除锁定,A在B的牵引下被拉回原高度处,再次被锁定. 已知θ=53°,B的质量M为1.0×103kg,A、B与斜面间的动摩擦因数均为μ=0.5,滑动摩擦力与最大静摩擦力相等,取g=10 m/s2,sin 53°=0.8,cos 53°=0.6.(1) 为使A由静止释放后能沿斜面下滑,其质量m需要满足什么条件?(2) 若A的质量m=4.0×103kg,求它到达底端时的速度v.(3) 为了保证能被安全锁定,A到达底端的速率不能大于12 m/s. 请通过计算判断:当A的质量m不断增加时,该装置能否被安全锁定.【解析】(1) 设左斜面倾角为θ,右斜面倾角为β,货箱由静止释放后能沿斜面下滑,则F合>0,mgsinθ-Mgsinβ-μmgcosθ-μMgcosβ>0,解得m>2.0×103 kg.(2) 对系统应用动能定理W合=ΔEk,mgh-Mg·sin sin h βθ-(μmgcos θ+μMgcos β)·sin h θ=12(M+m)v 2,解得 m/s.另解:本小题也可用牛顿第二定律求解: 由F 合=ma ,mgsin θ-Mgsin β-μmgcos θ-μMgcos β=(M+m)a , 得a=2m/s 2.由运动学方程v 2=2aL ,L=sin hθ,得 m/s.(3) 当A 的质量m 与B 的质量M 之间关系满足m ≫M 时,货箱下滑的加速度最大,到达斜面底端的速度也最大,此时有mgsin θ-μmgcos θ=ma m , a m =5m/s 2, v 2=2a m L ,货箱到达斜面底端的最大速度 v=10m/s<12m/s.所以,当A 的质量m 不断增加时,该运输装置能被安全锁定.【答案】 (1) m>7.0×103 kg m/s (3) 能应用动能定理分析带电体在电场中的运动【例4】 (2015·海安中学)如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m=2.0×1-110 kg 、电荷量为q=+1.0×10-5 C ,从a 点由静止开始经电压为U=100 V 的电场加速后,垂直进入匀强电场中,从虚线MN 的某点b(图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1) 带电粒子刚进入匀强电场时的速率v 1. (2) 水平匀强电场的场强大小. (3) a 、b 两点间的电势差.思维轨迹:(1) 带电粒子在加速电场中→电场力做正功为qU→运用动能定理求解速率v 1 (2) 粒子进入匀强电场中做类平抛运动→将粒子在b 的速度进行分解,竖直方向上做匀速直线运动,水平方向做匀加速直线运动→运用运动学公式和牛顿第二定律求解场强的大小(3) 对粒子运动全程分析→运用动能定理列式求解a 、b 两点间的电势差【解析】 (1) 由动能定理得qU=12m 21v ,代入数据得v 1=104 m/s.(2) 粒子沿初速度方向做匀速运动d=v 1t , 粒子沿电场方向做匀加速运动v y =at ,由题意得tan 30°=1yv v ,由牛顿第二定律得qE=ma , 联立以上各式并代入数据得3 N/C=1.732×103 N/C.(3) 由动能定理得qU ab =12m(21v +2yv )-0,联立以上各式并代入数据得U ab =400 V.【答案】 (1) 104 m/s (2) 1.732×103N/C (3) 400 V【变式训练5】 (2015·南师附中)如图所示,虚线左侧空间有一方向水平向右的匀强电场,场强E=5×108 N/C.足够长的光滑水平导轨MN 部分处于匀强电场中,右端N 与水平传送带平滑连接,导轨上放有质量m=1.0 kg 、电荷量q=1×10—8 C 、可视为质点的带正电滑块A ,传送带长L=2.0 m.第一次实验时,使皮带轮沿逆时针方向转动,带动传送带以速率v=3.0 m/s 匀速运动,由静止释放A.A 在电场力作用下向右运动,以速度v A m/s 滑上传送带,并从传送带右端P 点水平飞出落至地面上的Q 点,已知A 与传送带之间的动摩擦因数μ=0.20,重力加速度取g=10 m/s 2.(1) 求A 到达传送带右端P 点时的速度大小.(2) 第二次实验时,使皮带轮沿顺时针方向转动,带动传送带以速率v=3.0 m/s 匀速运动,调整A 由静止释放的位置,使A 仍从P 点水平飞出落至Q 点.求A 的初始位置距虚线的距离的范围.【解析】 (1) A 在传送带上做匀减速运动,设加速度大小为a ,则μmg=ma , 代入数据解得a=2 m/s 2.由运动学公式2P v -2A v =-2aL ,代入数据解得v P =3 m/s.(2) 要从P 点飞出后仍落至地面上的Q 点,A 在P 点的速率必为3 m/s.当皮带顺时针转动时,若v A m/s ,则A 在传送带上一直做匀减速运动,到达P 点时速度恰好为3 m/s ,从P 点飞出仍落至地面上的Q 点.