n次方根的定义(精)
4-1-1 n次方根与分数指数幂 课件 高中数学人教A版(2019)选择性必修第一册

积的乘方,等于积的每一个因式分别乘方,
再把所得的幂相乘
m
n
正数的正分数指数幂:a n a m (a 0, m, n N * , n 1)
正数的负分数指数幂: a
m
n
1
a
m
n
1
n
a
m
(a 0, m, n N * , n 1)
规定:0的正分数指数幂等于0,0的负分数指数幂没意义.
泛的应用.
第4章 指数函数与对数函数
4.1 指数
4.1.1 n次方根与分数指数幂
• 1.理解n次方根、根式的概念.
• 2.能正确运用根式的性质化简或求值,能进行根式与分数指数幂之间
的相互转化.
初中已经学过整数指数幂.
a
底数
n
指数
幂
a a a...a a
n
求n个相同因数的积的运算,叫做乘方,
*
m
规定:0的正分数指数幂等于0,0的负分数指数幂没意义.
指数运算性质
① = + > , , ∈
②
③
= > , , ∈
=
> , ∈
同底数幂相乘,底数不变,指数相加
同底数幂相除,底数不变,指数相减
幂的乘方,底数不变,指数相乘
良渚遗址位于浙江省杭州市余杭区
良渚和瓶窑镇,1936年首次发现.
这里的巨型城址,面积近360万平
方米,包括古城、水坝和多处高等
级建筑. 考古学家利用遗址中遗存
的碳14的残留量测定,古城存在
的时期为公元前3300年~2500年,
n次方根的定义.

一、n 次方根的定义 引例(1)(±2)2=4,则称±2为4的 ; (2)23=8,则称2为8的 ;(3)(±2)4=16,则称±2为16的 。
定义:一般地,如果x n =a (n>1,且n ∈N*),那么x 叫做a 的n 次方根。
记作,其中n 叫根指数,a 叫被开方数。
练习:(1)25的平方根等于_______________ (2)27的立方根等于_________________ (3)-32的五次方根等于_______________ (4)81的四次方根等于_______________ (5)a 6的三次方根等于_______________ (6)0的七次方根等于________________ 二、n 次方根的性质:1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
表示(2)当n 是偶数时,正数的n 次方根有两个,它们互为相反数.表示。
(3)负数没有偶次方根, 0的任何次方根都是0。
记作00=a探究:归纳: 1、当n 为奇数时, 2、当n 为偶数时,例1、求下列各式的值(式子中字母都大于零)练习1:练习2:(1)当6<a<7,则(2)=---22)7()6(aa =-++625625na x= 一定成立吗? a a nn =.na )0>±a a n(_____233=-)(______844=-)(_____)3()32=>-a a (=nn a a =nn a a{,0,≥<-=a a a a (2) (4))ab .>_____________________________==三、分数指数幂注意:(1)分数指数幂是根式的另一种表示; (2)根式与分式指数幂可以互化. 例如: 5102552510)(a a a a=== (a >0)4123443412)(a a a a === (a >0)规定:正分数指数幂的意义是 负分数指数幂的意义是如0的正分数指数幂为0,0的负分数指数幂无意义。
2020高中数学 2.1.1N次方根的概念及性质教案 新人教A版必修1

n次方根的概念和性质一、教学分析分数指数幂是必修一第二章第一节的内容,是研究基本初等函数之一的指数函数的基础。
分数指数幂不同于整数指数幂,要理解分数指数幂,首先要深入理解n次方根的概念和性质.根式的概念教学是一个难点,但它是后续学习所必需的。
教学中可考虑以具体的例子为载体,类比平方根、立方根的定义,给出n次方根的定义,可以在给出定义前,让学生类比平方根、立方根举些例子。
将平方根和立方根的性质推广到n次方根时,多给学生提供一些实例,经过比较让学生自己归纳出结论。
教学时,要让学生充分体会当n是偶数时,正数的n次方根有两个,这两个数互为相反数。
对于结论0的n次方根都是0,要启发学生用n次方根的定义去理解。
根式的概念源于方根的概念,根据n次方根的意义就能得到n次方根的性质1。
但性质2是不能由n次方根的意义直接得出的,因此,教学中可让学生从具体实例中自己探究归纳得出结论。
二、学情分析学生在义务阶段的学习中已经知道了平方根和立方根的概念,掌握了平方根和立方根的相关性质。
然而知识需在运用中得到巩固,学生较长时间不接触平方根和立方根的知识,所以在教学中以正方形的面积和正方体的体积为例,帮助学生回顾平方根和立方根的概念。
教学中要充分利用学生已有的知识,着眼于学生的最近发展区,为学生提供学生感兴趣的的内容,调动学生的积极性,发挥其潜能。
由此,学生将很容易类比平方根和立方根的知识,得出n次方根的概念及其表示方法。
然而,让学生直接抽象地得出n次方根的相关性质,难度很大,学生的抽象概论能力还需进一步培养,所以,教学中应用大量丰富的实例,让学生从实例中观察,归纳得出结论。
通过本节课的学习,不仅要求学生掌握n次方根的相关知识,同时要培让学生感受基本数学思想,数学方法。
三、教学目标:(1)知识与技能:n次方根的概念,根式的性质(2)过程与方法:类比平方根和立方根,得出n次方根的概念;根据n次方根的概念,结合具体实例,总结n次方根性质;(3)情感态度价值观:类比思想,分类讨论思想;四、教学重难点重点:n次方根的概念和性质,难点:n次方根的性质五、教学过程1.触景生情问题1 据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP (国内生产总值)年平均增长率可望达到7.3%。
n次方根与分数指数幂课件-高一数学人教A版(2019)必修第一册

