单缸四冲程柴油机课程设计说明书

合集下载

机械原理课程设计单缸四冲程内燃机之欧阳音创编

机械原理课程设计单缸四冲程内燃机之欧阳音创编

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动阐发二级学院机械工程学院年级专业13资料本科班学号学生姓名指导教师朱双霞教师职称教授目录第一部分绪论 (2)第二部分设计题目及主要技术参数说明 (3)2.1 设计题目及机构示意图 (3)2.2 机构简介 (3)2.3 设计数据 (4)第三部分设计内容及计划阐发 (6)3.1 曲柄滑块机构设计及其运动阐发 (6)3.1.1 设计曲柄滑块机构 (6)3.1.2 曲柄滑块机构的运动阐发 (7)3.2 齿轮机构的设计 (11)3.2.1 齿轮传动类型的选择 (12)3.2.2 齿轮传动主要参数及几何尺寸的计算 (13)3.3 凸轮机构的设计 (13)3.3.1 从动件位移曲线的绘制 (14)3.3.2 凸轮机构基本尺寸简直定 (15)3.3.3 凸轮轮廓曲线的设计 (16)第四部分设计总结 (18)第五部分参考文献 (20)第六部分图纸 (21)第一部分绪论1.本课程设计主要内容是单缸四冲程内燃机机构设计及其运动阐发,在设计计算中运用到了《机械原理》、《理论力学》、《机械制图》、《高等数学》等多门课程知识。

2. 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发念头。

通常所说的内燃机是指活塞式内燃机。

活塞式内燃机以往复活塞式最为普遍。

活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能是气缸内产生高温高压的燃气。

燃气膨胀推动活塞做功。

再通过曲柄连杆机构或其他机构将机械功输出,驱动从念头械工作。

内燃机的工作循环由进气、压缩、燃烧和膨胀、排气等过程组成。

这些过程中只有膨胀过程是对外做功的过程。

其他过程都是为更好的实现做功过程而需要的过程。

四冲程是指在进气、压缩、膨胀和排气四个行程内完成一个工作循环,其间曲轴旋转两圈。

进气行程时,此时进气门开启,排气门关闭;压缩行程时,气缸、内气体受到压缩,压力增高,温度上升;膨胀行程是在压缩上止点前喷油或燃烧,使混合气燃烧,产生高温、高压,推动活塞下行并做功;排气行程时,活塞推挤气缸内废气经排气门排出。

机械原理课程设计单缸四冲程内燃机

机械原理课程设计单缸四冲程内燃机

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动分析二级学院机械工程学院年级专业 13材料本科班学号学生姓名指导教师朱双霞教师职称教授目录第一部分绪论 (2)第二部分设计题目及主要技术参数说明 (3)2.1 设计题目及机构示意图 (3)2.2 机构简介 (3)2.3 设计数据 (4)第三部分设计内容及方案分析 (6)3.1 曲柄滑块机构设计及其运动分析 (6)3.1.1 设计曲柄滑块机构 (6)3.1.2 曲柄滑块机构的运动分析 (7)3.2 齿轮机构的设计 (11)3.2.1 齿轮传动类型的选择 (12)3.2.2 齿轮传动主要参数及几何尺寸的计算 (13)3.3 凸轮机构的设计 (13)3.3.1 从动件位移曲线的绘制 (14)3.3.2 凸轮机构基本尺寸的确定 (15)3.3.3 凸轮轮廓曲线的设计 (16)第四部分设计总结 (18)第五部分参考文献 (20)第六部分图纸 (21)第一部分绪论1.本课程设计主要内容是单缸四冲程内燃机机构设计及其运动分析,在设计计算中运用到了《机械原理》、《理论力学》、《机械制图》、《高等数学》等多门课程知识。