若v A m/s ,则A 在传送带上可能先做匀减速运动,达到3 m/s ,后和传送带一起做匀速运动,也可能先加速运动,达到3 m/s 后和传送带一起匀速运动,其中的临界情况是A 在传送带上一直匀加速运动,到达P 点时速度刚好为3 m/s.设这种情况下A 刚好滑上传送带时的速度为v 0,由运动学公式,有2P v -20v =2aL ,代入数据解得v 0=1 m/s.因此,A 刚好滑上传送带时的速度需满足1 m/s≤v A m/s. 设A 的初始位置与虚线间的距离为x ,由动能定理有qEx=12m 2A v -0,代入数据解得0.1m≤x≤1.7m.【答案】 (1) 3 m/s (2) 0.1m≤x≤1.7m趁热打铁,事半功倍.请老师布置同学们根据要求及时完成《配套检测与评估》中的练习第7-8页.【检测与评估】专题四 动能定理的综合应用1. (2015·福建)如图所示,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上.若小滑块第一次由A 滑到C ,所用的时间为t 1,第二次由C 滑到A ,所用时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )A. t 1<t 2B. t 1=t 2C. t 1>t 2D. 无法比较t 1、t 2的大小2. (2015·宿迁三校联考)如图甲所示,静止在水平地面上的物块受到水平拉力F 的作用,F 与时间t 的关系如图乙所示,设物块与地面之间的最大静摩擦力f m 大小与滑动摩擦力大小相等,则( )甲乙A. 0~t 1时间内所受摩擦力大小不变B. t 1~t 2时间内物块做加速度减小的加速运动C. t 2时刻物块的速度最大D. t 2~t 3时间内物块克服摩擦力做功的功率增大3. (2015·新课标Ⅱ)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示.假定汽车所受阻力的大小f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图象中可能正确的是( )A BCD4. (2015·南通一模)如图所示,AB 、AC 两光滑细杆组成的直角支架固定在竖直平面内,AB 与水平面的夹角为30°,两细杆上分别套有带孔的a 、b 两小球,在细线作用下处于静止状态,细线恰好水平.某时刻剪断细线,在两球下滑到底端的过程中,下列说法中正确的是( )A. a 、b 两球滑到底端时速度相同B. a 、b 两球重力做功相同C. 小球a 下滑的时间大于小球b 下滑的时间D. 小球a 受到的弹力小于小球b 受到的弹力5. (2015·淮安模拟)如图所示,小物块与水平轨道、倾斜轨道之间的动摩擦因数均相同,小物块从倾角为θ1的轨道上高度为h 的A 点由静止释放,运动至B 点时速度为v 1.现将倾斜轨道的倾角调为θ2,仍将物块从轨道上高度为h 的A 点由静止释放,运动至B 点时速度为v 2.已知θ2<θ1,不计物块在轨道接触处的机械能损失.则( )A. v 1<v 2B. v 1>v 2C. v 1=v 2D. 由于不知道θ1、θ2的具体数值,v 1、v 2关系无法判定6. (多选)(2015·泰州二模)如图所示,水平转台上有一个质量为m 的物块,用长为L 的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ角,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tan θ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则( )A. 当绳中出现拉力时,转台对物块做的功为2πμmgLsin θB. 当绳中出现拉力时,转台对物块做的功为12μmgLsin θC. 当转台对物块支持力为零时,转台对物块做的功为2sin 2cos mgL θθD.时,物块机械能增量为34cos mgLθ7. (2015·盐城三模)如图所示,水平桌面上的轻质弹簧左端固定,右端与静止在O 点质量为m=1 kg 的小物块接触而不连接,此时弹簧无形变.现对小物块施加F=10 N 水平向左的恒力,使其由静止开始向左运动.小物块在向左运动到A 点前某处速度最大时,弹簧的弹力为 6 N ,运动到A 点时撤去推力F ,小物块最终运动到B 点静止.图中OA=0.8 m ,OB=0.2 m ,重力加速度取g=10 m/s 2.求小物块: (1) 与桌面间的动摩擦因数μ. (2) 向右运动过程中经过O 点的速度. (3) 向左运动的过程中弹簧的最大压缩量.8. (2015·江苏)一转动装置如图所示,四根轻杆OA 、OC 、AB 和CB 与两小球及一小环通过铰链连接,轻杆长均为l ,球和环的质量均为m ,O 端固定在竖直的轻质转轴上. 套在转轴上的轻质弹簧连接在O 与小环之间,原长为L. 装置静止时,弹簧长为32L. 转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:(1) 弹簧的劲度系数k.