根式的概念
式子
n
a
叫做根式,这里n叫做根指数,a叫做被开方数。
根式
根指数
n
被开方数
a
根式的性质:
1. 1)
2 2
4
4
5
2)
-6
5
6
0 0
4
4
3)
4)
6 6
5
5
( a) a
n
2. 1)
4
2
4
2
4
2)
n
n
(2) 2 3)
4
5
(6)
a, n为奇数
, ≥ -,
(3)
-, < -
【变式训练 1】 (1) (-) =
;
(2)使等式 (-)( -)=(3-a) + 成立的实数 a 的取值范
围是
.
解析:(1) (-) =-2;
(2)因为 (-)( -) =
(-) ( + )=|a-3|· + =(3-a) + ,
无理数指数幂
4.将下列根式与分数指数幂进行互化.
3 2
(1)a · a ;(2)
3
答案 1a
2
3
-4
2
a b
3
ab2(a>0,b>0).
2
3
• 3 a 2 a3 • a a
3
2
3
a ,
a 4b 2 • 3 ab 2 a 4b 2 • ab
11
3
1
2 3
1
3
a
根号和开方公式

根号和开方公式
根号和开方的公式如下:
1.根号的定义:对于一个非负实数a,根号下a表示一个非负实数x,满足x的平方等于a。
即,根号下a = x,其中x ≥ 0,且x的平
方等于a,即x² = a。
2.开方的定义:如果一个正数a的n次方等于b,那么a就称为数
b的n次方根(简称根)。
而开n次方就是求b的n次方根,记作
“ **n√a** ”,即为求解方程xⁿ = a。
以下是一些关于根号和开方的拓展:
1.根号和开方都可以用于解决各种实际问题,如计算三角形的斜
边长度、计算圆的直径与面积等。
2.根号和开方也有很多应用,如在高等数学、物理学、工程学以
及计算机科学中都有广泛的应用,是数学实践中必不可少的重要工具。
3.在计算开方时,有些数可以直接求出,而对于一些数来说,需
要使用近似算法才能得到解,如牛顿迭代法、二分法等。
4.在实际应用中,由于计算机的存在,人们可以得到更高精度、更快速的计算结果,从而更好地满足实际应用的需求。
沪教版(五四制)七年级数学下册课件:12.4 n 次方根(共12张PPT)

新课学习
哪个数的5次 方是243呢?
3
3 3
243 81 27 3 9 3
32 的5次方根. 例题1 (1)求 243 (2)求 (8) 2 的6次方根.
解 (1)5
32 5 25 5 2 5 2 5 ( ) 243 3 3 3
6
( 2)
( 8) 6 82 6 (23 ) 2
a
怎样表示呢?
• 求一个数a的n次方根的运算叫做开n次方, a叫做被开方数,n叫做根指数.
新课学习
例如:求16的4次方根.
解: ∵24=16,(-2)4=16, ∴±2都是16的4次方根,
16 2.
4
又如:求-32的5次方根.
解: ∵(-2)5=-32, ∴-2是-32的5次方根,
5 32 2.
12.4 n 次方根
复习引入
类比平方根与立方根, 什么叫n次方根、 开n次方呢?
1、什么叫平方根?什么叫开平方? • 如果一个数的平方等于a,那么这个数 叫做a的平方根. • 求一个数a的平方根的运算叫做开平方. 2、什么叫立方根、什么叫开立方?
• 如果一个数的立方等于a,那么这个数 叫做的立方根. •求一个数a的立方根的运算叫做开立方.
2、5的n次方根是多少? 解 当n是奇数时, 5的n次方根是
n
5.
当n是偶数时, 5的n次方根是 n 5.
课堂小结
一. 概念:(1)n次方根
(2)开n次方
• 如果xn=a,那么x叫做a的n次方根. • 求一个数a的n次方根的运算叫做开n次方.
二. “n次方根”分类讨论
(1)当n为偶数时, 记作 正数a有2个互为相反数的偶次方根, 0的偶次方根等于0, n 0 0. 负数没有偶次方根 .
n次方根的概念