2. 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。

通常所说的内燃机是指活塞式内燃机。

活塞式内燃机以往复活塞式最为普遍。

活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能是气缸内产生高温高压的燃气。

燃气膨胀推动活塞做功。

再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。

内燃机的工作循环由进气、压缩、燃烧和膨胀、排气等过程组成。

这些过程中只有膨胀过程是对外做功的过程。

其他过程都是为更好的实现做功过程而需要的过程。

四冲程是指在进气、压缩、膨胀和排气四个行程内完成一个工作循环,此间曲轴旋转两圈。

进气行程时,此时进气门开启,排气门关闭;压缩行程时,气缸、内气体受到压缩,压力增高,温度上升;膨胀行程是在压缩上止点前喷油或点火,使混合气燃烧,产生高温、高压,推动活塞下行并做功;排气行程时,活塞推挤气缸内废气经排气门排出。

单缸四冲程机构课程设计

单缸四冲程机构课程设计

单缸四冲程机构课程设计一、课程目标知识目标:1. 学生能理解单缸四冲程机构的基本原理,掌握其工作循环的四个阶段:进气、压缩、爆发和排气。

2. 学生能描述单缸四冲程发动机各部件的名称、功能及其相互之间的关系。

3. 学生能掌握单缸四冲程发动机的能量转换过程,理解热效率的概念。

技能目标:1. 学生能够通过观察和实际操作,分析单缸四冲程机构的工作状态,识别常见问题并给出解决策略。

2. 学生能够运用物理和数学知识,计算单缸四冲程发动机的性能参数,如功率、扭矩等。

3. 学生能够设计简单的单缸四冲程机构模型,展示其工作原理。

情感态度价值观目标:1. 学生培养对机械原理的兴趣,激发探究精神和创新意识。

2. 学生在学习过程中树立团队合作意识,学会分享和互助。

3. 学生通过了解单缸四冲程机构在生活中的应用,认识到科技与生活的紧密联系,增强环保意识和责任感。

课程性质:本课程为初中物理学科拓展课程,以实践和理论相结合的方式,帮助学生深入理解单缸四冲程机构的工作原理。

学生特点:初中年级学生已具备一定的物理知识和动手能力,对新鲜事物充满好奇,喜欢探索和实践。

教学要求:教师应注重理论与实践相结合,引导学生主动参与,培养其观察、分析和解决问题的能力。

同时,关注学生的个体差异,给予个性化指导,确保每个学生都能达到课程目标。

通过有效的教学策略,将课程目标分解为具体可衡量的学习成果,便于教学设计和评估。

二、教学内容1. 引入概念:介绍单缸四冲程机构的基本定义、历史发展及其在现代交通工具中的应用。

相关教材章节:第一章“内燃机概述”2. 工作原理:详细讲解单缸四冲程发动机的四个工作阶段,进气、压缩、爆发和排气的过程。

相关教材章节:第二章“内燃机工作原理”3. 发动机结构:介绍单缸四冲程发动机的主要部件,如气缸、活塞、连杆、曲轴、气门、火花塞等,并讲解各部件的功能及相互关系。

相关教材章节:第三章“内燃机的结构与组成”4. 性能参数:讲解功率、扭矩、热效率等性能参数的计算方法和影响因素。

单缸四冲程柴油机课程设计

单缸四冲程柴油机课程设计

单缸四冲程柴油机课程设计课程设计:单缸四冲程柴油机一、课程背景和目标1.1 课程背景单缸四冲程柴油机是一种常见的内燃机类型,广泛应用于农业、工业以及交通运输等领域。

对于学习机械工程、汽车工程等专业的学生来说,了解和掌握单缸四冲程柴油机的原理和工作过程是必不可少的。

1.2 课程目标本课程旨在使学生能够:- 理解柴油机的基本原理和工作过程;- 掌握柴油机的结构和各部件的功能;- 熟悉柴油机的运行调试和故障排除方法;- 培养学生的实践操作能力和团队合作精神。