(2) AB杆中弹力为零时,装置转动的角速度ω.(3) 弹簧长度从32L缓慢缩短为12L的过程中,外界对转动装置所做的功W.【检测与评估答案】专题四动能定理的综合应用1. A 【解析】在AB段,根据牛顿第二定律mg-FN =m2vR,速度越大,滑块受支持力越小,摩擦力就越小,在BC段,根据牛顿第二定律FN -mg=m2vR,速度越大,滑块受支持力越大,摩擦力就越大,由题意知从A运动到C相比从C到A,在AB段速度较大,在BC段速度较小,所以从A到C运动过程受摩擦力较小,用时短,所以A正确.2. D 【解析】在0~t1时间内水平拉力小于最大静摩擦力,物体保持不动,摩擦力大小逐渐增大,故A错误;t1~t2时间内,拉力逐渐增大,摩擦力不变,根据牛顿第二定律可知,加速度逐渐增大,故B错误;t2~t3时间内,合力向前,物体一直加速前进,t 3时刻后合力反向,要做减速运动,所以t 3时刻速度最大,故C 错误;t 2~t 3时间内速度逐渐增大,摩擦力大小不变,根据P=fv 可知物块克服摩擦力做功的功率增大,故D 正确.3. A 【解析】 由图可知,汽车先以恒定功率P 1启动,所以刚开始做加速度减小的加速运动,后以更大功率P 2运动,所以再次做加速度减小的加速运动,故A 正确,B 、C 、D 错误.4. C 【解析】 剪断细线前设线中拉力为T ,分别对两小球受力分析tan30°=a T m g ,tan60°=b Tm g ,联立解得a b m m =3.剪断细线后滑到底端对应的竖直高度h,但方向不同,A 项错误;由于两球质量不同,重力做功不同,B 项错误;a 沿细杆下滑的加速度小,位移大,时间长,C 项正确;球a 受到的弹力为F a =m a gcos 30°=3m bgcos 30°=m b g>m b gcos 60°,D 项错误.5. C 【解析】 设小物块与水平轨道、倾斜轨道之间的动摩擦因数为μ,水平轨道与倾斜轨道交点为D 点,从A 到B 的过程中,根据动能定理得12m 2B v -0=mgh-μmgcos θ·sin hθ-μmgx BD , 则12m 2B v =mgh-μmgh·1tan θ-μmgx BD , 而μmgh·1tan θ=μmgx CD ,所以12m 2B v =mgh-μmgx BC ,由此可以看出到达B 点的速度与倾斜轨道的倾角无关,所以v 1=v 2,故C 正确.6. BCD 【解析】绳中出现拉力前,物块的摩擦力提供向心力,取最大静摩擦力提供向心力计算,有μmg=m2sinvLθ.至绳中出现拉力时,根据动能定理得转台对物块做的功为W=12mv2=12μmgLsin θ,A项错误,B项正确;转台对物块支持力为零时,绳子拉力和重力的合力提供向心力,根据几何关系有mgtan θ=m2'sinvLθ,根据动能定理得转台对物块做的功为W'=12mv'2=2sin2cosmgLθθ,C项正确;转台对物块支持力为零时,对应的角速度满足mgtan θ=m2ω临Lsin θ,得出ω临α,根据几何关系有tan α=2sinm Lmgωα,把ωcos α=23cos θ.物块机械能的增量为增加的重力势能和动能之和,有ΔE=mg(Lcos θ-Lcosα)+12m(ωLsin α)2=34cosmgLθ,D项正确.7. (1) 小物块速度达到最大时,加速度为零. F-μmg-F弹=0,μ=-F Fmg弹=0.4.(2) 设向右运动通过O点时的速度为v,由动能定理列出-f·xOB =0-12m20v,f=μmg=4 N,解得 vm/s.(3) 设撤去F推力后,小物块继续向左运动x的距离,弹簧的压缩量最大值为xmax.取小物块运动的全过程,根据动能定理列出F×0.8-f(2x+1.8)=0,x=0.1 m,则xmax=0.8 m+x=0.9 m.8. (1) 装置静止时,设OA、AB杆中的弹力分别为F1、T1,OA杆与转轴的夹角为θ1.小环受到弹簧的弹力F弹1=k·2L,小环受力平衡F弹1=mg+2T1cosθ1,小球受力平衡F1cosθ1+T1cosθ1=mg;F1sinθ1=T1sinθ1,解得k=4mg L.(2) 设OA、AB杆中的弹力分别为F2、T2,OA杆与转轴的夹角为θ2,弹簧长度为x.小环受到弹簧的弹力F弹2=k(x-L),小环受力平衡F弹2=mg,得x=54L.对小球F2cosθ2=mg;F2sinθ2=m2lsinθ2且cosθ2=2xl,解得ω.(3) 弹簧长度为12L时,设OA、AB杆中的弹力分别为F3、T3,OA杆与弹簧的夹角为θ3.小环受到弹簧的弹力F弹3=12kL,小环受力平衡2T3cosθ3=mg+F弹3且cosθ3=4Ll,对小球F3cosθ3=T3cosθ3+mg;F3sinθ3+T3sinθ3=m23ωlsinθ3,解得ω3整个过程弹簧弹性势能变化为零,则弹力做的功为零,由动能定理W-mg3-22L L⎛⎫ ⎪⎝⎭-2mg3-44L L⎛⎫⎪⎝⎭=2×12m(ω3lsinθ3)2,解得W=mgL+2 16mglL.。