n次方根的概念
一、定义
n次方根是指一个数的n次方等于另一个数的运算,即被开方数的n次方根等于该数。
n次方根通常使用符号√(n)表示,其中n表示根数。
二、不同根数的概念
1. 平方根:根数为2,表示一个数的平方根。
2. 立方根:根数为3,表示一个数的立方根。
3. 四次方根:根数为4,表示一个数的四次方根。
4. 五次方根:根数为5,表示一个数的五次方根。
5. n次方根:根数为n,表示一个数的n次方根。
三、求n次方根的方法
求n次方根的一般方法有以下两种:
1. 迭代法:迭代法是一种基于数学公式和程序控制结构的求解方法。
它通过重复迭代的步骤,逐步逼近求解方程的根。
2. 牛顿-拉弗森方法:牛顿-拉弗森方法是一种数值计算方法,可以求函数的零点。
求n次方根时,可以将其转化为一个函数的零点问题,然后使用牛顿-拉弗森方法来求解。
四、n次方根的实际应用
n次方根在实际生活和工作中具有广泛的应用,如计算机科学中的编码系统、密码学、数字信号处理、图像处理等领域。
同时,n次方根也应用于物理学领域,如热力学、光学等,以及统计学和金融学等领域。
在日常生活中,n次方根也常常用于计算直线距离、概率计算等。
总之,n次方根是一种重要的数学概念,具有广泛的实际应用价值。
2020高中数学 2.1.1N次方根的概念及性质教案 新人教A版必修1