二、课程内容2.1 柴油机的工作原理- 热力循环- 燃烧过程- 压缩过程- 进气过程- 排气过程2.2 柴油机的构造和工作过程- 缸体和缸套- 活塞与连杆- 气缸盖和气门机构- 喷油系统- 进气系统- 排气系统2.3 柴油机的运行调试- 燃油供给系统的调试- 气缸压力测试与调整- 排气系统的调试- 运行参数的监测与调整2.4 柴油机的故障排除- 燃油供给系统故障- 气缸压力不正常- 排气系统故障- 运行参数异常2.5 实践操作和团队合作项目- 独立操作柴油机的调试与维护- 团队合作完成柴油机安装和调试项目三、课程教学方法3.1 理论教学- 授课讲解柴油机基本原理和工作过程;- 利用多媒体教学手段展示柴油机的结构和工作过程;- 组织学生参与讨论,加深对柴油机知识的理解。

3.2 实验操作- 提供实验室环境,让学生独立操作柴油机进行调试;- 引导学生观察和记录柴油机不同运行状态下的参数变化。

3.3 课堂演示- 通过模型或真实柴油机进行实际演示,展示柴油机的工作原理和故障排除方法。

四、课程评估与考核4.1 课堂小测验:对柴油机基本原理和工作过程进行测试。

4.2 实验报告:学生需要根据实验操作记录和观察结果编写实验报告。

4.3 课程设计项目:团队合作完成柴油机安装和调试项目,并提交相应的设计报告。

4.4 课堂参与度:学生在课堂中的积极参与和提问情况。

五、课程参考资料- 《柴油机原理与维修》- 《柴油机工程》- 《柴油机原理与调校》- 《内燃机基础》以上是单缸四冲程柴油机课程设计的大纲,通过本课程的学习和实践操作,学生将能够全面了解柴油机的原理、工作过程以及运行调试和故障排除方法,为将来从事相关领域的工作打下基础。

单缸四冲程柴油机课程设计说明书

单缸四冲程柴油机课程设计说明书

单缸四冲程柴油机课程设计说明书目录目录1、机构简介与设计数据 (2)(1)机构简介 (2)(2)设计数据 (3)2、设计内容及方案分析 (3)(1)曲柄滑块机构的运动分析 (4)(2)齿轮机构的设计 (6)(3)凸轮机构的设计 (8)3、设计体会 (11)4、主要参考文献 (11)单缸四冲程柴油机1、机构简介与设计数据(1)机构简介柴油机(如附图1(a))是一种内燃机,他将燃料燃烧时所产生的热能转变成机械能。

往复式内燃机的主体机构为曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。

本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。

在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。

进气冲程:活塞下行,对应曲柄转角θ=0°→180°。

进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a → b。

压缩冲程:活塞上行,曲柄转角θ=180°→ 360°。

此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。

做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃的温度,因此,在高压下射入的柴油立刻爆燃,气缸内的压力突然增至最高点,燃气压力推动活塞下行对外做功,曲柄转角θ=360°→540°。

随着燃气的膨胀,气缸容积增加,压力逐渐降低,如图上c→b。

排气冲程:活塞上行,曲柄转角θ=540°→720°。

排气阀打开,废气被驱出,气缸内压力略高于1大气压,一般亦以1大气压计算,如图上的b→a。

进排气阀的启闭是由凸轮机构控制的。

凸轮机构是通过曲柄轴O上的齿轮Z1和凸轮轴上的齿轮Z2来传动的。

机械原理课程设计单缸四冲程内燃机

机械原理课程设计单缸四冲程内燃机

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动分析二级学院机械工程学院年级专业 13材料本科班学号学生姓名指导教师朱双霞教师职称教授目录第一部分绪论 (2)第二部分设计题目及主要技术参数说明 (3)2.1 设计题目及机构示意图 (3)2.2 机构简介 (3)2.3 设计数据 (4)第三部分设计内容及方案分析 (6)3.1 曲柄滑块机构设计及其运动分析 (6)3.1.1 设计曲柄滑块机构 (6)3.1.2 曲柄滑块机构的运动分析 (7)3.2 齿轮机构的设计 (11)3.2.1 齿轮传动类型的选择 (12)3.2.2 齿轮传动主要参数及几何尺寸的计算 (13)3.3 凸轮机构的设计 (13)3.3.1 从动件位移曲线的绘制 (14)3.3.2 凸轮机构基本尺寸的确定 (15)3.3.3 凸轮轮廓曲线的设计 (16)第四部分设计总结 (18)第五部分参考文献 (20)第六部分图纸 (21)第一部分绪论1.本课程设计主要内容是单缸四冲程内燃机机构设计及其运动分析,在设计计算中运用到了《机械原理》、《理论力学》、《机械制图》、《高等数学》等多门课程知识。

2. 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。

通常所说的内燃机是指活塞式内燃机。

活塞式内燃机以往复活塞式最为普遍。

活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能是气缸内产生高温高压的燃气。

燃气膨胀推动活塞做功。

再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。

内燃机的工作循环由进气、压缩、燃烧和膨胀、排气等过程组成。

这些过程中只有膨胀过程是对外做功的过程。

其他过程都是为更好的实现做功过程而需要的过程。

四冲程是指在进气、压缩、膨胀和排气四个行程内完成一个工作循环,此间曲轴旋转两圈。

进气行程时,此时进气门开启,排气门关闭;压缩行程时,气缸、内气体受到压缩,压力增高,温度上升;膨胀行程是在压缩上止点前喷油或点火,使混合气燃烧,产生高温、高压,推动活塞下行并做功;排气行程时,活塞推挤气缸内废气经排气门排出。

单缸四冲程柴油机课程设计

单缸四冲程柴油机课程设计

单缸四冲程柴油机课程设计引言:柴油机是一种内燃机,通过燃烧柴油燃料产生动力,用于驱动机械设备。

单缸四冲程柴油机是一种常见的柴油机型号,具有结构简单、运行稳定等特点。

本课程设计将围绕单缸四冲程柴油机展开,包括其结构、工作原理、性能参数和调整方法等内容。

一、单缸四冲程柴油机的结构单缸四冲程柴油机由气缸、活塞、曲轴、连杆、进气门、排气门、燃油喷射泵等组成。

其中,气缸是柴油机的主要部件,负责容纳活塞和燃烧室。

活塞通过连杆与曲轴相连,将往复运动转化为旋转运动。

进气门和排气门分别负责柴油机的进气和排气过程。

燃油喷射泵则负责将燃油喷射到燃烧室中。

二、单缸四冲程柴油机的工作原理单缸四冲程柴油机的工作过程包括进气、压缩、燃烧和排气四个冲程。

具体过程如下:1. 进气冲程:曲轴旋转,活塞向下运动,气缸内形成负压,进气门打开,新鲜空气通过进气道进入燃烧室。

2. 压缩冲程:活塞向上运动,气缸内的空气被压缩,进气门关闭。

3. 燃烧冲程:活塞接近上止点时,燃油喷射泵将燃油喷射到燃烧室中,与高温高压的空气混合并燃烧,产生高温高压气体推动活塞向下运动。

4. 排气冲程:活塞再次向上运动,排气门打开,废气通过排气道排出气缸。

三、单缸四冲程柴油机的性能参数单缸四冲程柴油机的性能参数包括功率、扭矩、燃油消耗率和排放等。

其中,功率是柴油机输出的动力大小,通常用千瓦(kW)表示;扭矩是柴油机输出的转矩大小,通常用牛·米(N·m)表示;燃油消耗率是柴油机每单位功率输出所消耗的燃油量,通常用克/千瓦小时(g/kWh)表示;排放是指柴油机在工作过程中排放的废气中的污染物含量,如氮氧化物、颗粒物等。