n次方根的概念和性质一、教学分析分数指数幂是必修一第二章第一节的内容,是研究基本初等函数之一的指数函数的基础。
分数指数幂不同于整数指数幂,要理解分数指数幂,首先要深入理解n次方根的概念和性质.根式的概念教学是一个难点,但它是后续学习所必需的。
教学中可考虑以具体的例子为载体,类比平方根、立方根的定义,给出n次方根的定义,可以在给出定义前,让学生类比平方根、立方根举些例子。
将平方根和立方根的性质推广到n次方根时,多给学生提供一些实例,经过比较让学生自己归纳出结论。
教学时,要让学生充分体会当n是偶数时,正数的n次方根有两个,这两个数互为相反数。
对于结论0的n次方根都是0,要启发学生用n次方根的定义去理解。
根式的概念源于方根的概念,根据n次方根的意义就能得到n次方根的性质1。
但性质2是不能由n次方根的意义直接得出的,因此,教学中可让学生从具体实例中自己探究归纳得出结论。
二、学情分析学生在义务阶段的学习中已经知道了平方根和立方根的概念,掌握了平方根和立方根的相关性质。
然而知识需在运用中得到巩固,学生较长时间不接触平方根和立方根的知识,所以在教学中以正方形的面积和正方体的体积为例,帮助学生回顾平方根和立方根的概念。
教学中要充分利用学生已有的知识,着眼于学生的最近发展区,为学生提供学生感兴趣的的内容,调动学生的积极性,发挥其潜能。
由此,学生将很容易类比平方根和立方根的知识,得出n次方根的概念及其表示方法。
然而,让学生直接抽象地得出n次方根的相关性质,难度很大,学生的抽象概论能力还需进一步培养,所以,教学中应用大量丰富的实例,让学生从实例中观察,归纳得出结论。
通过本节课的学习,不仅要求学生掌握n次方根的相关知识,同时要培让学生感受基本数学思想,数学方法。
三、教学目标:(1)知识与技能:n次方根的概念,根式的性质(2)过程与方法:类比平方根和立方根,得出n次方根的概念;根据n次方根的概念,结合具体实例,总结n次方根性质;(3)情感态度价值观:类比思想,分类讨论思想;四、教学重难点重点:n次方根的概念和性质,难点:n次方根的性质五、教学过程1.触景生情问题1 据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP (国内生产总值)年平均增长率可望达到7.3%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、n 次方根的定义 引例
(1)(±2)2=4,则称±2为4的 ; (2)23=8,则称2为8的 ;
(3)(±2)4=16,则称±2为16的 。
定义:一般地,如果x n =a (n>1,且n ∈N*),那么x 叫做a 的n 次方根。
记作
,其中n 叫根指数,a 叫被开方数。
练习:
(1)25的平方根等于_______________ (2)27的立方根等于_________________ (3)-32的五次方根等于_______________ (4)81的四次方根等于_______________ (5)a 6的三次方根等于_______________ (6)0的七次方根等于________________ 二、n 次方根的性质:
1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
表示
(2)当n 是偶数时,正数的n 次方根有两个,它们互为相反数.表示。
(3)负数没有偶次方根, 0的任何次方根都是0。
记作00=a
探究:
归纳: 1、当n 为奇数时, 2、当n 为偶数时,
例1、求下列各式的值(式子中字母都大于零)
练习1:
练习2:
(1)当6<a<7,则
(2)
=
---22)7
()6(a
a =
-++625625n
a x= 一定成立吗? a a n
n =
.n
a )0>
±a a n
(_____23
3
=-)(______84
4
=-)(_____
)3()32=>-a a (=n
n a a =n
n a a
{0
,0
,≥<-=a a a a (2) (4))a b .>_____________________________
==
三、分数指数幂
注意:(1)分数指数幂是根式的另一种表示; (2)根式与分式指数幂可以互化. 例如: 5
102
5525
10
)(a a a a
=== (a >0)
4
123443412)(a a a a === (a >0)
规定:正分数指数幂的意义是 负分数指数幂的意义是
如
0的正分数指数幂为0,0的负分数指数幂无意义。
性质:(整数指数幂的运算性质对于有理指数幂也同样适用)
例1、求值
例2、用分数指数幂的形式表示下列各式(a>0)
s
r s
r
a
a a +=),,0(Q s r a ∈>rs s r a
a =)(),,0(Q s r a ∈>r r r a a a
b =)()
,0,0(Q r b a ∈>>定义: )
1 , , , 0 ( *
> ∈ > = n N n m a a a n m n
m
且 例2化简下列各式的值:
(1) (3) (4) (5)1,,0(>∈>=*n N n m a a a n m n m
且)1,,0(1
>∈>=*-n N n m a a a n m n m
且_____8116______41______100
_____84
332
13
2=⎪⎭
⎫
⎝⎛=⎪
⎭
⎫
⎝⎛=
=-
--4
101
648
27
()()
_______2_______
132
2
3
2
3==
⋅b
a a
b
b
a
a a
311a
8387-
⋅b a 3
4
3
43
4
51
5
15==-
例3、用分数指数幂的形式表示下列各式(其中a >0)
a a ∙3=2
13a a ∙=2
13+
a
=27a 322a a ∙=3
22a a ∙=3
83
22a a
=+
3
a a =2
13
1)(a a ∙=3
26
1216
12
1a a
a a ==∙+
例4、计算下列各式(式子中字母都是正数): (1)(22
13
2b a )(-63
12
1b a )÷(-36
56
1b a ) =[2×(-6)÷(-3)]6
531216
12132-+-+b
a
=4a
(2)(8
834
1
)-n m =(328
838
4
1)()--=n m n m 无理数指数幂
25中指数是无理数,近似值看表
一般地,无理数指数幂 ( m >0, m 是无理数)是一个确定的实数。
有理数指
数幂的运算性质同样适用于无理数指数幂。
课外练习:
1、已知
的值求x x x
a a 6
323
2,1a ---+-=+
2、计算下列各式
3、已知,求下列各式的值31
=+-x
x
(1)x
x 2
12
1-+ (2)
x
x 2
12
1-
-
a
m 2 1
2 1
2 1
2 1 2 1
2 1
2 1
2
1 )
1 ( b
a b
a b
a b a - + +
+ - )
( ) 2 )2 ( 2
2 2 2 - - - ÷ + - a a a a
46394
369)()(a a ⋅
4、化简 的结果是( )
5、2-(2k+1)-2-(2k-1)+2-2k 等于( )
A.2-2k
B. 2-(2k-1)
C. -2-(2k+1)
D.2
6、若 有意义,则x 的取值范围是
7、_______3210
10102
y
-3x x
===,则,若
y
8、计算下列各式:
(1)4
325)12525(÷- (2)
3
2
2a
a a ∙(a >0)
10、化简的结果是)1)(1)(1)(1)(1(22222
2
14
18
116
132
1
-
-
-
-
-
+++++
( )
A )
21(321
1
21--- B
)
21(321
1
--- C
2
1321
-
- D )1(2
11232
1
-
-
9、 , 下列各式总能成立的是( ) R
b a ∈ b a b a b a b a b a b a b a b a + = + - = - + = + - = - 10 10 4 4 4
4 2 2 8
8 2 2 6 6 6 ) ( D C ) (
B ) ( A 2
4816 D. C. B. .A a
a a a 2 1 )
1 | (| -
- x。