四、单缸四冲程柴油机的调整方法为了保证单缸四冲程柴油机的正常运行,需要对其进行调整。

常见的调整方法包括:1. 燃油喷射量的调整:通过调整燃油喷射泵的工作参数,控制燃油喷射量,以达到最佳的燃烧效果。

2. 气缸压缩比的调整:通过更换气缸垫片或调整活塞运动幅度,改变气缸的压缩比,以提高柴油机的功率和燃烧效率。

机械原理课程设计单缸四冲程内燃机教材

机械原理课程设计单缸四冲程内燃机教材

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动分析二级学院机械工程学院年级专业 13材料本科班学号学生姓名指导教师朱双霞教师职称教授目录第一部分绪论 (2)第二部分设计题目及主要技术参数说明 (3)2.1 设计题目及机构示意图 (3)2.2 机构简介 (3)2.3 设计数据 (4)第三部分设计内容及方案分析 (6)3.1 曲柄滑块机构设计及其运动分析 (6)3.1.1 设计曲柄滑块机构 (6)3.1.2 曲柄滑块机构的运动分析 (7)3.2 齿轮机构的设计 (11)3.2.1 齿轮传动类型的选择 (12)3.2.2 齿轮传动主要参数及几何尺寸的计算 (13)3.3 凸轮机构的设计 (13)3.3.1 从动件位移曲线的绘制 (14)3.3.2 凸轮机构基本尺寸的确定 (15)3.3.3 凸轮轮廓曲线的设计 (16)第四部分设计总结 (18)第五部分参考文献 (20)第六部分图纸 (21)第一部分绪论1.本课程设计主要内容是单缸四冲程内燃机机构设计及其运动分析,在设计计算中运用到了《机械原理》、《理论力学》、《机械制图》、《高等数学》等多门课程知识。

2. 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。

通常所说的内燃机是指活塞式内燃机。

活塞式内燃机以往复活塞式最为普遍。

活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能是气缸内产生高温高压的燃气。

燃气膨胀推动活塞做功。

再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。

内燃机的工作循环由进气、压缩、燃烧和膨胀、排气等过程组成。

这些过程中只有膨胀过程是对外做功的过程。

其他过程都是为更好的实现做功过程而需要的过程。

四冲程是指在进气、压缩、膨胀和排气四个行程内完成一个工作循环,此间曲轴旋转两圈。

进气行程时,此时进气门开启,排气门关闭;压缩行程时,气缸、内气体受到压缩,压力增高,温度上升;膨胀行程是在压缩上止点前喷油或点火,使混合气燃烧,产生高温、高压,推动活塞下行并做功;排气行程时,活塞推挤气缸内废气经排气门排出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章设计要求 (2)设计任务 (2)设计思路 (2)机构简介 (3)设计数据 (4)第2章连杆机构设计和运动分析 (5)连杆机构的设计要求 (5)杆件尺寸确定 (5)杆件运动的分析与计算 (5)图解法作杆件的运动分析 (7)第3章齿轮机构传动设计 (8)齿轮机构的设计要求 (8)齿轮参数的计算 (8)第4章凸轮机构设计 (11)凸轮机构的设计要求 (11)运动规律的选择 (11)基圆半径的计算 (12)凸轮设计图 (13)课程设计小结 (14)参考文献 (14)第1章设计要求1.1设计任务设计一个四冲程内燃机。

机器的功能与设计要求:该机器的功能是把化学能转化成机械能。

须完成的动作为:活塞的吸气,压缩,做功,排气4个过程,进,排气门的开关与关闭、燃料喷射。

1.2设计思路设计四冲程内燃机的关键点在于活塞的吸气,压缩,做功,排气以及气门的开闭几个动作的完成。

而怎样将这个几个动作完成并按照运动循环图结合起来这是我们完成这次课程设计所需要解决的问题。

所以,我将从这些方面入手,依据这些需要来选择机构。

1.3机构简介柴油机(如附图1(a))是一种内燃机,它将燃料燃烧时所产生的热能转变成机械能。

往复式内燃机的主体机构为曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。

本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。

在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。

进气冲程:活塞下行,对应曲柄转角θ=0°→180°。

进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a →b。

压缩冲程:活塞上行,曲柄转角θ=180°→360°。

此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。

做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃的温度,因此,在高压下射入的柴油立刻爆燃,气缸内的压力突然增至最高点,燃气压力推动活塞下行对外做功,曲柄转角θ=360°→540°。

随着燃气的膨胀,气缸容积增加,压力逐渐降低,如图上c→b。

排气冲程:活塞上行,曲柄转角θ=540°→720°。

排气阀打开,废气被驱出,气缸内压力略高于1大气压,一般亦以1大气压计算,如图上的b→a。

进排气阀的启闭是由凸轮机构控制的。

凸轮机构是通过曲柄轴O上的齿轮Z1和凸轮轴上的齿轮Z2来传动的。

由于一个工作循环中,曲柄转两转而进排气阀各启闭一次,所以齿轮的传动比i12=n1/n2=Z1/Z2 =2。

由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程是对外做功的,其余的三个冲程则需一次依靠机械的惯性带动。

(a)机构简图(b)示功图图1-1 柴油机机构简图及示功图1.4设计数据第2章连杆机构的运动分析连杆机构的设计要求已知:活塞冲程H,连杆与曲柄长度之比λ,曲柄每分钟转数n1。

要求:设计曲柄滑块机构,绘制机构运动简图,做机构滑块的位移、速度和加速度运动线图。

杆件尺寸的确定曲柄位置图的做法如附图2所示,以滑块在上指点是所对应的曲柄位置为起始位置(即θ=0°),将曲柄圆周按转向分成12等分分得12个位置1→12,12′(θ=375°)为气缸指示压力达最大值时所对应的曲柄位置,13→24为曲柄第二转时对应的各位置。

1)设曲柄长度为r,连杆长度为I,由已知条件:λ=I/r=4,H=(I+r)-(l-r)=2r=120mm可得r=60mm,l=240mm按此尺寸做得曲柄滑块机构的机构运动简图。

图2-1 曲柄滑块机构运动简图杆件运动的分析与计算 由几何知识:sin ∠OBA=rsinφl=sinφ4得: cos ∠OBA=√1−(sinφ4)2(2-1) ∴ s=rcos φ+I cos ∠OBA= rcos φ+I √1−(sinφ4)2(2-2)V=ds dt=-ωrsin φ-32√1−(4)2(2-3)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--==I *4sin 1324sin 12cos 644sin 1322sin rcos -dt dV A 222222ϕϕϕϕϕϕω (2-4) 把各点的角度分别代入上式(2-2)(2-3)(2-4)得:S 1=S 11= S 2=S 10= S 3=S 9= S 4=S 8= S 5=S 7= S 6= S 12= V 1=-V 11=s V 2=-V 10=s V 3=-V 9=s V 4=-V 8=s V 5=-V 7=s V 6=V 12=0m/s a 1=a 11=s 2 a 2=a 10= m/s 2 a 3=a 9= m/s 2 a 4=a 8= m/s 2 a 5=a 7= m/s 2 a 6= m/s 2图解法作杆件的运动分析对点1做速度分析,即30o=ϕ,如下图所示,向量ab 表示v ab ,向量pb 表示v b ,向量a p 则表示OA 杆做圆周运动的速度v a 。

图2-3 点1的速度分析图 有: v b = v a + v ab方向:B →O ⊥OA ⊥AB大小: ϖr2第3章齿轮机构的设计齿轮机构的设计要求已知:齿轮齿数Z1,Z2,模数m ,分度圆压力角α,齿轮为正常齿制,再闭式润滑油池中工作。

要求:选择两轮变位系数,计算齿轮各部分尺寸,用2号图纸绘制齿轮传动的啮合图。

齿轮参数的计算1) 齿轮基本参数: 注:下面单位为mm模数: m=5 压力角:ο20=α 齿数: 1z =22 2z =44 齿顶高系数: 0.1=*a h 齿根高系数: 25.0=*c 传动比: 12/z z i =(3-1)齿顶高变动系数: y x x -+=21σ(3-2) 分度圆直径: 11mz d = 22mz d =(3-3)基圆直径: αcos 11mz d b =(3-4)αcos 22mz d b = (3-5)齿顶高: )(11σ-+=*x h m h a a (3-6))(22σ-+=*x h m h a a (3-7) 齿根高: )(11x c h m h a f -+=*ο(3-8) )(22x c h m h a f -+=** (3-9) 齿顶圆直径: 1112a a h d d += (3-10) 2222a a h d d += (3-11)齿根圆直径: 1112f f h d d -= (3-12)2222f f h d d -= (3-13)2) 实际中心距a '的确定:2)(21z z m a +⨯= (3-14) a '=(a/5+1)⨯5(3-15)3) 啮合角α': )cos(2)()cos(21ααα⨯'⨯+='z z m (3-16) αααinv z z x x inv +++=')/()(tan 22121 (3-17)4) 分配变位系数21x x 、;17sin 22min≈=*αah z (3-18) min 1min min 1/)(z z z h x a -=*;min 2min min 2/)(z z z h x a -=*(3-19)αααtan 2))((2121z z inv inv x x +-'=+ (3-20)5) 中心距变动系数 y=(a a -')/m (3-21) 6) 重合度:)]tan (tan )tan (tan [212211ααααπε'-+'-=a a z z (3-22) )/(cos 1111ab a d d -=α )/(cos 2212a b a d d -=α (3-23)一般情况应保证2.1≥ε7) 齿顶圆齿厚: )(2111111ααinv inv r r r s s a a a a --= (3-24) )(2222222ααinv inv r r r s s a a a a --= (3-25)一般取25.0≥a s8) 分度圆齿厚: απtan 22111m x m s +=(3-26) απtan 22122m x m s += (3-27)第4章凸轮机构的设计 凸轮机构的设计要求已知:从动件冲程h ,推程和回程的许用压力角[α] ,[α]′,推程运动角Φ,远休止角Φs ,回程运动角Φ′,从动件的运动规律如(附图3)所示。

要求:按照许用压力角确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线。

并画在2号图纸上s ′图4-1 从动件运动规律图运动规律的选择:根据从动件运动规律图(附图3)分析知位移s 对转角φ的二阶导数为常数且周期变换,所以确定为二次多项式运动规律。

公式:S=δδ2210C C C ++ (4-1)加速阶段: 0-25°S=2h δ2/δ0(4-2)减速阶段: 25-50°S=h-2h(δ0-δ)2/δ02 (4-3)以从动件开始上升的点为δ=0°基圆半径计算根据许用压力角计算出基圆半径最小值,凸轮形状选为偏距为零且对称。

如下图所示,从动件的盘型机构位于推程的某位置上,法线n —n 与从动件速度VB2的夹角为轮廓在B 点的压力角,P12 为凸轮与从动件的相对速度瞬心。

故 VP12=VB2=ω|OP12|, 从而有 |OP12| =VB2/ω1=ds/d δ。

计算可知 tan α==|OP 12|S 0−S=ds/dδr 0+s整理得基圆半径将S=S (δ)和α=[α]代入 得: r 0≥20mm 在此我取r 0=34mm 滚子半径选取r r =4mm凸轮设计图根据以上数据做出凸轮的实际廓线及理论廓线,如下图所示:图4-1 凸轮的实际轮廓线及理论轮廓线课程设计小结经过几天不断的努力,身体有些疲惫,但看到劳动后的硕果,心中又 有几分喜悦。

总而言之,感触良多,收获颇丰。

通过认真思考和总结,机械设计存在以下一般性问题:机械设计的过况而定,大程是一个复杂细致的工作过程,不可能有固定不变的程序,设计过程须视具体情致可以分为三个主要阶段:产品规划阶段、方案设计阶段和技术设计阶段。

值得注意的是:机械设计过程是一个从抽象概念到具体产品的演化过程,我们在设计过程中不断丰富和完善产品的设计信息,直到完成整个产品设计;设计过程是一个逐步求精和细化的过程,设计初期,我们对设计对象的结构关系和参数表达往往是模糊的,许多细节在一开始不是很清楚,随着设计过程的深入,这些关系才逐渐清楚起来;机械设计过程是一个不断完善的过程,各个设计阶段并非简单的安顺序进行,为了改进设计结果,经常需要在各步骤之间反复、交叉进行,指导获得满意的结果为止。

相关文档
最新文档